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Abstract. The differences between historic rainfall data and synthetic data obtained by a 
stochastic rainfall model are investigated using nonlinear analysis tools devised for description 
and characterization of chaotic behavior. To achieve this goal, a 6-year point rainfall record 
with a time resolution of one quarter of hour is studied. A stochastic model capable of 
preserving important properties of the rainfall process, such as intermittency, seasonality and 
scaling behavior, is fitted to this data set and a synthetic time series of equal length is 
generated. For both data sets the correlation dimension is calculated for various embedding 
dimensions by the time delay embedding method. However, the applicability of this method in 
estimating dimensions proves limited due to the domination of voids (dry periods) in a rainfall 
record at a fine time resolution. Thus, in addition to time delay embedding, a Cantorian dust 
analogue method is developed and used to estimate dimensions. Results of both methods show 
that there is no substantial difference in behavior between the synthetic and the historic records. 
Moreover, no evidence of low-dimensional determinism is detected in the sets examined. 

1. Introduction 
Recent studies revealed that nonlinear dynamical systems 

may produce time series indistinguishable from random noise 
by typical statistical methods, although they are fully determi­
nistic with few degrees of freedom. Such systems, called cha­
otic, are very sensitive to small perturbations in the initial 
conditions and exhibit instability due to their nonlinear nature. 
Because of the inefficiency of the standard statistical methods 
to describe and model those systems, new methods were 
devised to measure and characterize them using concepts from 
nonlinear dynamical systems analysis and information theory. 
Furthermore, new methods have been established capable of 
revealing the underlying deterministic dynamics of systems 
with seemingly random behavior. Such methods are summa­
rized by Gershenfeld and Weigend [1993] and Tsonis [1992] 
among others. In hydrology, researchers have tried to imple­
ment those new methods in rainfall and streamflow records of 
short timescales seeking underlying nonlinear deterministic 
laws. The results so far vary, depending on the type of the 
examined data. 

Studies in the structure of individual storm events 
[Rodriguez-Iturbe et ai, 1989; Sharifi et ai, 1990; Rodri-
guez-Iturbe, 1991] provided evidence that the temporal evolu­
tion of a particular storm event may be characterized as a 
deterministic chaotic process with a low-dimensional strange 
attractor. Similar results were obtained from simultaneous 
study of several events of the same meteorological convective 
character [Tsonis, 1992, p. 169; Tsonis at ai, 1993]. 

For continuous rainfall records at a certain time resolution 
there are no conclusive results yet. Rodriguez-Iturbe et ai, 
[1989] and Rodriguez-Iturbe [1991] do not detect low-dimen­
sional chaotic dynamics in weekly rainfall data of Genoa, 
Italy, covering a period of 148 years. On the contrary, Jaya-
wardena and Lai [1994] detect high-dimensional chaotic 
behavior (with embedding dimension between 30 and 40) in 
daily rainfall at three rain gauges in Hong Kong covering a 
period of 11 years. They conclude that rainfall time series 
could be better modeled by methods of nonlinear dynamics, 
such as phase-space reconstruction via time delay embedding, 



than by traditional stochastic models, such as autoregressive 
moving average (ARMA). We note, however, that these con­
clusions must be taken with criticism, as, given the results of 
Tsonis el al. [1993], the embedding dimension is too high for 
so few data points to allow a claim of robustness. 

In the present, discussion is going on whether the temporal 
evolution of rainfall is better modeled as a deterministic 
process rather than a stochastic process. However, the distinc­
tion between a deterministic and a stochastic process is not so 
clear in practice. For example, random number generators, 
used for simulation of stochastic processes, are obviously 
deterministic. Furthermore, stochastic models can incorporate 
deterministic components, if any, and deterministic models 
very often need to add a random component to fit the evolution 
of a physical system more appropriately. Another fact that 
should be taken into account is that, due to sensitive depend­
ence to initial conditions and given the inherent uncertainty of 
the standard measurements, the horizon of feasibly reliable 
forecasting through a deterministic model can be limited dra­
matically, The latter becomes very obvious in the case of cha­
otic systems. 

In practice, stochastic models of rainfall are well estab­
lished and very useful tools for several engineering applica­
tions, from short-term prediction to long-term simulation of 
rainfall and rainfall-driven processes such as runoff. On the 
other hand, applications of chaotic deterministic methods, 
such as the above referenced, are currently limited to detection 
of nonlinear dynamics and short-term prediction. However, the 
new methods based on the chaos literature may potentially 
reduce the value of stochastic models, if they can provide evi­
dence that their results differ significantly from historic data. 
This is attempted for example in the work by Jayawardena 
and Lai [1994] mentioned above. 

Indeed, the real rainfall process in a short timescale (e.g., 
hourly or finer) differs significantly from synthetic signals 
generated by simple stochastic models, like white noise or 
ARMA processes. It is quite widely understood that rainfall is 
not effectively represented by these linear models and it is not 
our purpose to provide more evidence on that. The objective of 
this paper is to investigate if there are essential differences that 
distinguish a historic rainfall record from a synthetic record 
generated by a well-structured stochastic model, capable of 
preserving important properties of rainfall such as intermit-
tency, seasonality, and scaling behavior. For this comparison, 
we use typical methods of nonlinear analysis that have suc­
cessfully shown the difference between stochastic and chaotic 
deterministic time series in other fields. Other relevant issues 
discussed in this paper are: how typical descriptors of chaotic 



Generation of a synthetic record. A synthetic record of 
equal length to the historic (6 years) and equal time resolution 
(one-quarter hour) was generated using the stochastic model. 

Comparison of historic and synthetic records. Various 
descriptors of chaotic dynamics were calculated and compared 
for both the synthetic and the historic data. 

The paper is outlined as follows. In section 2 we summa­
rize the adopted stochastic model and its calibration to the 
study data set. In section 3 we summarize several topics of the 
chaos literature that are used in our application. In sections 4 
and 5 we describe the computations and their results and 
compare the synthetic and historic series using tools of the 
chaos literature. In section 6 we draw some conclusions. There 
is also an appendix, where we give details about the genera­
tion of the synthetic record using the adopted stochastic 
model. 

2. Description and Calibration 
of the Stochastic Model 
2.1. Summary of the Scaling Model of Storm Hyetograph 

The scaling model of storm hyetograph [Koutsoyiannis and 
Foufoula-Georgiou, 1993] is a stochastic model that parame­
terizes a population of storms, taking advantage of scaling 
properties revealed in rainfall data. It describes the temporal 
evolution of rainfall intensity within a storm in continuous 
time. It can also be applied in discrete time to generate incre­
mental storm depths at a given time interval for a storm with 
given total depth and duration. 

The main hypothesis of the model, is that the process of 
instantaneous rainfall intensities within storms, in terms of 
their distribution function, is a self-similar (simple scaling) 
process with a scaling exponent H. In mathematical terms, if 
D denotes the duration of the storm and £(/, D) denotes the 
instantaneous rainfall intensity at time t(0<Lt<, D), then 

{£(/,D)} = {,T"£(/U,AD)} (1) 

where the above equality is in terms of the finite-dimensional 
probability distribution, and k is any positive number. 

A secondary hypothesis of the model is that the process 
£(t,D) is stationary within the same storm event or within 
storm events of the same duration, that is, 

{#/ , /»} = {£(/ + r,D)}, 0<tJ + t<D (2) 

On the basis of these hypotheses, the statistics of the rain­
fall intensity at any time / within a storm of any duration D 



has mean 

E[Z]=ciD
H+l (6) 

and variance 

Var[Z]= c2D
2(H+i) (7) 

where c2 = 2k/[(l-/?)(2-/J)]-c2 . To convert the model from 
continuous time to discrete time we use the incremental storm 
depth precipitated in the time interval ((/' - 1)A, /A) of length 
A: 

X, = ('A £(t,D)dt, 1=1,2,...,* (8) 

where k is the smallest integer that is greater than or equal to 
D/A. The mean of X, is 

£[*,]= c,<JDw+1 (9) 

and its variance is 

Var[X,]=[(c2 + c^)d~fi -cf]S2D2(H+]) (10) 

where 8= AID. The covariance between two incremental 
depths within the same storm is given by 

Cov [X„Xj ]=[(c2 + c2)S-pf{\j - ilP)- c2 ] S2D2("+1> 

(11) 

where f(m,P) ={\ll)[{m-\)2-p+{m+\)2'p\-m2-p for inte­
ger time lag between the two incremental storm depths m > 0. 
The derivations of the above equations are given by Koutso­
yiannis andFoufoula-Georgiou [1993]. 

In brief, the scaling model of storm hyetograph has only 
four parameters: the scaling exponent H, the mean value 
parameter C\, the variance parameter c2, and the correlation 
decay parameter /3. These parameters can be easily estimated 
from the data after partitioning the storm events into classes of 
certain duration as described in detail by Koutsoyiannis and 
Foufoula-Georgiou [1993]. Thus H and c\ are directly esti­
mated from (6) by least squares, and c2 from (7). The 
parameter /? is estimated from the lag-one autocorrelation 
function of the incremental storm depths at any chosen time 
increment A. In this paper we have introduced an improve­
ment in the estimation of/?, given by the equation 

p_x ln(g[X,.X,+1]/£[^2]+l) ( 1 2 ) 

ln2 



resolution 1 mm. All storms of the 6-year period with dura­
tions greater than A were used except for those including cor­
rupted recordings or missing data. There were 426 events with 
durations ranging from 0.5 to 35 hours and 37 events with 
durations less or equal than A that were modeled separately. 
As usual in similar situations [Huff, 1967; Restepo-Posada 
and Eagle son, 1982; Koutsoyiannis and Foufoula-Georgiou, 
1993], events were allowed to include periods of zero rainfall 
lasting less than a critical time c. Initially, the approach sug­
gested by Koutsoyiannis and Foufoula-Georgiou [1993], 
which is similar to that of Restepo-Posada and Eagleson, 
[ 1982] was tried to determine c. According to this approach, 
several trial values of c are investigated and finally the value 
that leads to storm arrivals forming a Poisson process is cho­
sen. However, in our case this method gave a value of c 
greater than 24 hours, which is too high given that the average 
storm duration is about 4 hours. Once the Poisson process is 
not a structural postulation of the entire method, we finally 
selected a smaller value, that is, c = 7 hours, which is about 
1.5 times the average storm event duration. This value is equal 
to that adopted by Koutsoyiannis and Foufoula-Georgiou 
[ 1993] for another data set and very close to the arbitrary value 
suggested by Huff[ 1967], that is, 6 hours. 

The fitting procedure was based on the separation of the 
storms into classes according to their duration. Initially, the 
storms were grouped in two seasons, the dry season (October 
through May) and the wet season (June through September). 
The parameter estimation procedure was performed separately 
for each season. The parameter sets estimated were similar for 
the two seasons and thus, for simplicity, a unique parameter 
set was estimated using all events of both seasons. The final 
parameters are H = -0.449, c\ = 8.74, c2 = 85.68, and /? = 
0.246 (corresponding to units of millimeters and hours). 
Notable is the departure of H from zero, which indicates the 
departure of the process from stationarity, as it implies a 
strong dependence of the intensity process on storm duration. 
Figure 1 and Figure 2 depict the model fitting to the historic 
data regarding the total and incremental storm depths, respec­
tively. In these figures the comparison of the synthetic and 
historic data is given in terms of the mean values and standard 
deviations of total and. incremental depths. The modeled sta­
tistics refer to the final unique parameter set. The statistics of 
the historic data refer to the unified data set of all storms as 
well as the seasonal subsets for the dry and wet period. Over­
all, these figures indicate that the scaling hypothesis is con­
sistent with the data examined and justify the use of a unique 
parameter set. Below we will perform other comparisons 
using tools of the chaos literature. 

Figure 1 

Figure 2 



3. Basic Concepts of the Chaos Literature 

6 

3.1. Descriptors of Chaotic Behavior 

In this subsection we describe briefly several important 
topics of the chaos literature that are used in the next sections 
to characterize, quantify, and compare the rainfall time series. 
Here the description is generalized for any set A that is a sub­
set of an w-dimensional metric space with a normalized meas­
ure n defined on its Borel field. In our case, for n = 1, this set 
may represent all possible values of the incremental rainfall 
depth X(t) for an arbitrary time interval / (/ = 1, 2, ...) of 
length A, which is the set of positive real numbers R . It may 
also represent all values in a certain observed time series of 
incremental rainfall depths, in which case A is a finite subset 
of R . Accordingly, for n > 1, the set may represent the so-
called time-delayed vectors, formed from the scalar time series 
of incremental rainfall depths, 

X= [X{t),X(t - r),X(t -2r),- • -,X(t -{n -l)r)} (13) 

where r is the time delay. 
Let us consider a partition of the set A into M(e) boxes 

(hypercubes) A\, Aj, ..., 4wi>) with length scale (i.e., edge 
length of each hypercube) e. The entropy I\(e) for this partition 
is defined by 

/ , ( * ) = - $ > l n / > , (14) 

where />, is the measure of the part of the set A contained in the 
/'th hypercube, that is, />, = p(Ai), such that 

Z A = 1 (15) 
1 = 1 

If the set A consists of N observed values (points in the n-
dimensional space) and Nj of them are contained in the /'th 
hypercube At, then />, = Nj I N. Accordingly, if this set is the 
sample space of a vector of random variables X then each 
hypercube Aj represents an event and pt = Pr(X e A,) where 
Pr() denotes probability. 

Renyi [1970] introduced a generalization of the entropy 
concept by defining the entropy of order q as 

1 M(€) 

/ , ( f f ) = - ^ - l n £ p , « (16) 

Definition (16) applies for q * 1. Taking the limit for q -> 1 



the number of local directions available to the system and so 
they provide an estimate of the number of degrees of freedom 
needed to describe the state of the system [Gershenfeld and 
Weigend, 1993, p. 48]. 

By applying de FHospital's rule in (17) we get 

«->o d(\ne\ 
Dq = lim \ / , \

 ; (18) 

where d( ) is the differentiation operator. This expression is 
more advantageous than (17) for numerical applications as the 
convergence of the derivative is faster. 

For low values of q we have the most frequently used 
dimensions. Thus, for q = 0 we have the so-called capacity 
dimension Do, given by 

/0(£) = lnM'(£), 

D0 = Yim-*M'^Kllm
d(-lnM'^) (19) 

e->o \ne *->o dnnej 

where M'(s) is the number of boxes that intersect the set A. 
For p i we have the information dimension D\, that is, 

7i<X>=- £/>fln/7,., 
i=\ 

A = limzA(£) = lim4iA(f)) (20) 

e->o lnf *->o d\\n£\ 

and for q = 2 we have the correlation dimension Dj, that is, 
M(e) 

/2(*)=-ln£/, ,2 , 
i=l 

n r -hie) v d(-W) o n 

D2 = lim —^-^- = hm —̂  '- (21) 
«->o lnt «->o dQne) 

In practice the quantities Iq(e) are not accurately estimated 
from finite samples of observations using the above defini­
tions. Grassberger [1983] introduced another class of 
parameters called correlation integrals. For integer q £ 2 the 
correlation integral of order q is defined by 

Cq(e) = N~q {number of ^-tuples (X/b ..., Xy ) 

with all \\Xh-Xjr\\<e} (22) 



C
2(*)=^L^L"(HIX . -X4 <24> 

where H is the Heaviside step function, with H(u) = 1 for u > 
0 and H(u) = 0 for u < 0. For the calculation of the distance 
||X, - XJ|, the maximum norm is usually used as it reduces the 
computational time [Hiibner et ai, 1993]. The correlation 
integral Ci(e) expresses the average proportion of pairs of 
points having distance smaller than e between them, for a 
certain distance £ As a direct consequence of (23), Cjic) is 
related to the entropy /2(f) with 

C2(£)*exp[-h(£)] (25) 

The typical steps to estimate the correlation dimension D2 
of a set of JV points in an M-dimensional space using the cor­
relation integral, are the following: 

1. Calculate the correlation integral C2(c) for several values 
of the distance e using an appropriate algorithm [e.g., Grass-
berger, 1990]. 

2. Make a log-log plot of Ci(s) versus e and observe 
whether there exists any region with constant slope, known as 
a scaling region [e.g., Hiibner etai, 1993]. 

3. Calculate (by least squares) the slope of the scaling 
region, which is the estimate of the correlation dimension of 
the set. 

Another useful concept is the mutual information of two 
sets. We consider the subsets of the real numbers A and B and 
their product AxB. Using (14), we can define the entropies 
/] (f), I] (e) and 7| * (e) of the sets A, B, and AxB, respec­
tively, for the partition determined by the length scale e. Then 
the mutual information of the two sets is defined as the differ­
ence between the marginal and the joint entropies, that is, 

MAB(e)=Ii
A(e)+Ii

B(e)-I1
AxB(e) (26) 

If the sets A and B represent two measurable quantities x and 
y, their mutual information represents the amount that a 
measurement of x reduces the uncertainty ofy. If the quantities 
are independent, then the mutual information is zero: no 
knowledge can be gained for the second quantity by knowing 
the first. Otherwise the mutual information is a positive num­
ber. 

3.2. Phase-Space Reconstruction From a Time Series 

Let us consider an wi-dimensional deterministic dynamical 
system. The state (or phase) of the system at a certain time can 
be represented by a point (or position vector) with m coordi­
nates Successive state points trace out a trajectory that repre­



transformation (diffeomorphism) of the original trajectory of 
the system. Hence, the trajectory of the delay vectors will have 
the same topological dimension as the underlying attractor of 
the dynamical system. 

The Takens theorem allows for the reconstruction of the 
dynamics of the system using a single scalar observable x(t). 
In particular, the application of the theorem provides a method 
for detecting determinism in a time series and revealing the 
underlying dynamics, if any, of the system that produces this 
time series. The method is applied for several increasing 
values of the embedding dimension n, and for each n the 
dimension Dq is calculated for some q (most frequently for q = 
2). If the system is deterministic, then Dq becomes invariant 
for increasing n and saturates to a constant value, which is the 
dimension of the underlying attractor. If the system is random 
no such saturation value of the dimension is observed. Thus, 
the detection of a saturation value of the dimension Dq 

provides evidence that the system is deterministic rather than 
stochastic. 

The application of the time-delay embedding method 
requires numerous points of the time series and a proper 
selection of the time delay r. These issues are discussed by 
Tsonis [1992, p. 151, 162] and Tsonis et al. [1993] among 
others. In particular, the time delay r must be chosen so as to 
result in points that are not correlated to previously generated 
points [Tsonis et al, 1993]. Commonly the time delay is cho­
sen by means of the autocorrelation function, that is, in a way 
that the autocorrelation function attains a certain small value 
like Me, 0.5 [Schuster, 1988] or 0.1 [Tsonis and Eisner, 
1988]. Another approach employs the concept of mutual 
information [Fraser and Swinney, 1986]. Given that the 
mutual information of x(t) and x(t - r) measures the general 
dependence between these values, it can provide a good crite­
rion for choosing the proper time delay r, so that the delay 
coordinates used for the reconstruction be independent. If the 
time delay r is chosen to coincide with the first minimum of 
the mutual information, then the recovered state vector X will 
consist of components that possess minimal mutual informa­
tion among them. Moreover, Fraser and Swinney [1986] 
argue that mutual information may be more appropriate than 
the autocorrelation function in the case of nonlinear dynamics, 
because the autocorrelation function measures only linear 
dependence, whereas mutual information measures general 
dependence between successive points. However, neither 
method should be applied blindly. For example, mutual 
information can have early minima, possibly from periodici­
ties (A.-A. Carsteanu, personal communication, 1996). Thus a 
very reassuring practice is experimenting with various values 



The general characteristics of the historic and synthetic data 
used in the analysis are shown in Table 1. The available num­
ber of points of the time series varies from about 2,200 for the 
24-hour resolution to about 210,000 for the 0.25-hour resolu­
tion. However, in the calculations we did not enter more than 
70,000 points in order to obtain the results in reasonable com­
puter time. We emphasize that the correlation integral calcu­
lations are time consuming; for example, the calculation of the 
correlation dimension for a single embedding dimension with 
210,000 points requires more than 1 day in a Hewlett-Packard 
9000/730 workstation. 

For the choice of the time delay, both methods based on the 
autocorrelation function and on the mutual information were 
used, which resulted in very different values of the time delay. 
The former indicated a time delay varying from 1 to 6 days 
depending on the time resolution of the rainfall series. The 
latter led to time delays of about 12 days (for time resolution 
of 0.25 and 24 hours) or more (for intermediate time resolu­
tions). In the subsequent investigation we used two values of 
the time delay for each time resolution as resulted from both 
methods, which are shown in Table 1 (also fixing r of the 
second method for the intermediate time resolutions to 12 
days). Despite the large departure of time delays estimated by 
each method, the results of both cases were almost indistin­
guishable, which means that the choice of r within a large 
interval does not affect the results in our case. Thus, it is not 
worth to include the results of both cases in the paper and we 
present those for the first case only, that is, for values of r 
obtained by the autocorrelation function method. 

For the calculation of the correlation integral both the 
straightforward algorithm and a faster box-assisted algorithm 
proposed by Grassberger [ 1990] were implemented after con­
version to ANSI C and adaptations. 

The computed correlation integrals Ciie, ri) for the four 
time resolutions are plotted in Figure 3 through Figure 6 ver­
sus the scale length c. The examined embedding dimensions n 
were 1, 2, 4, 8, 16, and 32. As shown in these figures, for time 
resolutions of 1, 6, and 24 hours there is roughly a scaling 
region extending between the depth resolution limit (1 mm) 
and about double the average of the nonzero depths, whereas 
for the finer time resolution (0.25 hours) no scaling region 
emerges. One may observe that, in the latter case, the depth 
resolution of 1 mm is too high, as compared to the average 
nonzero rain depth for an interval of 0.25 hours, which is 
about 2 mm. Apparently, this explains why no scaling region 
emerges for the time resolution of 0.25 hours. As we progress 
to coarser time resolution (Figure 4 through Figure 6) the 
effect of the quantization of the rainfall depth with 1-mm 
resolution is diminished 

Table 1 

Figure 3 

Figure 4 

Figure 5 

Figure 6 



apparent from this figure that the rainfall time series depart 
from white noise as the slopes are quite lower than the 
characteristic slope of white noise that equals the embedding 
dimension n. 

The most important observation in Figure 3 through Figure 
7 is that the results obtained from the synthetic series (dashed 
lines in the plots) are quite similar to those obtained from the 
historic series. This indicates the good performance of the sto­
chastic model in preserving the properties of rainfall that are 
concerned with the entropy and correlation integrals, proper­
ties that were not explicitly fitted to the historic data. 

The time delay embedding method was also applied to the 
series of time intervals corresponding to an increase of rainfall 
depth by 1 mm. The employment of this series aimed at 
avoiding the zero time-delayed vectors discussed above. 
Similar series have been also used by Sharifi et al. [ 1990] and 
Tsonis el al. [1993]. The series of time intervals is obtained by 
inverting the series of cumulative rainfall depth /»(/), that is, by 
determining the function t(h), and then finding the time 
instants corresponding to an increase of h by 1 mm. Therefore, 
we call it "inverse rainfall series". Linear interpolation was 
used for inverting the series /»(/), which obviously introduces 
error for time intervals smaller than 0.25 hours; thus, our 
results for those small timescales are not exact. In Figure 8, 
we depict the results of the correlation integral analysis for 
this series. No clear scaling region appears in this case. The 
results for the synthetic series are again quite similar to those 
for the historic. 

5. The Rainfall Series as Cantorian Dust 
Clearly, the results described in the previous section indi­

cate that the time delay embedding method is not ideal for 
continuous rainfall records with short time resolution. As dis­
cussed previously, the problem is caused by the nonzero prob­
ability of zero rainfall. Therefore, we have attempted to 
process the time series in a different way, again using tools 
borrowed from the chaos literature. 

The domination of voids (dry periods) in a rainfall time 
series evokes the parallelism with the Cantorian dust. More 
specifically, we can parallel the cumulative hyetograph of a 
certain period with the "devil's staircase" [Henon, 1988; 
Schroeder, 1991, p. 167], that is, the function that maps the 
interval [0,1 ] into itself having plateaus along all void inter­
vals of the Cantorian dust (i.e., almost everywhere). Such an 
analogy can provide useful characterization and quantification 
of a rainfall time series and can reveal the presence or absence 
of characteristic timescales 



"points" in this formulation. Instead we can set />, = A//, / h(s), 
where A/», is the incremental rainfall depth in the /'th time 
interval. Obviously, the measures so defined add up to unity, 
that is, satisfy (15). For a specific e, we can easily estimate the 
entropy Iq(e) using directly (14) or (16). Repeating the proce­
dure for several values of e we can numerically reconstruct the 
function Iq(e). If its plot versus In e is a straight line then we 
can estimate the dimensions Dq using (18). 

In order to validate the method we have applied it first to 
the devil's staircase. In that case the function //(/) is a staircase 
that rises only at those values / that belong to the Cantor set. 
We know that all dimensions of this set are equal to ln(2) / 
ln(3) = 0.63093.... This theoretical result can be also obtained 
empirically by the proposed method. To construct the function 
h(t) we have used the algorithm described by Schroeder 
[1991, p. 169]: for any given value / we write / as a ternary 
number and convert it into a binary fraction, replacing any 
digits 2 up to the first 1 (reading from left to right) by the digit 
1; we keep the first 1 (if any) and write 0 for all following 
digits to the right; the obtained number is //(/) written in 
binary form. With this algorithm we constructed 209,000 
values of//(/) at equidistant values of/ (a number equal to the 
available intervals of the rainfall data set). Then we used the 
method described in the previous paragraph to estimate 
dimensions. The results, shown in Figure 9 and Figure 10 are 
in perfect agreement with the theoretical expectations. The 
numerically calculated entropies / , plot as straight lines 
against In e. All dimensions Dq, up to q = 10, estimated by the 
method are equal to about 0.63. 

The application of this method to both the historic and the 
synthetic rainfall data sets gave the results shown in Figure 11 
and Figure 12. As one can observe in Figure 11, the curve for 
each generalized entropy /,, has a slope approaching 1 for 
large e. This slope becomes low (close to 0.2-0.3) for interme­
diate values of e, and then, for low e it rises again, yet 
remaining significantly less than 1. The change of slope with e 
indicates the presence of characteristic timescales in a rainfall 
time series, as opposed to the Cantorian dust, where the single 
straight line with the unique slope suggests the absence of 
characteristic scales. To quantify the characteristic timescales 
we have plotted in Figure 11 the vertical lines corresponding 
to the mean rainfall duration E[D\ and the mean rainfall inter-
arrival time E[T]. These lines define three distinct regions of 
timescales: the coarse (e > E[T]), the intermediate (E[D] < e < 
E[T\) and the fine (e < E[D]) timescales. The slope within 
each region is approximately constant, whereas different 
regions have different slopes. Thus, we can interpret these 
regions as distinct scaling areas The slopes of I versus In e 



slope in the e < E[D] plot (Figure 12) for q increasing from 0 
to 1. It is known that Dq is a nonincreasing function of q, as 
the generalized entropy Iq(e) is also a nonincreasing function 
of q for all q > 0 [Grassberger, 1983]. As shown in Figure 11, 
the latter rule is never broken. However, when the estimator of 
Dq based on the slope of Iq(e) is applied, the empirical results 
may not strictly obey the rule that Dq is nonincreasing with q. 
This is the case in the e < E[D] plot of Figure 12 for q = 0 and 
1. However, in all other cases this rule is not broken. 

A final remark, which is very important for the objective of 
this study, is that the results for the synthetic data agree well 
with those of the historic data, as is apparent in both Figure 11 
and Figure 12. It is impressive that even the break of the rule 
that Dq is nonincreasing with q, discussed in the previous 
paragraph, occurs simultaneously for both the historic and 
synthetic data at the same point. 

6. Conclusions 
The main conclusion of this investigation is that a synthetic 

continuous rainfall series generated by a well-structured sto­
chastic rainfall model may be practically indistinguishable 
from a historic rainfall series, even if we use tools of chaotic 
dynamics theory to characterize and compare the two rainfall 
series. This conclusion defends the use of stochastic models in 
Engineering Hydrology for simulation purposes. We must 
highlight, though, that our conclusion is constrained by the 
limited data used (only a 6-year record from Ortona, Florida) 
and by our macroscopic view of the time series as a continu­
ous record that includes numerous dry periods. This result 
may not be applicable for a single rainfall event, in which case 
many researchers have detected low-dimensional chaotic 
dynamics. In our case, no determinism has been detected in 
the examined continuous rainfall series from time resolutions 
of 0.25 to 24 hours and dimensions up to 32. Obviously how­
ever, both the historic and synthetic rainfall records are distin­
guished from white noise. 

Phase-space reconstruction via time delay embedding, 
applied to continuous rainfall records with low time resolu­
tion, does not provide effective characterization of the time 
series. The obstruction is caused by the nonzero probability of 
having zero rainfall in a short time interval, resulting in many 
zero time-delayed vectors. Moreover, the application of the 
time delay embedding method is extremely time consuming. 
We note characteristically that the computational time needed 
to generate the synthetic rainfall series in our application was 
about 3 orders of magnitude smaller than that required to 
apply the time delay embedding method. It is anticipated that 
i d l bddi b l id ih bl f 
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sion of this method using time-delayed vectors is not 
straightforward. 

Appendix: Generation of Synthetic Data 
by the Scaling Model 

The model for the generation of the synthetic time series 
consists of two separate modules: the alternating renewal 
model and the scaling model of storm hyetograph. The former 
is used to generate storm durations and dry times and the lat­
ter to generate incremental depths within a storm. The scaling 
model and its parameter estimation has been discussed in sec­
tion 2. The alternating renewal model consists of a set of dis­
tribution functions for storm durations and dry times with their 
associated parameters. The dry times and rain durations are 
assumed independent variables. Different parameters were 
estimated for each month using the historic data. Specifically, 
the exponential distribution was assumed for the rain dura­
tions of every month. The single parameter of the exponential 
distribution was estimated from the mean storm duration of 
each month. For the dry times of the dry season (October 
through May) a Weibull distribution was assumed and its 
parameters were estimated by the method of moments. For the 
dry times of the wet season (June through September) it was 
found that no typical simple distribution function in the lit­
erature was suitable for the data and a two-segment Weibull 
distribution was adopted, which agreed perfectly with the 
data. This is described by the equation 

FB(b) = 
1 - exp[-*r,(A - c)\ b<.$ 

(27) 
. 1 - e\p[-Kz(b - c)^] , b S £ 

where b is the dry time, K\, KI, A\, X2 and £, are parameters 
estimated from the data and c is the minimum allowed dry 
time (in our case 7 hours). As noted before, dry times smaller 
than c are included in storm events. 

The generation of the time series takes place in three 
phases. In phase A we apply the alternating renewal model for 
the temporal location of an event, that is, we generate a rain 
duration and the consecutive dry time using the adopted dis­
tributions for each variable and the appropriate parameters for 
the month where the event is located. 

In phase B we calculate the statistics of total and incre­
mental depths for each event of given duration D, and formu­
late the generating scheme. This phase includes the following 
steps: 

B1. We calculate the statistics of the total depth E[Z] and 
Var[Z] (equations (6) and (7)) and E[X] and Cov[X X] 



1 ' 
E[Vt] = - J - E[Xt]- £>,^[»0-1 (28) 

Var[^-] = 1 (29) 

1 

col 
(30) 

where ^[A-,] and /^t K,] are the third central moments of Xj 
and Kj, respectively. Here /^[-Yi] is obtained from the assumed 
gamma conditional (on D) distribution of A"). The procedure of 
phase B is documented in detail elsewhere [Koutsoyiarmis 
and Tsakalias, 1992; Koutsoyiarmis, 1994; Mamassis et al., 
1994]. 

Finally, in phase C we generate the sequence of incre­
mental depths for each event. This phase has also three steps: 

CI. We generate the total depth Z, from the assumed 
gamma distribution. 

C2. We apply the sequential generating scheme to obtain 
an initial sequence of incremental depths X'. 

C3. We determine the final adjusted sequence using the 
adjusting procedure 

X,= X\l tXJ (31) 

The documentation and proof of the appropriateness of the 
adjusting procedure is given elsewhere [Koutsoyiarmis, 1994J. 
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Figure Captions 

Figure 1. Mean (E[Z]) and standard deviation (Std[Z]) of the 
total storm depth (Z) versus storm duration (D). 

Figure 2. Mean (E[X\) and standard deviation (StdLV]) of the 
incremental, one-quarter hour, storm depth (X) as a function of 
the storm duration (D). 

Figure 3. Log-log plot of correlation integral Cj versus the 
radius c for embedding dimensions n up to 32 and for time 
resolution of the series equal to one-quarter hours. The solid 
lines represent the historic data and the dashed lines the syn­
thetic. 

Figure 4. Log-log plot of correlation integral Cj versus the 
radius e for embedding dimensions n up to 32 and for time 
resolution of the series equal to 1 hour. The solid lines repre­
sent the historic data and the dashed lines the synthetic. 

Figure 5. Log-log plot of correlation integral Cj versus the 
radius e for embedding dimensions n up to 32 and for time 
resolution of the series equal to 6 hours. The solid lines repre­
sent the historic data and the dashed lines the synthetic. 

Figure 6. Log-log plot of correlation integral Cj versus the 
radius € for embedding dimensions n up to 32 and for time 
resolution of the series equal to 24 hours. The solid lines rep­
resent the historic data and the dashed lines the synthetic. 

Figure 7. Slope of the scaling region of Figures 3-6 versus 
embedding dimension, also compared with the correlation 
dimension of white noise (logarithmic plot). The solid lines 
represent the historic data and the dashed lines the synthetic. 

Figure 8. Log-log plot of correlation integral Ci of the inverse 
rainfall series versus the radius c for embedding dimensions n 
up to 32. The solid lines represent the historic data and the 
dashed lines the synthetic. 

Figure 9. Generalized entropy lq of Cantorian dust as a func­
tion of the interval length e, as was numerically calculated to 
validate the proposed Cantorian dust analogue method. 

Figure 10. Generalized dimensions Dq of Cantorian dust as 
estimated numerically from Figure 9 for orders q up to 10, in 
comparison with the theoretical dimensions. 

Figure 11. Generalized entropy lq of the rainfall series, cal­
culated with the Cantorian dust analogue method, as a func­
tion of the interval length c The solid lines represent the 
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Figure 4. Log-log plot of correlation integral Ci versus the radius E for embedding dimensions n up to 32 and 
for time resolution of the series equal to 1 hour. The solid lines represent the historic data and the dashed lines 
the synthetic. 

Figure 5. Log-log plot of correlation integral Ci versus the radius ffor embedding dimensions n up to 32 and 
for time resolution of the series equal to 6 hours. The solid lines represent the historic data and the dashed 
lines the synthetic. 

Figure 6. Log-log plot of correlation integral Ci versus the radius € for embedding dimensions n up to 32 and 
for time resolution of the series equal to 24 hours. The solid lines represent the historic data and the dashed 
lines the synthetic. 

Figure 7. Slope of the scaling region of Figures 3-6 versus embedding dimension, also compared with the 
correlation dimension of white noise (logarithmic plot). The solid lines represent the historic data and the 
dashed lines the synthetic. 

Figure 8. Log-log plot of correlation integral Ci of the inverse rainfall series versus the radius e for 
embedding dimensions n up to 32. The solid lines represent the historic data and the dashed lines the 
synthetic. 

Figure 9. Generalized entropy Iq of Cantorian dust as a function of the interval length e, as was numerically 
calculated to validate the proposed Cantorian dust analogue method. 

Figure 10. Generalized dimensions Dq of Cantorian dust as estimated numerically from Figure 9 for orders q 
up to 10, in comparison with the theoretical dimensions. 

Figure 11. Generalized entropy Iq of the rainfall series, calculated with the Cantorian dust analogue method, 
as a function of the interval length c. The solid lines represent the historic data and the dashed lines represent 
the synthetic. 

Figure 12. Slopes of the three distinct scaling regions of Figure 11 for orders q up to 10. The solid lines 
represent the historic data and the dashed lines represent the synthetic. 



19 

100 

Modeled 
Empirical, both seasons 
Empirical, dry season 
Empirical, wet season 

Mean Standard 
delation 

• a 
• 0 
• A 

10 D[hr] 100 

Figure 1 

„ 5 
E 
E 

4 + 

r 
1 + 

0 

\ D 

Modeled 
Empirical, both seasons 
Empirical, dry season 
Empirical, wet season 

Mean 

• 

• 

~»» t A 

— I 1 

Standard 
deviation 

D 

0 
A 

< 

• -

Figure 2 

10 15 
D[hr] 

20 

Figure 3 



20 

Resolution 
limit = 1 mm 

f 

2 £[X|X > 0] 
= 8.41 mm 

1.5 2 
log™ t [mm] 

Figure 4 

2 £[X|X > 0] 
- 20.6 mm 

1.5 2 
togM ( [mm] 

Figure 5 



21 

2E[X\X >01 
= 32.98 

1.5 2 
\og„ t [mm] 

Figure 6 

Figure 7 



O
O

 

3) 

O
N

 

U
H

 

O
 

U
H

 

1
—

 t
—

1 1 i
—

 1 £ 1 
•D

 

f & 
O

 • 

1 
•J 

1
 c 1 s E

 

c 

a 1 t • 

-—
 

-i—
 

I d
 

. a
 

n
 

>. al value: ln(2 
ntal value 

i I theoretic 
T • experime 

(u
 

'I)E
^

O
I6

O
| 

(*)*/-

o> 
co

 
h

»
 

to
 

u
i 

^
 

d
 

d
 

d
 

d
 

d
 

d
 

(»
u

|)v
/((i)»

/-)v
 

C
O

 
C

M
 

d
 

d
 

T
- 

o
 

d
 



0 -

-A 

-5 -

-6 -

•7 -

-9 -

in -

: • i I : 

i |E[01-4.63hrl 

: \ ' : ^ . j r ^ 

i i i——i— 

lem-

H^"E 

I • f 
i ; I : \Jjr '•• 

;•'< ••• ] g » 0 (capacity dimension) | 

• 1 (information dimension)) 

I g " 2 (correlation dimension) | 

—i i -- U — i — i — i — i — i — 
9 10 tl 
tnr (hr) 

23 

Figure 11 

Figure 12 


