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Abstract 

A general formula for the rainfall intensity-duration-frequency (idf) relationship, consistent with the theoretical probabil- 
istic foundation of the analysis of rainfall maxima is proposed. Specific forms of this formula are explicitly derived from the 
underlying probability distribution function of maximum intensities. Several appropriate distribution functions are studied for 
that purpose. Simple analytical approximations of the most common distribution functions are presented, which are incorpor- 
ated in, and allow mathematically convenient expressions of idf relationships. Also, two methods for a reliable parameter 
estimation of idf relationships are proposed. The proposed formulation of idf relationships constitutes an efficient parameter- 
isation, facilitating the description of the geographical variability and regionalisation of idf curves. Moreover, it allows 
incorporating data from non-recording stations, thus remedying the problem of establishing idf curves in places with a sparse 
network of rain-recording stations, using data of the denser network of non-recording stations. Case studies, based on data of a 
significant part of Greece, briefly presented in the paper, clarify the methodology for the construction and regionalisation of 
the idf relationship. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduct ion 

The rainfall intensi ty-durat ion-frequency (idf) 
relationship is one of  the most commonly used tools 
in water resources engineering, either for planning, 
designing and operating of  water resource projects, 
or the protection of  various engineering projects 
(e.g. highways, etc.) against floods. The establishment 
of  such relationships goes back to as early as 1932 
(Bernard, 1932). Since then, many sets of  relation- 
ships have been constructed for several parts of  the 
globe. Since the 1960s, the geographical distribution 
of  idf relationships has been studied in several devel- 
oped countries and maps have been constructed to 
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provide the rainfall intensities or depths for various 
return periods and durations. For example, in the USA 
such maps have been developed since 1961 by the US 
Weather Bureau (Hershfield, 1961) and more recently 
by NOAA for the western USA (Miller et al., 1973) 
and for the eastern and continental USA (Frederick 
et al., 1977). These maps have been reproduced in 
many hydrological handbooks and textbooks (e.g. 
Chow (1964, pp. 9.51-9.56), Linsley et al. (1975, 
p. 358), Chow et al. (1988, pp. 446-451) ,  Viessman 
et al. (1989, p. 337), Wanielista (1990, p. 59) and 
Smith (1993)). In the UK and Ireland, maps have 
been constructed by the Institute of  Hydrology 
(NERC, 1975) and reproduced in various textbooks 
(e.g. Wilson (1990, pp. 278-338)).  Similar maps have 
been constructed in other countries or parts of  
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countries, e.g. Australia (Canterford et al., 1987), 
India (UNESCO, 1974; see also Subramanya (1984, 
p. 40)), Sri Lanka (Baghirathan and Shaw, 1978), 
SWA-Namibia  (Pitman, 1980) and the region of 
Tuscany, Italy (Pagliara and Viti, 1993). In some 
cases, such as for Nigeria (Oyebande, 1982) and 
Pennsylvania (Aron et al., 1987; more detailed analy- 
sis than the above referenced for USA), instead of 
constructing maps with contours, the regions of inter- 
est were divided into homogeneous subregions and 
one set of curves was devised for each subregion. 

However, in most other countries such maps with 
rainfall intensity contours have not been constructed 
until now, and one has to retrieve the original intensity 
records of a nearby rain-recording station to construct 
the idf relationship, when needed. However, nowa- 
days, owing to the great usefulness of the map 
delineated information of rainfall idf curves, and the 
convenience provided by the expanded use of com- 
puterised databases (in storage and processing of 
hydrometeorological data) and geographical infor- 
mation systems (in regionalisation of information), it 
is anticipated that the development of maps will pro- 
pagate to other less developed countries in the near 
future. 

In recent decades, significant progress has been 
made in the statistical and stochastic modelling of 
hydrological time series. However, this progress is 
not reflected in the procedures for formulating and 
constructing idf curves, which remain semi-empirical. 
This may be a direct consequence of the fact that 
construction of idf curves and related issues does 
not constitute a hot research topic; the established 
methodologies are adequate for the developed coun- 
tries, and such issues were concluded decades ago. 
Nevertheless, the less developed countries, that are 
now proceeding to these issues can take advantage 
of the advances in statistical modelling of time series 
and develop new more refined methodologies. 

Such methodologies must also take into account the 
specific problems of less developed countries, which 
are mainly related with data availability. A typical 
problem that is met in many countries is the very 
sparse network of rain-recording stations, whose 
data are the natural basis for idf calculations. As a 
solution to this problem, additional information from 
the denser network of non-recording stations can be 
utilised. To this aim, an appropriate methodology for 

incorporating data from non-recording stations must 
be developed. 

This paper proposes a new approach to the formu- 
lation and construction of the idf curves using data 
from both recording and non-recording stations. More 
specifically, it discusses a general rigorous formula for 
the idf relationship whose specific forms are explicitly 
derived from the underlying probability distribution 
function of maximum intensities. Also, it proposes two 
methods for a reliable parameter estimation of the idf 
relationship. Finally, it discusses a framework for the 
regionalisati0n of idf relationships by also incorporating 
data from non-recording stations. The paper includes a 
brief presentation of an application of the developed 
methodology to a significant part of Greece. 

The paper is organised in five sections, the first 
being this introduction. In Section 2 we give the 
mathematical formulation of the idf relationship. 
Section 3 is devoted to parameter estimation issues 
and Section 4 deals with the geographical variation 
of idf curves and regionalisation issues. In both Sec- 
tions 3 and 4 the proposed procedures are illustrated 
with applications using real-world data. Conclusions 
are drawn in Section 5. 

2. Mathematical  formulation of the idf 
relationship 

It is self-evident that the idf relationship is a 
mathematical relationship among the rainfall intensity 
i, the duration d, and the return period T (or, equiva- 
lently, the annual frequency of exceedance, typically 
referred to as "frequency" only). However, these 
terms may have different meanings in different con- 
texts of engineering hydrology and this may lead to 
confusion or ambiguity. For the sake of a comprehen- 
sive presentation and unambiguousness in the 
material that follows we include in Sections 2.1 and 
2.2 the definitions, clarifications, and description of 
the general properties of the idf relationships. The 
reader familiar with these issues may proceed directly 
to Section 2.3. 

2.1. Definition o f  variables, notation and clarification 

Let ~'(t) denote the instantaneous rainfall intensity 
process, where t denotes time. Let d be a selected 
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(arbitrary) time duration (typically from a few min- 
utes to several hours or few days), which serves as the 
length of  a time window over which we integrate the 
instantaneous rainfall intensity process ~'(t). Moving 
this time window along time we form the moving 
average process, given by 

1 I' 
~'(s) ds (1) ~d(t)= ~ ,-~ 

In reality, because we do not know the instantaneous 
intensity in continuous time, but rather have measure- 
ments of  the average intensity ~'a(t) for a given reso- 
lution ~ (typically 5 - 1 0  min to 1 h), Eq. (1) becomes 

(~N-I 
~. ~( t - i6 )  (2) 

~d(t) = 3 i=0  

where it is assumed that the duration d is an integer 
multiple of  the resolution 6, i.e. d = N& Given the 
stochastic process ~'d(t) we can form the series of  the 
maximum average intensities (or simply maximum 
intensities) it(d) (l = 1 ..... n), which consists of  n 
values, where n is the number of  (hydrological) 
years through which we have available measurements 
of  rainfall intensities. This can be done in two ways. 
According to the first way, we form the series of  
annual maxima (or annual maximum series) by 

it(d) := max {~'d(t)} (3) 
1- < t < l  + 

where l- and 1+ are the beginning and end time of  the 
lth year. According to the second way, we form the 
series above threshold (also known as partial duration 
series or annual exceedance series) by selecting those 
values of  ~'d(t) that exceed a certain threshold ~o, 
selected in a manner that the series {it(d)} includes 
exactly n values. To ensure stochastic independence 
among il(d), we also set a lower time limit r (e.g. one 
or more days) for consecutive values, thus defining 
the series by 

{it(d), l= l . . . . .  n} := { ~d(tt)l~d(tt) > ~, 

tt > tl-1 + r ,  ~'d(tl)= max {~'d(t)}~ (4) 
l/--7~t~tl +7" J 

where the three conditions of  the right-hand part must 
hold all together, otherwise the point tl and the 
respective intensity ~d(tt) are not selected for the 
series {iKd)}. 

In practice, the construction of  the series of  maxi- 
mum intensities is performed simultaneously for a 
number k of  durations d j, j = 1 ..... k, starting from a 
minimum duration equal to the time resolution ~ of 
observations (e.g. from 5 - 1 0  min to 1 h depending on 
the measuring device) and ending with a maximum 
duration of  interest in engineering problems (typically 
24 or 48 h). Normally, all k series must have the same 
length n but, owing to missing values, it is possible to 
have different lengths nj for different durations dj. 

The above description of  the construction of  the 
series of  maximum intensity allows us to observe 
that the duration d is not a random variable but, rather, 
a parameter for the intensity. It is not related to the 
actual duration of  rainfall events, but is simply the 
length of  the time window for averaging the process 
of  intensity. On the contrary, the series of  maximum 
intensities it(d) is considered as a random sample of  a 
random variable I(d). 

The return period T for a given duration d and maxi- 
mum intensity i(d) is the average time interval 
between exceedances of  the value i(d). It is well 
known (e.g. see Kottegoda (1980) p. 213) that for 
the annual series, under the assumption that consecu- 
tive values are independent, the return period of an 
event is the reciprocal of  the probability of excee- 
dance of  that event, i.e. 

1 
T = - -  (5) 

1 - F  

where F denotes the probability distribution function 
of  l(d) which, of  course, is evaluated at the particular 
magnitude of  interest. It is also known (e.g. see 
Raudkivi (1979), p. 411) that the return period T' 
for the series above threshold is related to that of  
the series of annual maxima by 

1 1 
T -  ¢=~ T ' -  (6) 

1 - e x p ( -  1/T') - ln(1  - 1/T) 

(A good approximation of  Eq. (6) with an accuracy of  
two decimal digits is given by the very simple rela- 
tion T--  T' + 0.5). Thus, the return period is always 
related to the distribution function of  the series of 
annual maxima. 

Given the above clarifications, we observe that the 
problem of the construction of idf curves is somehow 
idiosyncratic. It is not a problem of statistical analysis 
of  a single random variable, as it includes two 
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variables i and d. Nor is it a problem of  two random 
variables, because d is not a random variable. In fact, 
it consists of  the study of  a family of  random variables 
l(d), where d takes (theoretically an infinite number 
of) values from a real interval. This family of  random 
variables I(d) does not form a typical stochastic pro- 
cess: I does not represent an intensity at a certain time, 
and d does not represent t ime but, rather, a t ime inter- 
val. Nevertheless,  invoking the theory of  stochastic 
processes is not necessary in this problem because 
we are not interested in a mult idimensional  (i.e. of 
order greater than 1) distribution of  I(d). We  are rather 
interested in the first-order distribution of  I(d), i.e. the 
function F(i; d) = P(I(d) < i), which is the target of  
the construction of  the idf curves. Indeed, the function 
F(i; d) can be directly transformed into a relationship 
among the quantities i, d, T. 

2.2. The idf relationship for  a specified return period 

All typical idf  relationships of  the literature for a 
specific return period are special cases of  the general- 
ised formula 

o) 
i -  - -  (7) 

(d ~ + 0) 7 

where o), v, 0, and ~ are non-negative coefficients 
with m? --< 1. The latter inequality is easily derived 
from the demand that the rainfall depth h = id is an 
increasing function of  d. Eq. (7) is not obtained by 
any theoretical reasoning, but is an empirical  for- 
mula, encapsulating the experience from several idf 
studies. In the bibliography, we find simplified ver- 
sions of  Eq. (7), which are derived by adopting one or 
two of  the restrictions p = 1, 1] = 1, and 0 = 0. 

It should be noted that considering v ~ 1 and ~7 ~a 1 
results in overparameterisat ion of  Eq. (7). Indeed, the 
quantity 1/(d ~ + O) can be adequately approximated by 
1/(d + 0')  ~* where 0' and 1]* are coefficients depending 
on v and 0, which can be determined numerically in 
terms of  minimisat ion of  the root-mean-square error. 
Consequently, 1/(d ~ + 0) '  is approximated by 
1/(d+O')  ~', where 1]' = 111]*. A numerical  investiga- 
tion was done to show how adequate the approxima- 
tion of  1 / (d ~ + 0) by 1/(d + 0')  ~* is. The duration d was 
restricted between the values dmi n = 1/12 h (i.e. 5 min) 
and drnax = 120 h, an interval much wider than the one 
typically used. The parameter  0 varied between 0 and 

0max = 12drain (i.e. 1 h), and the parameter  v between 0 
and 1. The root-mean-square standardised error 
(rmsse) of  the approximation took a maximum value 
of  2.3% for u = 0.55 and 0 = 0max; the corresponding 
maximum absolute standardised error (mase) was 
4.3%. For the most frequent case that 0 --< drain, the 
corresponding errors are 0.7% (rmsse) and 1.3% 
(mase). These errors are much less than the typical 
est imation errors and the uncertainty due to the 
l imited sizes of  the typical samples available. In 
conclusion, the parameter v in the denominator of  
Eq. (7) can be neglected and the remaining two 
parameters suffice. Hence, hereafter we will assume 
that u = 1. 

Initially, the coefficients o), 0, and 1] can be consid- 
ered as dependent on the return period. However, their 
functional dependence cannot be arbitrary, because 
the relationships for any two return periods T~ 
and T 2 < Tl must not intersect. If  { o) l, 0 t, ~71 } and 
{602, 02, r/2} are the two parameter sets for Tl and T2 
respectively, then it can be shown that there exist at 
least two sets of  constraints leading to feasible (i.e. not 
intersecting) idf curves. These are 

01 > 0, 0 2 > 0 --711 --- 1, _01 ~ --,1]'11 Wl > 07' 
I]2 02 1'/2 

and 

01 m~0, 

0)2 0~ 2 

(8) 

To both these sets, the following obvious inequalities 
are additional constraints 

o~1>0,  o ) 2 > 0 ,  0 < ~ / 1 < 1 ,  0 < 1 1 2 < 1  (10) 

The essential difference between the sets of  con- 
straints in Eqs. (8) and (9) is that the former does 
not allow 0 to take zero value, whereas the latter 
does allow this special value. Furthermore, it can be 
shown that, if  0 is al lowed to take zero value, then the 
exponent 1] in Eq. (7) must be constant and indepen- 
dent of  the return period. Because the case 0 = 0 must 
not be excluded, it is reasonable to adopt the set of  
constraints of  Eq. (9) for the subsequent analysis. For 
convenience, it is reasonable to consider 0 inde- 
pendent of  the return period as well, thus leading to 

o), 07' 012 
0 2 ~ 0  , 1]1=7/2=n, - - > 1 ,  - - - - <  - -  

O)2 O) 1 °)2 

(9) 
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the following final set of restrictions 

01=02=0-->0, 0 < r/l =r/2=n < I , ¢..01 > 0)2 > 0 

(11) 

In this final set of restrictions, the only parameter that 
is considered as an (increasing) function of the return 
period T is w. This leads, indeed, in a strong simpli- 
fication of the problem of construction of idf curves. 
This theoretical discussion is empirically verified, as 
numerous studies have shown that real world families 
of idf curves can be well described with constant 
parameters O and ~7. 

2.3. The general idf  relationship 

After the above discussion we can formulate a 
generalised idf relationship in the form 

a(T) 
i -  (12) 

b(d) 

which has the advantage of a separable functional 
dependence of i on T and d. The function b(d) is 

b(d) = (d+O) ~ (13) 

where 0 and ~ are parameters to be estimated (0 > 
0, 0 < ~ < 1). The function a(T) (which coincides 
with ¢~ of Section 2.2) is given in the bibliography 
(e.g. Raudkivi (1979), p. 85; Shaw (1983), p. 236; 
Subramanya (1984), p. 205; Chow et al. (1988), 
p. 459; Wanielista (1990), p. 61; Singh (1992), 
p. 904) by the following alternative relations 

a ( T ) = X T  K (14) 

a ( T ) = c + X  In T (15) 

The first is the oldest (Bernard, 1932) yet the most 
common until recently (e.g. see Kothyari and Garde 
(1992) and Pagliara and Viti (1993)). These relations 
are rather empirical and their use has been dictated by 
their simplicity and computational convenience 
rather than their theoretical consistency with the 
probability distribution functions which are appropri- 
ate for the maximum rainfall intensity. Chen (1983) 
applied a more theoretical analysis to obtain similar 
relationships. Koutsoyiannis (1994) reported that Eq. 
(14) is inappropriate for certain issues such as 
simulation (e.g. it tends to underestimate the 

variance). Koutsoyiannis (1996 p. 265) has demon- 
strated empirically that if the maximum rainfall 
intensity has a Gumbel distribution then the 
parameters r and k of Eq. (14) are not in fact constant 
but they depend on the return period T (this is also 
demonstrated briefly below). 

In fact, there is no need to introduce a(T) as an 
empirical function, as it can be completely deter- 
mined, in a theoretically consistent manner, from 
the probability distribution function of the maximum 
rainfall intensity I(d). Indeed, if the intensity l(d) of a 
certain duration d has a particular distribution 
Ft(~(i; d), this will also be the distribution of the vari- 
able Y := I(d)b(d), which is no more than the intensity 
rescaled by b(d) (with the parameters of the latter 
distribution being properly rescaled). This has also 
been reported by Koutsoyiannis (1994, appendix A) 
for the Gumbel distribution, but it can be generalised 
for any distribution. Mathematically, this is expressed 
by 

P{I(d)  <-- i} =P{l(d)b(d)  <- ib(d)} =P{ Y --< y} (16) 

where P{ } denotes probability, or 

1 
Fl(d)(i; d ) = F y ( y r ) =  1 - ~ (17) 

Hence, if Yr is the (1 - 1/T)-quantile of the distribu- 
tion function Fr, then 

YT - a ( T ) = F Y ~ (  1 - 1/T)  (18) 

which proves our claim that a(T) is completely deter- 
mined from the distribution function of intensity. 

We point out that the inverse of a distribution func- 
tion appearing in Eq. (18) generally does not have as 
simple an expression as those of the empirical func- 
tions Eq. (14) and Eq. (15), and in some cases F~71( ) 
cannot be expressed with an explicit analytical equa- 
tion. However, as we show below, we can always get 
approximate analytical expressions adequately simple 
and more accurate than the empirical functions Eq. 
(14) and Eq. (15). 

In Section 2.4, we examine the most typical distri- 
bution functions of maximum intensities and obtain 
for each distribution function the corresponding func- 
tion a(T). Notably, we show that the empirical functions 
Eq. (14) and Eq. (15) can be obtained by our general 
methodology, but they correspond to distribution 
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functions that may not be appropriate for maximum 
rainfall intensities. 

2.4. Alternative distribution functions 

To better serve our purpose, the mathematical 
expressions of the alternative distribution functions 
FRO') given below may have been written intention- 
ally in a slightly different form from that typically 
used in the literature. In all distributions, r and ~b 
denote dimensionless parameters whereas X and c 
denote parameters having the same dimensions as 
the random variable y (or In y in the case of logarith- 
mic transformation of the variable). 

2.4.1. Gumbel distribution function 
The type I distribution of maxima, also termed the 

Gumbel distribution function (Gumbel, 1958), is the 
most widely used distribution for idf analysis owing to 
its suitability for modelling maxima. Given that the 
rainfall intensity l(d) has a Gumbel distribution for 
any duration d, so will Y, and thus 

Fr  (y) = exp( - e -  y/X + ~) (19) 

where X and ~ are the scale and location parameters 
respectively of the distribution function. Combining 
Eq. (18) and Eq. (19) we directly get 

y r - a ( T ) = h ( ~ b - l n I - l n ( 1 - 1 ) ]  } (20) 

which is an exact yet simple expression of a(T). 

2.4.2. Generalised extreme value (GEV) distribution 
This general distribution, which incorporates type I, 

II, and III extreme value distributions of maxima can 
be written in the form 

Fy(y) = e x p (  - [1 + r ( ~ -  ~,b) 1 -'/K } y ----- X(~b- I /d) 

(21) 

where r > 0, X > 0, and ~b are shape, scale, and 
location parameters respectively. For r = 0 the 
GEV distribution turns into the Gumbel distribution; 
the case where r < 0 is not considered here because it 
implies an upper bound of the variable, which is not 

the case in maximum rainfall intensity. We directly 
obtain from Eq. (21) that 

} - I n  1 -  - 1  

Y T  = a(T) =X ~ + 

= X ' { ~ b ' + [ - l n ( 1 - 1 ) l  -K} (22) 

where for simplification we have set X' = X/r and ~b' = 
r~b - 1. Again we have an exact expression of a(7) for 
the GEV distribution that remains relatively simple. 

2.4.3. Gamma distribution 
The two parameter Gamma distribution function, 

sometimes used for idf analysis, is given by 

I i  1 xK-le-X/Xdx, y>--O (23) Fr(Y) = X"F(K-----) 

where K and X are the shape and scale parameters of 
the distribution, respectively. Owing to the compli- 
cated form of Eq. (23) it is not possible to get an 
exact explicit relationship of a(T) for this specific 
distribution. Approximations such as the Wilson- 
Hilferty and the modified Wilson-Hilferty (Kirby, 
1972) do not help in this case because they transform 
the Gamma variate into a normal variate, which is 
still complicated and inappropriate to yield a(T). 
Another approximation, proposed by Koutsoyiannis 
(1996, pp. 171-173) is more appropriate, as it leads 
directly to the relatively simple formula 

Yr - a(T) ~- X#a 1 - + ~ ~ -  , 

(24) 

c~= 0.6/x/~+ 0.08 

(25) 

(26) 

(27) 

(In the case that r = 1, the Gamma distribution turns 
into the simpler exponential distribution which is stu- 
died below.) In the above formula, it, u, c~,/3 and ~ are 
coefficients dependent on the shape parameter r (i.e. 
not independent parameters), given by the following 
equations 

/x = 0.6(x/~- 1 ) -  ( 1 / v ~ -  1) 

u = 0.6(x/~- 1) +0.01(r-- 1)+ 1 
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/3 = 0.0234 In K (28) 

1 K < 1 

( =  31 e -116(~-1)-°:5 K > 1 
(29) 

Eq. (24) has resulted from the approximation of the 
derivative of  the inverse Gamma  distribution 
y(u) = F~- 1 (u) by 

dy 
y ' ( u )=  ~uu ~ X/xu=-] +Xu(1 - u )  t~-I (30) 

and a systematic numerical investigation was per- 
formed to establish Eqs. (25)-(29).  For 0.2 --< K --< 
100 (or, equivalently, 0.2 --< Cs --< 4.5, where Cs is the 
coefficient of  skewness) and 1.0001 --< T <-- 10000, 
the approximation error of  Eq. (24), defined as 
e=lyr-y~-I/cr r, does not exceed the value 0.11 in 
any point of  the space defined by these inequalities. 
This error is smaller than that of  the Wilson-Hil fer ty  
approximation, both the original and modified, for K 
-< 4 (Cs --> 1) (see Fig. 1). 

. .i6 
Es 
i 

i, 2 

/t2 

-2 

"' S ~ P" OS 

S S 

, ' / s -  ~ r e e m e n t  (y" = y) 
- -  ,z,. - Wilson-Hitfedy 
- -o- - Modified Wilson-l-ilferty 

-..A--- Proposed approximation 

I I I I I I 

1 2 3 4 5 6 
Exact gamma variate, y 

D 
"o 

x 
215  Q. 

~'10 

5 ¸ 

5 10 15 20 25 30 35 40 
Exact gamma variate, y 

0 

Fig. 1. Comparison of three approximations of the Gamma distri- 
bution function with scale parameter X = 1 and shape parameter (a) 
K = 0.25 (Cs = 4), and (b) K = 16 (C~ = 0.5) (adapted from Kout- 
soyiannis (1996)). 

2.4.4. Log Pearson 111 distribution 
A very common distribution for idf analysis is the 

Log Pearson III distribution, which is a logarithmic 
transformation of the Gamma  distribution, given by 

l c  
Fr(Y)= xXKr(K~(lnx-c)~-~ e-(lnx-c}/X dx, 

y - > e  c (31) 

where c is a scale parameter, and K and X are shape 
parameters. Making use of  the approximation of the 
Gamma  distribution function we get 

Y r - a ( T ) ~ ' e x p  c + - -  1 -  
OL 

+ -5- , K 1 (321 

(In the case that K = 1, the Log Pearson III distribu- 
tion turns into the simpler Pareto distribution which is 
studied below.) As in Eq. (24), it, u, c~, 13 and ( are 
coefficients dependent on the shape parameter K, 
given by Eqs. (25)-(29).  

2.4.5. Lognormal distribution 
The two parameter lognormal distribution has been 

used sometimes for idf analysis. It is a logarithmic 
transformation of the normal distribution, given by 

JY 1 [ X ( l n  ~ ]  Fv(y) = exp - x-/zz,  dx, y --> 0 
o v ~ o z  2 oz / j  

(33) 

where #z and cr z are scale and shape parameters 
respectively. Observing that the lognormal distribu- 
tion is the limit of  the log Pearson III distribution as K 
---* ~, we can use an approximation similar to Eq. 
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(32). This is given by 

_ ~ _ 1  ~ ~1 YT a(T) exp[/zz+UOz(1 ~ )  - U O z ( 1 )  
J 

(34) 

(Koutsoyiannis, 1996, p. 168), where u = 5.53 and ot 
= 0.12. For 1.0001 --< T --< 10000, the approximation 
error of  Eq. (34), defined as the absolute value of the 
difference of  standardised normal variates, does not 
exceed the value 0.03. The same approximate equa- 
tion with coefficients u = 1/0.1975 and o~ = 0.135, is 
obtained from a formula by Stedinger et al. (1993, 
p.18.11). 

2.4.6. Exponential distribution 
The two parameter exponential distribution func- 

tion is given by 

F r ( y ) =  1 - e  -y/x+'k, y --- X~b (35) 

where h and ff are scale and location parameters 
respectively. We directly obtain from Eq. (35) that 

Yr - a(T) = X(¢, + In T) (36) 

which, notably, is functionally identical to the empiri- 
cal function of  Eq. (15). 

Although the exponential distribution is not so 
common for idf analysis, Eq. (36) can be somehow 
connected to the Gumbel distribution in two ways. 
First, it can be an adequately accurate approximation 
of  Eq. (20) for large return periods, e.g. T --> 50. In that 
case we can write ln[1 - (l/T)] = - (I/T) - (l/T) 2 . . . .  

- (l/T), and then Eq. (20) toggles into Eq. (36). 
However, in that case the estimation of  parameters ~b 
and X should be based on the appropriate estimators of  
the Gumbel distribution (e.g. those of  the methods of  
maximum likelihood, moments, L-moments, or Gum- 
bel 's fitting method) rather than those of  the exponen- 
tial distribution. Second, if we analyse an annual data 
series using the Gumbel distribution and we want an 
estimate of intensity versus the return period T' for the 
series over threshold, then combining Eq. (20) and Eq. 
(6) we find the logarithmic expression Eq. (36) again, 
in the form 

YT ' -  a ' (T ' )  = k(~b +ln  T')  (37) 

Again the parameters ~b and k should be estimated by 
the appropriate estimators of  the Gumbel distribution 
using the statistics of  the annual series. 

2.4. 7. Pareto distribution 
The generalised, three parameter, Pareto distribu- 

tion function is 

F v ( y ) = l -  I+K - , y->k~b (38) 

where K > 0, k > 0, and ~b are shape, scale, and 
location parameters respectively (for K = 0 the GEV 
distribution turns into the exponential distribution; 
the case K < 0 is not considered because it implies 
an upper bounded variable). We directly obtain from 
Eq. (38) that 

y r - a ( T ) = X  ¢,+ = X ' ( f f ' + T  K) (39) 
K 

where for simplification we have set X' = k/~ and if' = 
K~b - 1. Although the Pareto distribution is not so 
common for idf analysis, it is connected to the 
GEV distribution in the way exponential distribution 
is connected to the Gumbel distribution. That is, Eq. 
(22) is very well approximated by Eq. (39) when T --> 
50; furthermore, combining Eq. (22) and Eq. (6) we 
find the power expression of  Eq. (39) for the return 
period T' for the series above threshold, i.e. 

Yr' = a ' ( T ' ) = X  ~b+ =X'(~b '+T'")  (40) 
K 

In both those cases the parameters 4~, K, and k should 
be estimated by the appropriate estimators of  the 
GEV distribution using the statistics of  the annual 
series, rather than the estimators of  the Pareto 
distribution. 

Notably, in the case that ~b' = 0 (or K¢, = 1) Eq. (39) 
becomes identical to the empirical expression of Eq. 
(14). Although one cannot exclude the contingency 
that the Pareto distribution is appropriate for idf 
analysis of  a specific data set with its location 
parameter being ff = 1/K (so that ~b' = 0), the literature 
does not provide such evidence. Thus, the widespread 
use of Eq. (14) is not justified theoretically. 

3. Parameter  es t imat ion  methods  

The parameters of  the general idf relationship fall 
into two categories: those of  the function a(T) (i.e. K, 
X, ~b, etc., depending on the distribution function 
adopted) and those of  the function b(d) (i.e. ~/ and 
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0). In this section we discuss some procedures for the 
estimation of  parameters of  both categories. We start 
discussing the typical procedure of  the literature 
(Section 3.1) and then we propose two other methods 
of parameter estimation (Sections 3.2 and 3.3). 
Finally, we give a real world application in which 
we test and compare the different methods (Section 
3.4). In all procedures we assume that we are given k 
groups each holding the historical intensities of  a par- 
ticular duration dj, j = 1 ..... k. We denote by nj the 
length of  the group j, and by i jl the intensity values 
of this group (samples of  the random variables lj := 
l(dj)) with l = 1 ..... nj denoting the rank of the value ijt 
in the group j arranged in descending order. 

3.1. Typical procedure 

The typical parameter estimation procedure for idf 
curves (Raudkivi, 1979, p. 85; Chow et al., 1988, 
p. 458; Wanielista, 1990, p. 61; Singh, 1992, p. 904) 
consists of  three steps. The first step consists of  fitting 
a probability distribution function to each group com- 
prised of  the data values for a specific duration d i. In 
the second step the rainfall intensities for each dj and a 
set of  selected return periods (e.g. 5, 10, 20, 50, 
100 years, etc.) are calculated. This is done by using 
the probability distribution functions of  the first step. 
In the third step the final idf curves are obtained in two 
different ways: either (a) for each selected return 
period the intensities of  the second step are treated 
and a relationship of i as a function of  d (i.e. i = 
it(d)) is established by (bivariate) least squares, or 
(b) the intensities of the second step for all selected 
return periods are treated simultaneously and a rela- 
tionship of  i as a function of both d and T (i.e. i = 
i(T, d)) is established by (three-variate) least squares. 
In case (a) different values of  the parameters ~0, 0 and 

are obtained for each T. In case (b) unique values of  
the parameters 0 and ~/ are obtained, whereas w is 
determined as a function w = a(T). The form of this 
function (typically Eq. (14) or Eq. (15)) is selected a 
priori. In the case that a(T) is given by the power 
relationship in Eq. (14), the estimation procedure is 
simplified, because Eq. (12) becomes linear by taking 
logarithms of  both sides. 

The main advantage of  this parameter estimation 
procedure is its computational simplicity, which in 
fact imposes the separation of  the calculations in 

three steps, so that the calculations of each step are 
as simple as possible. However, the procedure has 
some flaws, which are not unavoidable. First, it 
bears the weakness of  using an empirically estab- 
lished function a(T) (step 3) instead of  the one con- 
sistent with the probability distribution function (step 
1). This has been already discussed in Section 2. 
Second, it is subjective, in the sense that the final 
parameters depend on the selected return periods in 
step 2. This dependence may be essential if the 
selected empirical function a(T) departs significantly 
from that implied by the probability distribution func- 
tion (Koutsoyiannis, 1996, p. 265). Third, it treats the 
three involved variables (i, d, T) as having the same 
nature, in spite of  the fact that they are fundamentally 
different in nature, i.e. i represents a random variable, 
d is a (non-random) parameter of  this random vari- 
able, and T is a transformation of  the probability dis- 
tribution function of the random variable. 

In Sections 3.2 and 3.3 we propose two different 
parameter estimation methods that are free of  the 
flaws of the above-described typical procedure and 
harmonise with the general formulation of  idf curves 
given in Section 2. These procedures need more com- 
plicated calculations than the typical procedure, yet 
remain computationally simple. Both can be applied 
using a typical spreadsheet package and do not require 
the development of specialised computer programs. 

3.2. Robust estimation 

The first proposed method estimates the parameters 
in two steps, the first concerning the parameters of 
function b(d) and the second those of  a(T). This 
method is based on the identity of  the distribution 
functions of  the variables Yj =ljb(dj) of all k groups, 
regardless of  the duration dj of each separate group. 
This identity leads us to the Kruskal-Wallis statistic, 
which is used to test whether several sample groups 
belong to the same population. 

Let us assume that the parameters ~/and 0 of  b(d) 
are known. Then we can find all values yg = ij, b(dj). 
The overall number of  data values is 

k 
m= Y~ nj (41) 

j=l 

We assign ranks rjl to all of  the m data values Y)t 
(using average ranks in the event of ties). For each 
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group we compute the average rank ?j of the nj values 
of  that group. If  all groups have identical distribution 
then each ?j must be very close to (m + 1)/2. This 
leads to the following statistic (Kruskal-Wallis) 
which combines the results of  all groups 

12 ~ n j ( p j _ ~ )  2 
- -  (42) kKw - m(m + 1) j= j 

The smaller the value of  kKw, the greater the evidence 
that all groups of  y values belong to the same popula- 
tion. Obviously, the ranks rjl (and hence kKw) depend 
on the parameters ~ and 0 that were assumed as 
known. Consequently, the estimation problem is 
reduced to an optimisation problem defined as 

minimise k~w =f107, 0) (43) 

Apparently, it is not possible to establish an analyti- 
cal optimisation method for our case. A numerical 
search technique for optimisation that makes no use 
of  derivatives (see Pierre (1986, p. 264) and Press 
et al. (1992, p. 394)) is appropriate. However, it 
may be simpler to use a trial-and-error method 
based on a common spreadsheet computer program. 

The advantages of  the Kruskal-Wallis statistic are 
its non-parametric character and its robustness, i.e. its 
ability not to be affected by the presence of  extreme 
values in the samples. We clarify, however, that the 
minimum value of  kKw determined by the minimisa- 
tion process cannot be used further to perform the 
typical Kruskal-Wallis statistical test (actually, the 
testing is not really needed). The reason is that this 
test assumes that all k groups are mutually indepen- 
dent. In our case, the intensities lj of  the different 
groups are stochastically dependent variables, as is 
evident from their construction (see Section 2.1). 
Thus, we do not know the distribution function of  
the statistic kKw to perform any statistical test. Never- 
theless, the minimisation of  its value is achievable 
because the distribution function does not need to be 
known. 

For the sake of  improving the fitting of  b(d) in the 
region of  higher intensities (and also to simplify the 
calculations) it may be preferable to use in this first 
step of calculations a part of  the data values of  each 
group instead of  the complete series. For example, we 
can use the highest 1/2 or 1/3 of  intensity values for 
each duration. 

Given the values of  r/ and 0, we proceed to the 

second step of  calculations, which is very easy. 
Assuming that, with these values, all groups have 
identical distribution, we append all k groups of  
values Yil thus forming a unique (compound) sample. 
For this sample we choose an appropriate distribution 
function, such as those described in Section 2.4, 
and estimate its parameters using the appropriate 
estimators for that distribution (e.g. those obtained 
by the methods of maximum likelihood, moments, 
L-moments, etc.; for a concise presentation of  such 
estimators see Stedinger et al. (1993)). This defines 
completely the form and the parameters of  a(T). 

3.3. One-step least squares method 

The second method estimates all parameters of  both 
functions a(T) and b(d) in one step, minimising the 
total square error of  the fitted idf relationship to the 
data. To this aim, to each data value i jr we assign an 
empirical return period using, e.g. the Gringorten 
formula 

nj + 0.12 (44) 
TJl- l -  0.44 

So, for each data value we have a triplet of  numbers 
(itj, TO, dj). On the other hand, given a specific form 
of a(T), chosen among those of  Section 2.4 from 
preliminary investigations of  the type of  the distribu- 
tion function of  intensity, we obtain the modelled 
intensity 

tjl- b(d)) (45) 

and the corresponding error 

ejl = In ijl - -In ljl = ln( i j l / l j l  ) (46) 

where we have applied the logarithmic transforma- 
tion to keep balance among the errors of the intensi- 
ties of  greater durations (which are lower) and those 
of  lower ones. The overall mean square error is 

1 ~ 1 nj 
e2= - -  ]L @ (47) 

j=12" nj I=l 

Again the estimation problem is reduced into an opti- 
misation problem, defined as 

minimise e=f207, 0, ~, k, ~ . . . .  ) (48) 

A numerical search technique for optimisation that 
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Table 1 
Summary of maximum intensity data (mm h <) of the Helliniko station 

Duration (dfl 5 min 10 min 30 min 1 h 2 h 6 h 12 h 24 h 

Sample size (nil 29 29 30 30 30 30 30 20 
Minimum value 36.00 24.60 16.40 10.20 6.550 2.400 1.567 0.833 
Maximum value 141.60 120.00 74.00 40.90 26.900 11.933 7.242 3.846 
Average value 76.22 58.41 35.17 22.04 13.325 5.823 3.520 2.058 
Std deviation 29.14 20.32 13.88 8.89 5.660 2.433 1.464 0.786 

makes no use of  derivatives, such as the Powell 
method (see Pierre (1986, p. 277) and Press et al. 
(1992, p. 412)), is appropriate for this problem. 
However,  it may be simpler to perform the optimisa- 
tion using the embedded solver tools of  common 
spreadsheet packages. 

We note that the least squares method in fitting 
a theoretical to an empirical  distribution function is 
not a novelty of  the proposed method. Rather, the 
innovative element of the proposed method is the 
simultaneous estimation of  the parameters of both the 
distribution function and the duration function b(d). 

3.4. An application 

To illustrate the above-described methodology we 
present a real-world application. A 30 year (1957-58  
to 1986-87)  data record of  the Hell iniko recording 
station (located at the Hell iniko airport, Athens) was 
used. The selected durations dj range from 5 min to 
24 h, as shown in Table 1. Owing to missing values, 
the sample size for some durations is lower than 30. 
Table 1 also shows some summary statistics of the 
data. 

Preliminary investigation showed that the Gumbel  
distribution is suitable for all groups with durations dj. 
Thus, we adopted the idf relationship 

a(T) ~b-ln  [ - l n ( 1 -  1 ) ]  

i = ~ = X (d + 0) 7 (49) 

An interpretation of  this equation is that the variable 
I(d) has a Gumbel  distribution with its dimensionless 
parameter ~b constant and independent of  duration d, 
and its scale parameter  varying with d as 1/(d + O)L 
This is (approximately)  verified by fitting a Gumbel  
distribution independently to each group of  duration 
dj. (These independently fitted Gumbel  distributions 
are shown in Fig. 2 with dotted lines.) 

The application of  the robust estimation method 
was done in two steps, as described in Section 3.2. 
In the first step (estimation of  ~ and 0) we used the 
highest 1/3 intensities of each group (i.e. ten data 
values for durations 5 m i n -  12 h and seven data values 
for duration 24 h). The minimisation of  the Kruska l -  
Wallis  statistic kKw (Eq. (42)) was easily performed 
by the MS-EXCEL spreadsheet (by a trial-and- 
error procedure) and resulted in a minimum value 
of  kKw = 3.33 and parameter  values ~ = 0.796 and 
0 = 0.189. (The corresponding values when we use 
all data values of  each group are ~ = 0.776 and 0 = 
0.139.) 

For the second step, i.e. the estimation of  the dis- 
tribution function parameters ~ and ~b, we adopted the 
more robust method of  L-moments which, unlike the 
other methods, does not overemphasise an occasional 
extreme event, as it does not involve squaring or cub- 
ing of  the data. This method results in the following 
estimators (Stedinger et al., 1993, p. 18.17): 

~ ,=~2/ ln  2, ~b=3~/)x-0.577 (50) 

the estimate of  the second L-moment given Here ~2 is 
by 

~2=2  ~ (n - l )Y t  y (51) 
l=l n ( n -  1) 

where the sample of  the observations Yt is arranged 
in decreasing order, so that  1 is the rank of  Yl. Other 
parameter  estimation methods, such as those 
reviewed (among others) by Kite (1988, p. 96) and 
Koutsoyiannis (1996), could be used here instead of 
the L-moments method. 

Transforming all intensities i into y values and uni- 
fying all groups (228 values in total) we find that 
9=25.701 and ~,2=5.761. With these values, Eq. 
(50) results in ~b = 2.515 and k = 8.31 (the estimates 
of  the method of moments for sy = 10.208 are ~b = 
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2.652 and X = 7.96). Thus, the idf relationship is 

2 " 5 1 5 - l n [ - l n ( 1 - 1 ) l  (d/h, i / m m h  - l )  
i=8.31 (d  + 0.189)0.796 

(52) 

The one-step least squares method, aiming at the 
minimisation of the total error e (Eq. (47)) was also 
easily performed using the MS-EXCEL spreadsheet. 
More specifically, the embedded Solver utility of this 
spreadsheet performed the optimisation directly 
(writing no code at all) and resulted in a minimum 
value of e = 0.078 and parameter values r/= 0.778, 0 
= 0.143, ~b = 2.615 and X = 7.59. The idf relationship 
is slightly different, i.e. 

2.615-1n I - I n ( l -  1 ) ]  
i=7.59 

(d  + 0 .143)  0.778 
(d/h, i/mm h - ' )  

(53) 
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Graphical comparisons of Eqs. (52) and (53) are 
shown in Figs. 2 and 3. Fig. 2 is a plot of the idf 
curves (Eqs. (52) and (53)) in the form of probability 
distribution functions, i.e. i versus the Gumbel 
reduced variate k = - ln[-ln(1 - l/T)]. Each curve 
corresponds to a particular duration dj. Apart from 
the curves resulting from Eq. (52) (continuous 
lines) and Eq. (53) (dashed lines) we have also 
plotted the empirical distribution functions of the 
samples using the Gringorten plotting position 
(points), and the Gumbel distributions for the inten- 
sities of each duration dj fitted independently of the 
other durations (dotted lines). We observe that all 
three sets of curves of Eq. (52), Eq. (53) and the 
independently fitted Gumbel distributions are in 
good agreement with each other (in most cases indis- 
tinguishable from each other). They also agree with 
the empirical distribution functions. 

Fig. 3 is a logarithmic plot of the idf curves of Eqs. 
(52) and (53) in the form of i versus d for a wide range 

(,) i i 
. . . . . . . . . . . . . . . . . . .  ] • 1 0  m l n  . . . . . . . . . . . . . . . . .  T .................... i . . . . . . . . . . . . . . . . . . .  i .................... ': ................. T ~  
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Fig. 2. Empirical (points) and Gumbel (lines) distribution functions of maximum intensities at Helliniko for durations (a) 5 min- 1 h and (b) 2-  
24 h. The continuous and dashed lines (in most cases indistinguishable from each other) correspond to the Gumbel distributions fitted by the 
robust estimation method, and the one-step least squares method respectively. The dotted lines (also indistinguishable from the other lines in 
most cases) correspond to the Gumbel distribution fitted separately to the data of each duration. 
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Fig. 3. Idf curves of Helliniko for return periods 5-5000 years, as obtained using both the robust estimation method (continuous lines) and the 
one-step least squares method (dashed lines; almost indistinguishable from continuous lines). The points correspond to the intensities obtained 
directly from the Gumbel distribution of each duration. Dotted lines represent curves obtained using empirical Eq. (14) (see text). 

of return periods, T = 5, 50, 500 and 5000 years. Apart 
from the curves resulting from Eq. (52) (continuous 
lines) and Eq. (53) (dashed lines), we have also 
plotted (points) the intensities obtained directly from 
the independently fitted Gumbel distribution of each 
duration. Both sets of curves are practically indistin- 
guishable from each other and from the corresponding 
series of points. For comparison, a third set of curves 
(dotted lines), obtained using the empirical Eq. (14) 
are also shown. The idf relationship in this case was 
obtained by the typical procedure of the literature 
described in Section 3.1 using returns periods 2, 5, 
10, 20 and 50years (second step of the typical 
procedure), and is given by 

20.978T °.237 
i= (d+0.167)0.784 (d/h, i / m m h  -1) (54) 

We observe that for return periods T = 5 and 50 years 
(which belong to the interval used for the fitting of 
Eq. (54)) these curves are indistinguishable from the 
other two sets. However, for T = 500 and 5000 the 
curves obtained by Eq. (54) (marked as Empirical in 
the figure) depart significantly from the other two sets 
and from the points obtained directly from the inde- 
pendently fitted Gumbel distribution of each duration. 
This verifies our claim (Section 2.3) that the para- 
meters K and X of Eq. (14) are not in fact constant, 
but depend on the return period T. In other words, this 
demonstrates that one cannot use the Gumbel 

distribution to model the maximum rainfall 
intensities and simultaneously use the approximation 
of Eq. (14) for idf curves. 

4. Geographical variation of idf curves 

The above general framework provides a good 
basis for studying the geographical variation of idf 
curves and, more specifically, the construction of 
maps that can be used to infer idf curves at any 
point of a particular area. The general idea is to 
study the variation of the parameters of the idf rela- 
tionships, instead of the variation of rainfall intensi- 
ties. The study of parameters can be separated in two 
phases: first, study of the parameters of the function 
b(d), and second, study of the parameters of the 
function a(T). This separation makes possible the 
incorporation of data from the more dense network 
of non-recording stations (e.g. 24 or 48 h depths) in 
the second phase, thus providing more detailed infor- 
mation of the geographical variation of idf curves. 
Such data are not appropriate for the first phase 
because, apparently, the determination of b(d) 
requires intensities of small durations to be available. 
The application of these ideas using an extensive data 
set of a large part of Greece is demonstrated below. 

The study area for this demonstration is the Sterea 
Hellas region (central Greece) with an area of 
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Fig. 4. Map of the Sterea Hellas: (a) morphology; (b) isohyets of the 5-year 24 h rainfall depth in millimetres (continuous lines). Dashed lines 
in (b) are boundaries of the three subregions each having approximately constant parameters ~/and ~b (see text), whereas circles and squares 
indicate locations of recording and non-recording stations respectively (the triangle is the Helliniko station). 

approximately 25 000 km 2 (about 1/5 of the total area 
of Greece; Fig. 4). This region includes five important 
(and many smaller) rivers providing water for hydro- 
power, irrigation, and water supply. The Pindus 
mountain chain on the western side of this region 

causes heavy orographic rainfall and, therefore, a 
wetter rainfall regime compared with that of the east- 
ern side. Thus, the annual rainfall varies from about 
2000 mm in the north-western part of the region to 
about 400 mm in the south-eastern part (Athens). 
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Table 2 

Summary data of rain gauges used in the application of geographical variation of idf curves 

Subregion Western Sterea Hellas Eastern Sterea Hellas Attica Total area 

Number of recording stations 
Number of non-recording stations 
Total number of stations 
Station elevation (range; m) 
Station elevation (average; m) 
Record length (range) 
Record length (average) 

5 4 4 13 
33 18 7 58 
38 22 11 71 

2-1160 4-830 10-333 2-1160 
726 313 138 507 

15-37 10-39 10-33 10-39 
25.5 26 24.4 25.5 

Records of maximum intensities at 13 recording 
stations uniformly distributed in the study area were 
used. The time resolution in most of the records was 
1 h and thus the durations examined were 1, 2, 6, 12, 
24 and 48 h. In addition, annual series of maximum 
daily and 2-day rainfall depths were available for the 
above 13 stations and 58 other non-recording rain 
gauges (71 stations in total; Kozonis, 1995). Summary 
data of the rain gauges are shown in Table 2. To the 
values of the daily and 2-day series, adjustments were 
made to account for the fact that they are fixed- 
interval rainfall amounts. The adjusting factors of 
the bibliography (e.g. Linsley et al. (1975, p. 357)) 
were used, which are 1.13 and 1.04 for the daily and 
2-day maxima respectively. (More recent research by 
Dwyer and Reed (1994) has resulted in a slightly 
higher value of 1.167 for the daily rainfall in the UK). 

At the first phase we have used the records of 
maximum intensities of the 13 recording stations, to 
which we fitted equations of the form given by Eq. 
(49). This form was suitable for all stations, as the 
Gumbel distribution was found (using the X 2 test) to 
be appropriate for all records. Because the minimum 
duration was 1 h, accurate estimation of the parameter 
0 was not possible, and thus we assumed that 0 = 0. As 
shown in Fig. 3, the idf curves become approximately 
straight lines in the logarithmic plot for d >-- 1 h, even 
if 0 :~ 0. This indicates that the assumption 0 = 0 is 
adequate, if we are interested in durations greater than 
1 h. Consequently, for each station we have three 
unknown parameters, namely the ~7, ~b and k, which 
have to be estimated. Using the one-step least squares 
method, we found that the geographical variation of 
parameters ~7 and ~b is very slight and that of k is 
significant. More specifically, ~ and ~b can be consid- 
ered as constant within each of three "homogeneous" 

subregions of the study area. The boundaries of these 
subregions almost coincide with the divides of the 
water districts of Western Sterea Hellas, Eastern 
Sterea Hellas, and Attica, which had been defined in 
the past using several topographical, climatological 
and hydrological factors. 

At the end of this first phase we compared the series 
of 24 h and 48 h intensities, derived from the record- 
ing devices at each of the 13 stations, with the 1-day 
and 2-day intensities derived from the daily observa- 
tions at the same stations. To this aim we fitted Gum- 
bel distributions to the latter series and compared 
these distributions with those of the former series. 
Remarkably, in most cases the series of the daily 
observations resulted in higher intensities for each 
recording station, even if their data values were not 
corrected with the above-mentioned adjusting factors. 
This is possibly explained by the different features of 
the two measuring devices. It seems that the recording 
devices with their vulnerable mechanisms are more 
sensible to erroneous recordings, whereas the standard 
non-recording rain gauges are more reliable owing to 
their simpler structure. This leads us to the conclusion 
that the daily observations of non-recording devices 
must never be ignored, even in the case of coexistence 
of recording devices at the same station. 

At the second phase we entered into the calcula- 
tions the 24 h and 48 h maximum intensities of the 71 
non-recording stations. As mentioned above, the esti- 
mation of the parameters of ~7 and 0 of the function 
b(d) is unattainable using these data. However, if we 
adopt some values of those parameters, inferred from 
the previous estimation phase (using data of the 
recording stations), then we can estimate the 
parameters ~b and X of the function a(T) using the 
data of the non-recording stations. The results of 
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the first estimation phase, which point out that ~/can 
be considered as constant for each of the three sub- 
regions (and 0 = 0 for the entire study area), facilitate 
the second estimation phase. The analysis of this 
phase affirmed the outcome of the first phase that ~b 
is approximately constant for each subregion and 
allowed a more detailed representation of the varia- 
tion of k (71 points). 

As a result of the above analysis, only one 
parameter (k) has significant geographical variation, 
whereas the other parameters are constant within sub- 
regions. Consequently, one map with contours of k 
(also indicating the values of the other parameters 
per subregion) suffices for the representation of 
regional analysis. Equivalently, instead of the ~ con- 
tours, the map may be compiled in terms of any other 
variable related with ~,. This is the case in the map of 
Fig. 4, which contains isohyets of the 5-year 24 h 
rainfall depth (h5(24) in millimetres). These types of 
contour were preferred to increase interpretability, as 
the values of the 5-year 24 h rainfall depth are more 
familiar to the user than those of parameter k. At any 
point, given the value of h5(24), the value of k is 
estimated from the following relationship, which is 
consequence of Eq. (49): 

~, = h5(24) 
241 -nigh- In( - In 0.8)] 

h5(24) (h5 (24)/mm) (55) 
241 -n(~b + 1.5) 

For the compilation of this map we used the ARC/ 
INFO geographical information system; the contours 
were drawn using the TINCONTOUR method (ESRI, 
1992). 

For the verification of the method we used the map 
of Fig. 4 to determine values of all parameters of the 
idf relationships at the locations of certain recording 
or non-recording stations. With these values we 
reconstructed the idf curves and compared them 
with the direct idf curves, i.e. those obtained from 
the historic data. Such a comparison is shown in 
Fig. 5 for the Helliniko station, whose direct idf 
curves were constructed in the application presented 
in Section 3.4. We found that the curves constructed 
indirectly using the map agree well with the direct idf 
curves. 

In recent studies of the geographical variation of idf 
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Fig. 5. Idf curves of Helliniko for duration --> 1 h and return periods 
5-5000 years, as inferred from Fig. 4 (continuous lines), in com- 
parison with the idf curves obtained from Eq. (53) (dashed lines; 
also shown in Fig. 3). 

curves (e.g. Kothyari and Garde (1992)), it was 
attempted to express the regional variation of the 
parameters of idf curves by introducing climatic 
descriptors such as the annual rainfall or the maxi- 
mum monthly rainfall. In this study such links of idf 
curves to aggregated properties of rainfall were not 
identified. On the contrary, it was found that parts 
with very different climate regime may have similar 
idf curves. For example, in Fig. 4 we observe that near 
Athens, where the annual rainfall is about 400 mm, 
the 24 h 5-year rainfall depth is about 80 mm. The 
same contour of 80 mm also appears in the middle 
of the Sterea Hellas area, where the annual rainfall 
is double that of the Athens value, i.e. 800-900 ram. 
Similarly, the contour 140 mm for the 24 h 5-year 
rainfall depth appears both in the eastern and the wes- 
tern Sterea Hellas, although the annual rainfall in the 
eastern part (about 900 ram) is half that of the western 
part (about 1800mm). In conclusion, we did not 
detect a link between the variability of maximum 
rainfall intensities and that of the mean annual rain- 
fall. In fact, there is no need to do so, as the 
methodology developed is simple and can be easily 
performed without considering any annual or monthly 
properties of rainfall, which are sometimes used for 
scaling purposes to reduce the computations of 
regionalisation. 

In addition, an attempt was made to relate for each 
subregion the 24 h, 5-year depth to the station eleva- 
tion. It resulted in no significant correlation. This does 
not mean that the orography does not affect the 
intense rainfall. Rather, the effect of the orography 
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on maximum intensities is better represented by the 
geographical location rather than the elevation of the 
station. Also, we note that the orography was already 
considered as dividing the area into subregions. 

The assumption of constant parameters 7, 0 and ~b is 
not a structural constraint of the proposed methodol- 
ogy. Generally, we can allow more than one 
parameter to vary geographically and we need to con- 
struct one map with contours for each varying 
parameter. For the completeness of the case study 
examined, we have also used the assumption that 
both parameters ~b and ~ vary geographically, whereas 

remains constant for each subregion and 0 = 0. For 
this case a set of two maps giving contours of h5(24) 
and h 10(24) was constructed (Kozonis, 1995), which 
can be used to determine both parameters ~b and ~, at 
any point. However, it was found that the use of two 
sets of contours (and two variable parameters) does 
not add significant information to that obtained by a 
single set of contours. This, however, may not be the 
case if we apply the methodology to other regions. 

We emphasise that the objective of the above 
analysis was the establishment and test of a general 
methodology for idf curve construction and region- 
alisation. More analyses and more data are needed 
for the construction of final maps for Greece, suitable 
for operational use. 

typical semi-empirical relationships. For a mathema- 
tically convenient yet consistent expression of idf 
relationships, simple approximations of certain com- 
plicated distribution functions are presented. 

The proposed formulation of the idf relationship 
constitutes an efficient parameterisation of this rela- 
tionship using three to five parameters (depending on 
the type of the distribution function and the type of the 
functional dependence of the intensity on duration). 
An investigation of the geographical variability of the 
idf relationships, performed with data of a large part 
of Greece, shows that the proposed framework offers 
a good basis for the regionalisation of idf relation- 
ships. Moreover, it allows incorporating data from 
non-recording stations, thus remedying the problem 
of establishing idf curves in places with a sparse net- 
work of rain-recording stations, using data of the den- 
ser network of non-recording stations. We emphasise 
that the objective of the above analysis was the estab- 
lishment and test of a general methodology for idf 
curve construction and regionalisation. More analyses 
and more data are needed for the construction of final 
maps for Greece that would be suitable for operational 
u s e .  
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