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ABSTRACT 

EnipirkaLevMettce'si^ests^tiiat statisticalpf©:perties;of:storra rainfall at a location and within. 
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;dep;e»i!efi< r̂̂  a storm was.-hypothesized; It was 
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;.st§tisticM:iiii»rt^ an efficient paraiaettizatioii of storms 

jof ifatyiag^dBiaticpi; .aad/t&tal depths.. This·.-simple-'scaling model is also' consistent witk, aad 
:f royides *-.tte^ tomept-of mass.-evtvm- (normalized cumulative storm depth, vs. 

-aorp:#zed;Cttm which, are extensively used in hydrologic 

design..', JixwMt^i^opttiM'st&tioti^ty. models :-of.taimfitii intensity are. skowm unable.-to capture :4te-
;:4ttfati&M^de|»:eadeii.t: s%Mmtimlsim.et%t^:oistoTM deptk-s-and-axe also inconsistent with the .concept 

.•of-:roas8\ctttv6s. -
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1 Introduction. 

This paper deals with the analysis and modeling of the stochastic structure of rainfall intensities 

within storms of varying duration.. Storms are defined here as rainfall events which are independent 

of each other as based, for example, on Poisson storm arrivals. The need to parametrize the time. 

distribution of storms which are "similar" apart from total storm depth and storm duration, arose 

very early and the concept of mass curves, i.e., non-dimensional cumulative storm depth versus 

non-dimensional cumulative time since the beginning of a storm, has been extensively used for 

hydrologic design (e.g., Grace and Eagleson, 1966, p. 90; Huff, 1967; Eagieson, 1970, p. 194; 

Pilgrim and Cordery, 1975; among others). The idea behind those efforts was the recognition that 

for a particular location or within a meteorologically homogeneous region and for a homogeneous 

season, storms are expected to exhibit similarities in their internal, structure despite their different 

durations and total storm, depths. In addition, the concept of normalized mass curves was adopted 

in some advanced rainfall models, such as the ones of Bras and Rodriguez-Iturbe (1976), Hjelmfelt 

(1981), Woolhiser and Osborn (1985). 

Empirical evidence from this and other studies (see sections 5 and 6) regarding the dependence 

of the statistical properties of incremental and total storm depths on storm duration, led us to the 

hypothesis of a simple scaling model for the instantaneous rainfall intensity within a storm with 

storm duration as the scaling parameter. This model has been thoroughly examined in this paper 

and the properties of the total storm depth and incremental rainfall depths have been analytically 

derived and have been used for model fitting and model evaluation. Another motivation for exam

ining the simple scaling model is that it is consistent with, and provides a good theoretical basis 

for, the concept of mass curves which are very often used in. hydrologic applications and rainfall 

modeling. 

Most of the available continuous time rainfall models, e.g., the Neyman-Scott model (Kavvas 

and Delleur, 1981; llodriguez-lturbe et a t , 1984; among others) used to describe rainfall intensities 

are stationary. In this paper we show that any stationary model is unable to capture the duration 

dependent statistical structure of rainfaE intensities and is also inconsistent with the concept of 

mass curves. 

This paper is structured as follows. Section 2 introduces notation. In section 3 the simple scaling 

model for instantaneous rainfall intensities within a storm is presented. The statistical properties 

of the total storm depth and incremental storm depths, e.g., hourly depths, are derived in section 4. 

In section 5 some important properties implied by the model structure are compared with features 

of rainfall documented in the literature. In section 6 the simple scaling model is fitted to hourly 
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data from 89 storms in Chalaxa, Greece and the performance of the model is evaluated in terms 
of its ability to capture statistical properties not explicitly used for model fitting. In section 7 two 
stationary models of instantaneous rainfall intensity are examined and it is shown both analytically 
and empirically that these models are not able to reproduce some of the observed characteristics 
of storm rainfall that the simple scaling model is able to describe, in section 8 the connection of 
simple scaling models to mass carves is examined and it is shown, that mass curves are consistent 
with the hypothesis of simple scaling but are inconsistent with the assumption of any stationary 
model for instantaneous rainfall, intensities. Finally, in section 9 the scaling model is applied to 
generating synthetic storm hyetographs and mass curves which are shown the compare well with 
the corresponding empirical ones. Some concluding remarks are given in section 10. 

2 Terminology and preliminaries 

Let D denote the duration of a storm and ξ(ί, D), 0 < t < D the rainfall intensity process within 
the storm duration. h(t,D) denotes the cumulative rainfall depth process defined as 

h{t,D)~ f t{s,D)ds, 0<t<D (1) 
Jo 

and X&(i,D) denotes the incremental rainfall depth in the interval ((i — 1)Δ, ίΔ) i.e., 

X A ( I , D ) = / {(i,2>)A, t = l,2,...fe (2) 
J(i~t)A 

where k is the integer part of D / Δ (see Fig. 1). It is assumed that within a meteorologically 
homogeneous region and season, every storm of duration. D can be considered as a realization of 
an ensemble characterized by that duration.. Note that the process £(i ,D) is a process of finite 
duration (0 < f < D) and thus its ensemble average is, in fact, a function of the duration D. 

Let ηζ(ί,Β) denote the ensemble average of £(i,2?), i.e., 

ni(t,D) = EMt,D)} (3) 

and R((tut2\D) the second order product moment of £(i, D) in the interval of a storm event, i.e., 

Rt{hM]D) = Ε\ξ{Η,Β)ξ{ί2,Β)1 n<tuh<D (4) 

where again expectation refers to ensemble average. The covariance function of f(i, D) is then given 
as 

C\(ii,tr,D) = Cm^(tuD)((h,D)) = Rt(tuh;D) - ty(tuDfofa,D) (5) 

In a similar manner we define the statistical properties of the cumulative depth process h(t,D), 
i.e., %(<, D)1Rh(ti,i2;D), and Ch(h,t2',D), and those of the incremental depth process X&(t,D), 
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3 Scaling model of s torm intensities 

The hypothesis is set forward that the process of instantaneous rainfall intensities within a storm, 
i.e., £(i, D), 0 < t < D is a self-similar (simple scaling) process with scaling exponent H, i.e.. 

{£&£>)} ±{\-Hi(\t,XD)} (6) 

where the above equality is in terms of the finite dimensional probability distribution, i.e., 

Pr[t(ti,D) <«i , . . . ,£( tn,D) < xn] - Pr[X" M ξ(Χί ι,XD)<zi,...,A~ffi(Ai„,AD) < zn], 

0<ti,...,tn<D (7) 

(see, for example, Lamperti 1962, where, however, infinite duration, stochastic processes are con
sidered). Consequently the k-th moment of f(i,D) is given as 

£?[*(<, D)k\ = λ-**.ΒΙί(λί, AD)*] (8) 

and the (k, I) second product moment as 

mtuD)kt(h,D)1] = X-Hlk+l)E[t(\tuXD)hi(khtXD)1} (9) 

An intuitive feeling of the notion of scaling in (6) can. be obtained from Figure 2 where, for example, 
if Dz = XDi then under appropriate scaling of time, i.e., tj = Xh, the statistical (ensemble) prop
erties of the rainfall intensity in storms of duration D^ are related to the corresponding statistical 
properties of the rainfall intensity in storms of duration Όχ according to (7). 

It is noted that by setting λ = 1/D in (6) we obtain 

{ξ{ί,Β)}ί{Βαζ{ί(Β,1)} (10) 

where £(</£>, 1) represents the intensity process of a storm event normalized to unit duration. It is 
then realized from (10) that the hypothesis of scaling implies that the statistical properties of the 
rainfall intensity in storms of any duration can be obtained by appropriate scaling of the statistical 
properties of the rainfall intensity in a storm normalized to unit duration. 

For reasons of simplicity we will assume that the process ξ(ί,ΰ) is stationary within a storm 
event, i.e., the finite dimensional distribution function is invariant to time translation within a 
storm, 

{£(«,/?)} = {£(< + r,£>)}, 0<t,i + r<D (11) 

Note that this is a» weak stationarity condition in that it represents stationarity of £(i, D) only 
within storm events of a fixed duration and not over any storm independently of duration (or over 
the whole time axis), which would imply 
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{ί(0> = U(t + τ)} (12) 
as most available rainfall intensity models, e.g., the Neyman-Scott model, assume. 

The weak stationarity assumption (11) should not be considered as a structural constraint of 
the simple scaling model but rather it is a convenient simplification. The data examined, as well 
as other data (e.g. Grace and Eagleson, 1966, p. 90) are not far from this assumption. Note that 
this assumption results to a "mean" mass curve which is a straight line. Apparently however, any 
mass curve derived by the use of the model as a realization of a stochastic function characterizing 
the mass curves (see development in section 8 and application in section 9) will not be a straight 
line but it will have a nonlinear shape in agreement with empirical evidence. 

Under our assumption the ensemble statistical properties of the process £(t,D) do not depend 
on t for a given duration D and the ensemble statistical properties of £(</£>, 1) are independent of 
t and D. Let as define as c\ the ensemble mean of the process ξ(ί/Β, 1), i.e., 

ci = ϋ[ί(</£>,1)] (13) 
Since ξ(ΐ/Ό, 1) is stationary we also define 

φ{τ[Β) s E[£(t/D, l)C((i + T)/D, 1)] (14) 

Based on the above relations and (6) the ensemble statistical properties of f (t, D) can be written 
as 

E[^{t%D)\-cxDH ' (15) 

Q( r ;D) = Cm[t{t,D)^{t + r,D)] = (φ(τ/Β) - cj)Dm (16) 

These equations imply that under the hypothesis of simple scaling (equation 6) and the assumption 
of stationarity within, an event (equation 11) the statistical properties of £(i, D) can be obtained 
from the statistical properties of the normalized to unit duration process £(t/D, 1) and a scale 
changing transformation which is a power law of the storm duration. Note that the mean of the 
rainfall intensity process depends on the duration according to a power law with exponent JJ, while 
the covariance of the rainfall intensity process is also a power law of duration with exponent 2H, 
Higher product moments follow similar relationships as implied by (10). 

4 Properties of total and incremental storm depths 

To be able to test the hypothesis of scaling for ξ(Ι,Ο) using available rainfall data, the statistical 
properties of incremental and total storm depths need to be derived. In this section we show that 
both total storm depths h(D, D) and incremental storm depths X&(i, D) follow simple scaling laws 
and expressions for their mean and covariance are derived. 
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'•4.1·· M^mmMw^y^^[^&^m :sterm<aeptw 

vlt ::C :̂:be':$h#w:3a; .(see--Ap.|t0jidix' 1)' that' ^̂ cLer some' -fatlier mild restrictions on the covarianee of 
^:(i,i3|'the/f:(ipMiafwe^:^M*ll: depth'process A{i,#) Is also a simple scaling process with exponent 
.#•+•1,1.6., 

/ ' ,;{fc(i,|Ji'I;|X-^*«A(Ai,Ai3)} · (17) 

vSettln .̂t''.ss:i?-:̂ ii.4-.A.;=c l/iXjn.the above, equation we·obtain 

•'\{ti(Pi#W&iUH}*%l*1)}' (18) 

^Mo|iiig'ftat';J|fcJl,l;)3;=:Ct;.aiidrdeiBiag: .· . 

•: ,'·:·%·Si?«f{^1,·!Ι}}'/;··' · · ' : · (19) 

: we^/cM'-#ritf *if^ 'variance-of-the total -storm.· depth 'as 

····'. ·; \.:$φ&ϊφ$&ΜΧ&**' · . · ' (20) 

-;; /^«eiifcp^f^^^t**1^ ' · (2i) 

•/•Not^tliai' at:|r«gtttt:ii;:fe ;ntiafali..intensities', -the. coefficient o£ variation 
:-of lli«;:to^ii-s|ei^:de|pih :;ί| ̂ constant · »κ4 .eqi-al -to;·', v ^ / i i · 

: ;#,2;:.-:. ·1 ΐ1β |» ί Ι ΐΜ ΐ ΐ ίΛ : ' efc©f p i ' d e p 4 ; f e / 

••IBielfteie^^ t:a=,i,.iie.f^(i,i))4elaie(l In (2),·* can be written as 
;f he'Allfeeftc#:C^ · depths·/as 

;·; :.;: j j ^ l ^ ' (22) 

••'lit wew'if,tte:fe^i»g:;ef;S(t,:#) {equation' 1.7)':the;discfete-tiiae;increaienta! depth-process X&.(i, D) 
:·Ϊ8 = 3ΐίθ:-80»1ίϊΙ^,'ί,β.:, . · ' ' . · ' · · 

V . ..: ̂ ^^k^mm^.^U.XD)}, . · . ' (23) 

'.It'is-feajy. t©;:shjiiw::te is 

·;' -;; .fyfaffifi^^M'^-ciSut**1 (24) 
'•'*tiere;#·^· '£xfB;- After::sapi.e::algeiraic:nianipu-l:ati(>n-s {see Appendix:· 2) one can: derive the -variance 
:M:^{i,-!?):;as:. ··' 
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varlXA(i,D)} - [ψ(Ο,δ) - c?i2)Z?2<H+1> (25) 

where 

φ(0;δ) = 2 ί <Ky)(6-y)dy (26) 
Jo 

Similarly (see Appendix 2), the covariance can be derived as 

ΟχΛ(ro; D) = C<W[XA(», # ) , * Δ ( * + m, £>)] = [V>(m; 6) - c\82}D^m^ (27) 

where 

^(m;tf) = 1 (y - (TO - l W ( y ) <% + / ((TO + l)tf - y)(j>{y)dy ,m > 0 (28) 
Jim—1)5 ^ιηί 

-„ ί Λ . ρ ) β * ί Ξ ι * 1 ζ ^ (29) 

ιέ" />(m+l)5 
( 

/ (m- l )5 

The autocorrelation function, can then be written as 
J2 

i*v"'"y~"5(o|7jrr^i2* 
It is interesting to note that as a manifestation of the scaling hypothesis for ξ(ί,Ό) the autocorre
lation function, of the incremental depth process depends on 6 = Δ / Ρ , that is, on the integration 
interval, normalized by storm duration, and it does not depend directly on the storm duration or 
the integration interval, nor on the scaling exponent H. 

5 Discussion of model properties and rainfall features reported 
in literature 

Before we embark into the details of fitting the proposed model to a specific data set and evaluating 
its performance (section 6) as well as theoretically and empirically comparing it to stationary models 
(section 7) we prefer to provide a little more insight into some important properties implied by the 
model structure and compare these properties with features of rainfall documented in the literature. 
Particularly, we will focus on the average intensity of a storm, the coefficient of variation of the total 
storm depth or the a,verage intensity, and the correlation structure of incremental depths. Later in 
section 8 we will examine the model consequences regarding the normalized mass curves. In. both 
sections we will illustrate that the proposed model, in spite of its novel mathematical formulation, 
describes adequately well known features of rainfall and is in agreement with some models while in 
disagreement with others, 
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5.1 A v e r a g e i n t e n s i t y of s t o r m 

As it results from (20), the time average intensity of a storm i(D) is a function of the duration with 

expected value given, by 

Efi(D)] - aD** (30) 

The model allows if to take either positive, zero, or negative (but greater than -1) values. In. the 
first case we have a mean intensity which is an increasing function of duration, while in the second 
the mean intensity is constant aad independent of duration. The third case seems to be the most 
frequent, since a negative correlation of duration and mean intensity is quite common as will be 
discussed below. Note in. that ca.se that when D —*• 0 it is easily shown that all the statistical 
moments of both the instantaneous and time average intensity tend to oo. However, this is not a 
problem since the total depth h(D,D) -* 0, as it follows from (20) and (21). Thus, with Η < 0 
when D = 0 we have a rainfall impulse with an infinite intensity but zero total depth, which seems 
to be reasonable. Recall that other models (e.g., Poisson White Noise Model, Neyman-Scott White 
Noise Model; see Rodriguez- Iturbe et al., 1984) use the concept of rainfall, impulses with zero 
duration. 

The dependence of total storm depth, or mean intensity on the duration of a storm has been 
investigated in several earlier studies. For example, Grace and Eagleson (1966) have studied summer 
storm, data of Truro, Nova Scotia and St. Johnsbury, Vermont. After classifying the storms in three 
types (trace, moderate, aad peaked storms) they established linear regression relationships between 
storm depth and duration of the form (keeping the notation of the present study) 

E[h(D,D)] = aD + b (31) 

where α and b are parameters estimated by linear regression using all the data of each. type. From 
this equation it follows that 

E(i(D)} = a + b/D (32) 

which is a hyperbolic form not practically different from (30) (as shown in. their figures the power 
relationship might be used as well). Depending on the sign of b, the mean intensity can be a 
decreasing (b > 0) or increasing (6 < 0) function of D. la five of the six cases studied by the 
authors (2 stations χ 3 types) the b was positive, which corresponds to a negative scaling exponent 
Η, and in one case b was negative, which corresponds to a positive H. Quite similar is the analysis 
of Woolliiser and Osborn (1985). Closer to the present study is the approach and the findings of 
Hershenhom and Woolliiser (1.977), who studied a 23-year data set of summer (July and August) 
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storms from a raingage at Walnut Gulch Experimental Watershed, Arizona, USA. In order to 

determine the conditional distribution of duration given the storm depth, they adopted a linear 

regression relationship between logarithms of depths (minus a lower threshold) and durations. This 

relationship is equivalent to a power relationship of the untransformed quantities similar to (20). 

A conclusion on the correlation between mean intensity and duration does not result directly from 

their study (the regression made concerns duration versus depth; the converse regression is not 

seen in their paper). However, it seems that there is a positive correlation between duration and 

intensity (intensity increasing with duration), which corresponds to a positive scaling exponent. 

The above literature findings as well as the proposed scaling model axe in disagreement with 

any stationary model, i.e. a model which does not assume any dependence of instantaneous or 

incremental rainfall intensity on the duration (see also section 7). In the case of a stationary model 

the mean intensity is obviously a constant, independent of duration. This may seem at first view as 

a special case of the sailing model with zero scaling exponent. However, as it will be shown later, 

the scaling model is structurally different from any stationary model. 

5,2 Coeff ic ien t of v a r i a t i o n of s t o r m d e p t h o r a v e r a g e i n t e n s i t y 

As pointed out in section. 4.1 a consequence of the scaling assumption is that the standard deviation 

of the total storm depth (or, equivalently, of the average intensity) is expressed as a power law of 

duration. This power law is exactly the same with the power law of the expected value of the 

depth, (or average intensity) versus duration. Thus the coefficient of variation is constant and equal 

to i/ci/ci- As will be shown later this property is strongly supported by the data used in this 

study (see Fig. 4). In, addition, this property is consistent with other data sets and models of the 

literature. 

Grace and Eagleson (1966) in order to describe the residuals from the mean storm depth given 

the storm duration adopted a relationship of the form 

h(D1D)-E[h(D,D)] _ 
E[h(D,D)] l ] 

where c is a constant and W is a beta distributed random variable, independent of D. Obviously 

this form leads to a constant coefficient of variation of h(D,D), independent of D. 

Eagleson (1978) using a data set from Boston and assuming that the average intensity and du

ration are independent random variables with exponential distributions determined the marginal 

distribution of the storm depth in terms of a modified Bessel function of the first order. A sim

ilar assumption was made by Bras and Rodriguez-Iturbe (1976) in order to construct a rainfall 

generation model. They assumed that the distribution of the total depth (averaged over an area) 
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coB.dition.al on duration is given by an. exponential function of the average intensity. This im
plies that the average intensity is independent of the duration and exponentially distributed. The 
assumption of an. average intensity independent of the duration apparently results in a constant 
coefficient of variation of the total storm depth as it easily obtained from h(D,D) = il) . In fact, 
this assumption can be considered as a special case of the scaling model with zero scaling exponent. 

On the contrary, any stationary model cannot yield a constant coefficient of variation for total 
storm depth. Indeed, any model of this category would imply 

E[h(D,D)) = ^D (84) 

where η% is the mean instantaneous intensity, and. if a constant coefficient of variation is hypothesized 
then it is required that 

E[h(D,D)2] = n2D2 (35) 

where % is a constant. However, as it is proved in Appendix. 3, the last equation is impossible 

for a stationary model, except for the case where the instantaneous intensity is constant with zero 

variance, which has no interest or physical meaning. 

5 .3 A u t o c o r r e l a t i o n s t r u c t u r e of i n c r e m e n t a l d e p t h s 

Another important consequence of the scaling model is that the autocorrelation coefficient for a 
certain lag is an increasing function of storm duration. Indeed, from (29) we obtain, for example, 
that pxA(l;D) = px3A(l;2D) which means that the lag-one autocorrelation coefficient of hourly 
data in a storm of duration D is equal to the la,g-one autocorrelation coefficient of two-hour data 
in a storm of duration 2D. Since, normally, the autocorrelation increases with decreasing lag it 
follows that the lag-one autocorrelation coefficient of the hourly data in a storm of duration 2D is 
greater than the lag-one autocorrelation coefficient of the hourly data in a storm of duration D. 
Thus, the lag-one autocorrelation coefficient is an increasing function of storm duration, and this is 
also true for coefficients of higher lags. 

As will be seen in the next section the hourly data we analysed support this property. To the 
authors knowledge, this property has not been discussed elsewhere in the literature, though it is not 
associated with the scaling model only. This property can be considered simply as a consequence 
of the constant coefficient of variation of the total storm depth, which was discussed earlier. As 
a simplified example consider the disaggregation of the total depth into incremental depths X& 
for a time increment Δ and assume a Markovian dependence between X^ with lag one correlation 
coefficient equal to p. Also consider that the average intensity is independent of D. In this case we 
have 
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or 

£ Cm{XA(i)XA(J)} = (m - rfi)D2 (36) 
Kij<J5/A 

D/A-l D/Δ 
{D/A + 2 £ £ ^ - } ¥ « Γ [ Χ Δ ] = (η<2 - η\)Ό2 (37) 

{jD/A + ΜΕΙΜ1^ιή^±ϊι^}ναΓΐΧΔ] β (% _ ^)Ι)2 (38) 

and after algebraic manupilations 

(1 - p)2 

In equation (38) we observe that the left hand side depends linearly on D while the right hand side 
depends on D2. Thus we conclude that either ρ or Var[Xj\] should be an increasing function of D. 

Another interesting point to note is that the theoretical autocorrelation coefficient of the incre
mental process is allowed to take on negative values (see eq. (5%), a property exhibited by rainfall 
data of this study and others (e.g. Grace and Eagleson, 1.966, pp. 91-92) but not allowed by many 
stationary models as will be discussed in section 7. 

6 Model fitting and performance evaluation 
6.1 Model fit t ing procedure 

la section 4 the covariance function of XJx(i1D)'v/&s derived in. terms of the covariance function 
of £(f, D). In order to be able to I t the model to incremental rainfall depths a parametric form 
for the covariance function of ί'(ί,Ι?) must be specified and the covariance of X&(i,D) must be 
consequently derived. As it is recalled from (16) the covariance function of ξ(ί, D) involves a power 
function of duration D and a function <f>(r/D) of the normalized lag, Here we assume the following 
power law form for <f>(y) 

φ(ν) = ky-0 (39) 

which implies the following power law second product moment for £(i, D) 

%(r; D) ~ ΙίΒβ*2Ητ~β (40) 

Note that this is in contrast to stationary rainfall intensity models for which the above product 
moment would be a function of lag r only and not duration. 

Based on this and after the computation of the integral in (26) it is shown that 

CxA(0; D) = var{X&(i, D)] = D2(-H+1H2{2kfi(l - β){2 - β)) r13 - c\} (41) 
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By considering CxD(Q;D) bom the above equation (by setting S =. 1) and equating it to (21) one 
can. see that the parameters k,P of the covariance function of £(t,D) are related to ci and C2 by 

c2 + 4 = 2*/[(l - β)(2 - β)] (42) 

By computing the integral in (28) the covariance function of the incremental storm depths is 

CxA(m;D) = 02<w+1>o2[(c2 + c\)S^f{mj) - c\), m > 0 (43) 

where 

/ ( m , /?) = [(TO - lf~0 + (m + l)2_^3/2 - m 2 - 0 , m > 0 (44) 

and 

/(O,0) = 1 (45) 

Consequently, 

z- n\ (ca + c?)i""/,/(m»/')-c? /«» 
ΑΧΆ (TO; 2?) = Λ — τ — ™ — — ^ — - i . — Λ (4(j) 
# Λ Δ Ι ; (c2 + cf)i-0 - cf l ; 

The model thus has four independent parameters E, ci,C2, and /? (note that fc is not an inde
pendent parameter, since it is related with the others by (42)) which in the empirical analysis that 
follows were estimated from the following relationships: 

£?[ft(l)>I))] = c 1 i ) M + 1 (47) 

Var{h(D, 0)1 - e 2 D 2 C J W 3 (48) 

^ Α ( 1 ) D ) _ ^ — ^ ^ ^ ^ ^ ( 4 9 ) 

From the first relationship Cj, and J?' can be estimated by least squares and c2 and β can be 
estimated from the second and third relationship, respectively (see also Eext subsection). Then 
using (42) the parameter k can be obtained. To further evaluate the model performance based on. 
properties not explicitly used for model fitting, the mean, variance, and autocorrelation function 
of the hourly rainfall depths for storms of different durations were estimated and compared to the 
theoretical values for the fitted model (equations 24, 41, and 46, respectively). 
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6.2 Performance evaluation 

The data used to implement the scaling model for ξ(ί, D) consists of hourly rainfall depths for 
a total of 89 storm events of duration greater than or equal to two hours. All events occurred 
during the month of April and during 13 years of record (1971 - 1983) at the Chalara station 
(latitude 40° 39' N, longitude 21° 14' E, elevation 880 meters a.s.l.) in the Aliakmon river basin, 
province of Macedonia, Greece. The rain recorder of this station is a weekly drum chart type with 
a rain depth resolution of tenths of millimeters. Due to absence of tabulated data, the charts were 
manually digitized under the authors' supervision. The set of one month (and not the complete 
annual' sample) was used in order to avoid possible non homogeneity of the rainfall properties due 
to seasonal variability. The reason for the selection of April is that this mouth is characterized by 
a sufficiently high frequency of rainfall events leading to an adequate sample size, and, at the same 
time, the temperatures are greater than 0"C, thus preventing the rain recorder from freezing and 
leading to inaccurate data, a case not valid for previous (winter) months. 

Events were identified based on the assumption of independence between events. This amounts 
to testing for a Poisson process of storm arrivals or exponential distribution for interarrival times. A 
Kolmogorov-Smirnov test was used for this purpose. Thus events were allowed to include periods of 
zero rainfall. Starting with a trial value of the maximum zero rainfall period allowed in an event (or, 
equivalently, the minimum period for separating an event from the preceeding and succeeding ones), 
a record of interarrival times was constructe'd and tested for fitting an exponential, distribution at 
a 50% significance level. With an iterative application of this method, the minimum zero rainfall 
period separating two events was found equal to 7 hours. This is very close to the arbitrary value 
adopted by Huff (1967), i.e., 6 hours. The 89 storm events had durations varying from 2 hrs to 45 
hrs with a mean duration of 11.8 hrs. General characteristics of the set of storms used are given in 
Table 1. 

The meteorological conditions responsible for the generation of the 8§ storms of April belong to 
several types. According to a classification of the weather types in Greece by Maheras (1982,1992), 
37% of the 89 events belong to SWl type, i.e., passage of a depression possibly accompanied by a 
cold front (and rarely a warm front) having SW orbit. A 24% of the events is produced by SW2 
weather type, i.e., passage of a depression originated from the Sahara desert. A 13% is produced 
by a special weather type (DOE) characterized by a cold upper air mass (determined at the 500 mb 
level) producing dynamic instability. Also 11% and 6% of the total events are produced by NWl and 
NW2 weather types, respectively, characterized by depressions and/or fronts with NW orbits. The 
remaining 9% of events is produced by the other four of the total 16 weather types of this specific 
classification. The orography of the region (North Pindos mountains) plays an important role in all 
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regional rainfall phenomena. It was found that storm durations and depths of the examined data 
set are uniformly distributed in each of the above five most frequent weather types (SWl, SW2, 
DOR, NW1, and NW2), with a likely exception of the DOR type which is characterized by slightly 
higher durations and depths. Thus no special treatment of the events classified by weather type 
was done, though one could consider application of the model to different types of storms with 
different parameter values (obviously, this would need a large set of data). 

To be able to estimate ensemble statistics, the 89 storms were grouped in five classes (1 to 5) 
according to their duration as shown in Table 2. For example, class 1 includes all 14 storms with 
duration 2 and 3 hours and class δ all 17 events with duration between 19 and 45 hours. The basis 
for selecting this grouping was to have approximately the same number of events in each class. 
To each class a duration was assigned eqaal to the mean duration of all events in that class. The 
events were further grouped into two larger classes (A and B) were class A includes all 39 events 
of classes 2 and 3 and class Β all 36 events of classes 4 and 5. Again the mean duration of each 
class was used as a representative duration of that class and events in classes A and Β were used 
to estimate the ensemble autocorrelation functions for two different storm durations. The enlarged 
size of classes A and Β was necessary in order to achieve reliable estimates of the autocorrelation 
coefficients for large lags. 

Because there is variability in the durations of the events of each class around the mean duration 
D assigned to that class a correction procedure was applied (when necessary) in estimating the 
variance of the total depth in each class. This correction consisted of subtracting from the calculated 
variance the quantity crp(k$ -f k\) where a-jy is the variance of the durations in that class and fci, k% 
are constants obtained from the linearization of the mean and standard deviation of total depths, 
respectively, in. the neighbourhood of D, i.e, E[h(D,D)] « ki~D and {Var[h(D, D}}}1^2 « k2D (the 
proof for the appropriateness of the above correction is ommited). For the scaling process we have 
C\D « k\D and c^D « k$D and thus the correction applied was 

σΚ4 + c2)T)2H (50) 

It was found that this correction was negligible for all classes except the class with the larger 
durations (class 5). The necessity of such, a correction implies an iterative process for the estimation 
of C2 (one iteration is usually sufficient). 

Based on the parameter estimation procedure discussed in the previous section the following 
parameter estimates were obtained for this data set: 

Η = -0.20, cj = 1.05, h - 0.44, β ~ 0.32 (51) 
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For these parameters the value of k is k — 0.88. The parameters Η and c% were estimated by 
least squares on the power relationship of the mean total deplh of each of the five classes versus 
the mean duration of the class (eq. 47). €2 was then estimated as the average over all classes of 
Far[li(£>,I})]/D2^i'"*"1) (eq. 48). Finally β was estimated with an iterative procedure for best fit 
of the theoretical curve of /»χΔ(1; D) (eq. 49) to the empirical lag one correlation coefficients of all 
classes (see Figure 5). 

The empirical mean and standard deviation of total storm depth as a function of duration 
as well as the theoretical curves from the fitted model are shown in Figure 3. Fig. 4 shows 
the empirical coefficients of variation of the total storm depth which is almost independent of 
duration and the theoretical coefficient of variation which is constant and equal to n/cj/ci = 
0.63, The empirical and theoretical lag one autocorrelation coefficents of hourly rainfall depths 
are shown in Fig. 5 as a function of storm deration. Although deviations between the empirical 
and theoretical values are observed the model captures the general behavior of the empirical data 
and when 90% approximate confidence intervals (computed by using the Fisher-Ζ transformation 
for the autocorrelation coefficient) were positioned around the theoretical values only 1 of the 
5 values was outside the confidence intervals as statistically expected. Note that the empirical 
autocorrelation coefficients were calculated independently of any other estimated or theoretically 
anticipated parameters, by considering all possible pairs (with a fixed lag) of hourly depths located 
in each of the events of a specific class. 

To check the performance of the model we computed the empirical and theoretical mean and 
standard deviation of the hourly rainfall depths for different durations (shown in Fig. 6) and the 
autocorrelation functions for classes A and Β (shown in Fig. 7). It is seen that the scaling model 
performs reasonably well in terms of capturing statistical properties of total and incremental storm 
depths in storms of different durations. The largest departure of the empirical statistics from the 
theoretical ones are found for the standard deviation of storms of duration. 2-3 hours (see, Fig. 6). 

Apparently, other interpretations of the examined data set are possible and other models can 
be used to capture the statistical structure of the data. For example, motivating by Figure 6, one 
can consider that the data point from the smallest duration is anomalous and, for medium and 
long durations, rainfall intensity is independent of duration and rainfall depth does not scale with 
duration. However, the selection and fitting of the scaling model must be considered as a whole, 
i.e., with simultaneous regard to all properties of the total, and incremental storm depths. In that 
respect, the model ability to capture the power function of the variance of the total depth or the 
constant coefficient of variation (Figures 3 and 4), and the increasing with duration autocorrelation 
coefficients (Figures 5 and 7), is worth noting. As it will be seen in the next section it is not easy 
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to find an alternative simple model capable of capturing these second order properties, although 
any model can perform well with first order properties (i.e., expected values). 

It should be noted that the above adopted parameter estimation procedure depends on the 
selection of classes, which raises a source of subjectivity and non-robustness. Another weakness of 
the procedure may be the estimation of the two parameters Η and c\ from only the mean values of 
the total depth, while they also appear in the equations for variance of total and incremental depths, 
and autocorrelation coefficients of the incremental depths. A more robust parameter estimation 
procedure is a feasible future improvement of the model. Finally, It is worth noting that the 
developed model should not be considered as a very detailed and general model that can explain. 
perfectly all properties of the examined data set as weE as of any other data set. The authors 
are well aware of the fact that the rainfall structure exhibits a wide variety of patterns in different 
regions of the world or even in the same region under different weather conditions, thus making it 
impossible to develop a single model applying to all situations. The proposed model is better to 
be viewed as an improved alternative to the simple stationary models, still itself having a simple 
structure (in spite of the somewhat complicated mathematical derivations) and being characterized 
by parsimony of parameters. It is emphasized that the model has only four parameters while other 
detailed models can have even tens of parameters (e.g., the model of Woolhiser and Osborn (1085) 
which has a total of 26 parameters). 

7 Comparison with stationary models 

In this section we derive the statistical properties of total and incremental storm depths for two 
simple stationary models, i.e., models satisfying (12) and demonstrate both analytically and em
pirically that these models are not able to capture important statistical characteristics of storm. 
rainfall that the simple scaling model is able to capture. 

7.1 Derivat ion of s tat is t ical p roper t i e s 

It is easy to see that 

E{h(D,D)} = Elh(D)} = ntD (52) 

^(ΧΔ(ί,Ι})] = £;ΐΧΔ(ι)] = ??1Δ . (53) 

where % =s Ε[ξ(ί,Β)} = Ε[ξ(ί)]. To derive the expressions for the variance and covariance of 
h(D) and X A ( 0 We need to specify functional forms for the autocorrelation function of f(i). The 
following two common models (power law and markovian) are examined: 
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Model 1 : €ξ(τ,Β) = Q ( r ) = Jfe ir-A (54) 

Model 2 : C€(r,X>) = C ^ r ) = A3e~A r (55) 

After algebraic manipulations it can be shown that for model 1 

" - W " " (i-A)('2-A)C'~" ( 5 6> 

ν β Γ [ Χ Δ ( 0 , Β ϊ Γ _ ^ _ Δ . . Α ( 5 7 ) 

ftrA(ro) = i{(m - 1)»-A + (m + 1)2~A] - m2""A (58) 

where 0 < βχ < 1 if k\ > 0 (or 1 < βΐ < 2 if hi < 0), as it becomes apparent from (56) and (54). 
Similarly for model 2 

Var{h(D)] = 2(fc|/^|)(/?2l? - 1 + e~0tD) (59) 

Var{XA(i)} = 2(l|//?f )(/?2Δ - 1 + e~ A A ) (60) 

(1 p - f t A \ 2 
Ρ Ι Δ ( ) 2 ( A A ™ l + r ^ S e < W ' 

Note that in both of the above models the coefficient of variation of the total, storm, depth is 
not constant but is a function of the storm duration. For example, for model 1 the coefficient of 
variation, is (ν /1ϊ ϊ7Ι( ϊ^"^Γ|Ρ™-^Π/%)^~^ 1 ' 2 · This property of the model is in disagreement with 
the empirical evidence (see section δ and Fig. 9) that the coefficieat of variation of total strom 
depths is constant and independent of storm duration. 

In the next section these two models are fitted to the data from the 89 storms described earlier. 

7.2 M o d e l fitting a n d p e r f o r m a n c e e v a l u a t i o n 

Both models have three parameters. Equation (52) can. be used to estimate % using the sample 
of total depths. Equations (58) and (61), when setting m = 1, can be used to estimate β\ and 
/?2, respectively. The empirical lag-one autocorrelation coefficient used in these equations can be 
calculated from the whole sample of hourly data. Finally k\ and h% are estimated from equations 
(57) and (60), respectively, by using the sample of total depths. The following parameters were 
estimated for the above two models: 

Model 1 : f/, = 0.65, ife, = 0.61, βι = 0.51 

Model 2:%= 0.65, k2 = 1-25, β2 = 1.58 (62) 
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Fig. 8 shows the empirical and theoretical mean and standard deviation of the total storm 
depths. It is observed that both stationary models are not able to capture the duration dependent 
structure of these statistics. This is further verified by Pig. 9 which shows the empirical and 
theoretical coefficient of variation of the total storm depths as a function of duration. The empirical 
and theoretical first autocorrelation coefficient of the hourly rainfall depths is shown in Fig. 10 
as a function of duration. As was anaJytically seen from (58) and (61) the autocorrelation of 
hourly rainfall depths is independent of the duration and cannot obtain negative values. As the 
lag increases ρχΔ(τη;Β) is always positive in (61) and if the ranges of βι and k\ are as given in the 
previous subsection, this is also the case for pxA(m;D) in (58). This is in disagreement with the 
empirical observations (see, for example, Fig. 10). 

To further evaluate the model performance based on properties not explicitly used in model 
fitting we evaluated the empirical and theoretical mean and standard deviation of the hourly rainfall 
depths (equations 53, 57, and 60) and autocorrelation functions (equations 58 and 61) for model 
1 and model 2, respectively. These figures together with Figs. 8, 9, and 10 demonstrate the 
superiority of the seeing model and the inability of the stationary models to capture important 
statistical properties of storm rainfall. 

8 Mass curves 

In this section we examiae the concept of normalized mass curves in. reference to the scaling model 
and, also for comparison, in reference to the stationary models. We will see that the stationary 
models are incompatible with this concept» while a, scaling model can be compatible and, thus, can 
provide a means for stochastically generating mass curves for storms with independently generated 
totals. In the next section we will see how the model can be practically applied for the stochastic 
generation of storm hyetographs and, as a result of this application, we will observe that the 
proposed model with only four parameters can be a relatively good representation of the traditional 
mass curves determined as a set of curves each corresponding to a specific probability level. 

The use of dimenaionless mass curves, i.e., normalized rainfall depth h*(t/D) versus normalized 
time t/D, implies that a stochastic function h*(.) can be found such that 

h(t, D) = h*(t/D)h(D, D) (63) 

where h(D, D) is a stochastic variable (the total storm depth) apparently independent of i, whereas 
h*(t/D) is a stochastic function independent of both D and h(D,D) satisfying Λ*(0) = 0 and 
A*(l) = 1. A similar relationship holds for the instantaneous intensity, that is, 

i(i,D) = ("(i/D)l(D) (64) 
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W'liete f*;(;,)vdea©fes'*he;derivati¥e:of:/i*(v)/»td- i(D) ~ h(D,D)/D. Taking k moments in (63) and 
(64) we «Mai irrespectively 

"•B\h^,Mt};= M^WMk}£MD, D)k] (65) 

and 

:imm^i'^MMD^mDt} (66) 

Simila/r;:r#atlensiii|>s:/fa3djfi3t ike/(k,£) second product moments, i.e., 

'f[ftCi lTJl)*f^ (67) 

and 

'.utid&.'.tJkî  above relationships can hold. Con-
sidsr, - foi:^aipfi»^ ;in#dit -.31 for · which 

and 

v:It. %.&mwt0Mp jiafenf -<ij«t;f«f Jb- «2:ήοfaaetieii%A*(t/P|':eaii Mfouad; to -'satisfy. (70). A generalized 
;;2>r^f/0£.4^&:i^ the concept of mass curves is found in 

·.· ·. :'; 0)tt;!-;tlî ;.<Swti,iWy'*;-'.̂ *! :'&ett-.siJ*MJejf. models aieAi»tja.|:oin|>;atiMe witli/aonaalted^mass curves. It 
*%iei^y/J;o:^i^ ^fey:|ii)^orre<|tti«aleBtI|'j-iffe(t,#) is defined by 
/(§3}).-i«d;-at;rfh^ ajaa'dttfatio&Js of a. power type, 

y •••i$$t$0:-&P:W;,- (71) 

y wheift '-M?; :is :#::f*id®|ft:' vifMbie iatiepeadeitt -:©£. -J?-. (or, -efiiivaleirtly,. the -logarithm -of''the total depth 
/•î lliwitfltJ^ ften:^(i,;£?)Jsa selftiittiajr (simple-scaling) process, as defined 
- :i)y (e),;IhV;jjfO©f^!s#b«|«i:s,tad:wiB,be'oiiitted.;As we wll'see; .below, the-.reve.rse is..not- valid in all 
-;;.£asesr i;ei.,:.:te:.t:.aay;scM.ittg:iii©del can satisfy;(S3)-.or (64-)ia a strict.and. complete way. Nevertheless, 
.«qiiatioptfi^ Indeed, for a scaling model. 

.-./.Γ...-''*' 1 9 

the-.reve.rse


E[h(t,D)k) = Dklff+l>E[h(t/D, 1)*] (72) 

while 

E[h(D, D)k] = Dk<H+l>E[h(l, l)k] (73) 

Hence 

Blh(t,J))k} = ^ffflffi Eih(D,D)k] (74) 

which, is consistent with (65) since it results to 

F\h(tin 1^1 
EmtlDf] = ^ ^ f (75) 

which is a function of only t/D. The above equation defines completely the marginal distribution 
of h*(.) at every diHiensioniess time position. Concerning the multivariate distribution and joint 
product moments the situation is more complicated. It can be shown that there exist simple scaling 
models that satisfy (67) and (68) but this is not true for any model. The problem originates from 
the constraint h*(l) ~ 1 along with the requirement for Mi independence of h*(tfD) and h(D, D). 
In Appendix 4 it is proved that the assumption of weak stationarity which was made for reasons of 
simplicity (eq. (11)) is inconsistent with (68). The task to build a model fully consistent with the 
requirement of complete statistical independence,of h*(t/D) and h(D,D) is possible but implies 
mathematical complexity and inflexibility. So we preferred in this study to build a simple and easily 
applicable model by reducing the requirement of complete independence to the that of orthogonality 
of h*(t/D)k and h(DfD)k (for k = 1,2,...). Apparently, the condition of orthogonality is assured 
by (65) which, is valid for any scaling model. As will be shown later (Section 9 and Figures 13-14) 
this compromise is practically negligible. 

9 Generating storm hyetographs 

The scaling model can be applied for generating storm hyetographs at an incremental basis for 
any time step Δ. One can recognize that the correlation structure implied by the scaling model, 
even in the case of the weak stationarity, is somewhat complicated and differs from the structure 
of a typical linear model, i.e., an AEMA(p, q) model. However, the introduction of a nonlinear 
model for the generation is not necessary. Since the consecutive events are isolated and the number 
of generation steps in each event is limited, a proper linear model can be established to carry 
out the generation. Two possible procedures are discussed below both presuming a given storm 
duration D. The first is a typical sequential procedure where the incremental depths X&(i,D) 

20 



are generated one at a time and the total storm depth h(D, D) is the» obtained by summation. 
The second is a disaggregation procedure where a given total storm depth is disaggregated into 
incremental depths. In both cases the scaling model is utilized to determine the parameters of the 
generation model. Denoting X = {X^(l,D),X^(2,D),,..,X^(k,D)]T

1 where k = D / Δ (assumed 
to be an integer) the parameters required are the first moments JCfXj given by (24) and the second 
moments CW[X,X] given by (27) or more specifically by (43). Also required is an assumption 
about the marginal distribution. Here after examination of the data set of this study and in light 
of other studies the two-parameter gamma distribution was adopted. The generation scheme for 
the sequential procedure can be based on 

X = ilV (76) 

where Ω = [ω^] is a k χ k matrix of coefficients and V = [Vi,..., VjJT is a ¥ector of mutually inde
pendent random variables with unit variance and a three- parameter gamma distribution function. 
The parameters of this scheme are determined by the following equations which are easily obtained 

n O r = Cov[X,X] (77) 

u^Em = E[Xi] - 5 > « J 5 [ v a (78) 

«S/*3[K-J = Μ*Δ(*, D)) - Σ^Μ] (79) 

where ^s[T/f] is the third moment of Vi and μ3[Χ&(ί, D)] is the third moment of ΛΔ(* \ D) determined 
analytically from the assumed marginal distribution. The Ω matrix is considered as lower triangular 
and is computed by deconvolution of ΩΩ Τ . In the case of the disaggregation procedure, first one 
might have to generate h(D, D) (if it is not already known). This can. be done by using (20) 
and (21) after assuming a distribution function (a two-parameter gamma distribution was adopted 
here). 

Motivated by the concept of normalized mass curves, the following procedure was adopted for 
the disaggregation: 

1. Apply the sequential procedure as described above to obtain an initial sequence X'&{i, D), i = 
X a β s « « ft) · 

2, Determine a normalized sequence X^(i, D) = X'&(i, D)/S', where S' = ]Cf-=i X&(h D) . This 
sequence determines a realization of a dimensionless mass curve; 
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3. Calculate the final sequence X&(i,D) — X^(i,D)h(D,D). 

Both the above procedures have some sources of inaccuracy. The generated by the sequential 
procedure values of X&{i,D) can be negative, a possibility arising either from the three-parameter 
gamma distribution of Vj or from possibly negative values ω,-j. To avoid this when negative values 
ΧΔ(*Ι D) are generated they can be set zero, a correction consistent with the definition of a storm 
which allows for zero incremental depths. Furthermore, the sum of three-parameter gamma vari
ables implied by (76) theoretically is not gamma distributed, though a good approximation can be 
obtained by the introduction of third moments. Finally, a third source of inaccuracy is expected in 
the case of the disaggregation procedure due to the non-complete independence of the total depth 
and normalized mass curve discussed in Section 8. To delimit such an effect during the execution 
of the generation we can reject sequences X'A(i,D) leading to a ratio h(D,D)/S' quite far from 
unity. 

By using the parameter set of Section 6 we applied both the above procedures for generat
ing 10,000 synthetic hyetographs in a hourly basis for a storm of duration of 20 hours. A series 
of comparisons between theoretical values of several statistics with the corresponding values ob
tained by simulation were made. The examined statistics are first, second and third order marginal 
moments, marginal distributions, and autocorrelation coefficients of hourly depths. All the com
parisons (which are not presented here, expect for the following three examples) had satisfactory 
results. Originating from this exercise, Figure 13 indicates the degree of inaccuracy due to the 
first two of the above discussed sources of inaccuracy in reproducing the distribution of the hourly 
depths. It is shown that the deviation of the simulated frequency curves from the theoretical ones 
are confined to values of Xi(iO,2G) < 0.5 mm. Eemarkable are the smaller departures of the 
disaggregation model simulated curves as compared with the ones of the sequential model. Fig
ure 14 shows that both (sequential and disaggregation) procedures perform weE in reproducing 
the covariance structure of hourly depths as theoretically determined by the scaling model. Note 
that Figure 14(b) corresponding to the disaggregation procedere does not differ in performance 
from 14(a) corresponding to the sequential procedure. This means that the potentially expected 
inaccuracy due to the previously discussed violation of the complete independence of h*(t/D) and 
h(Di D) (we only satisfied orthogonality) is not important and, consequently, this weakness of the 
model in being fully compatible with mass curves is not substantial. 

Finally, Figure 15 referring to the normalized mass curves was constructed from hyetographs 
of the so called (after Huff, 1967) second quartiie group (i.e. hyetographs having their the heaviest 
part in the second quarter of their duration). The curves presented are similar and were drawn with 
the same method proposed by Huff (1.967) and correspond to the 50% (median.) as well as 10% and 
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90% probability levels. Three groups of curves appear in Figure 15. First are the synthetic curves 

computed at the step 2 of the disaggregation procedure from that portion of the hyetographs that 

belong to the second quartile group. Second are the curves computed from the historical data of 

this study. Specifically, from the total historical sample, 19 storms of a total of 75 (about 1/4) were 

found to belong to the second quartile type (note that the storms of class 1, i.e., those of duration 

less than 4 h, were discarded since it was not possible to identify the quartile they belong to). Due 

to the lack of a sufficient sample size of historical data in the month of April, we plotted also a third 

group of curves from historical data of 140 second quartile storms recorded at the same station 

Chalara but for all months of the year. The third group of curves originates from another study 

(Stylianidou, 1985). The comparison plot shows that all three synthetic and historical groups of 

curves are very close to each other without any remarkable deviation (perhaps, except for the lower 

part of the 90% synthetic curve). Thus Figure 15 gives a good indication that the scaling model 

with as few as four parameters can represent or summarize effectively the statistical characteristics 

of a. storm population otherwise given by a family of curves. Additionally, note that the carves of 

Figure 15 are based on the assumption of the weak stationarity, i.e., a "mean" mass curve which 

is a straight line of uniform mean intensity. However, as observed from Figure 15, the synthetic 

curves (even the median curve) have nonlinear shape in accordance with the historical curves. To 

understand this one must consider that the curves correspond to a portion of the totally generated 

hyetographs conditionally selected so as to have the main slope located at the second quarter of 

their duration. 

It must be emphasized that the above model is not a complete rainfall generator but rather is 

a generator of hyetographs of individual, storms. However, it can be easily extended to a complete 

generator by appending a component for the storm and interarrival time durations. 

10 Concluding remarks 

The developed simple scaling model for the temporal structure of storm rainfall has a simple 

mathematical structure with only four parameters but it explains reasonably well the statistical 

properties of the examined historical data providing thus an efficient parametrization of storms of 

varying durations and total depths. In addition, it is consistent with, and provides a theoretical 

basis for, the concept of normalized mass curves. 

It was found that the scaling model is superior to the examined stationary models, which 

were unable to capture important statistical properties of storm rainfall and were inconsistent 

with the concept of normalized mass curves. Furthermore, the scaling model provides a stochastic 

nondimensionalization approach which is apparently superior to the popular use of mass curves, 
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becaise of the contraction in a few parameters of all the information otherwise given by a family of 
curves and the implication of a stochastic approach to storm hyetograpli generation, which is not 
possible by the traditional method of mass curves. 

The proposed model, when combined with a stochastic process of the storm arrivals (e.g. a 
Poisson process) and a set of distribution functions for the rainfall duration and Intensity can give 
a complete rainfall generator at a point or on an areal basis. Moreover, merely the scaling model 
can be useful ia hydrologic applications, such as in evaluation of design storms, as an evolution of 
the concept of mass carves. 

Different configurations of the model can be obtained by using e.g. different forms of the 
covariance function of the rainfall intensity. In addition, the weak stationarity condition, used 
here as a convenient assumption, is not a necessary structural constraint and it can be removed 
or substituted in cases where the historical data exhibit nonstationarities within each event. A 
more robust parameter estimation technique and model evaluation at time scales different than the 
hourly is a feasible future improvement of the model. 
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••Lei lis ceasieer'tlie'|l;,IJ;*eeond product .mpment-:of &(i, D) 

•fit.' tt% 

• \·-ί/0;: :f . Jo 
' • • f t i . ; ' jh fM.- H2 . 

·= :/:··"···:/::'Ι:—Γ ^{f(*r.-D)--;^*,i?)i(iit^)---i(feti>)} 
··· Λ ' . ,/s. Jo·'. · Jo; •••••• 

d$i · • · d$k dqi * * · dqe (80) 

Similarly, : 

: ;·.. '·.-Miti : .· ;'/Λ*ί· :'/λ*2 -./Asia ' ·· · · 

"·' · ... A;1- JQ;'.-'--JU.: ' . JQ. .: · . . . · · · · . · 
d$\·'·'d$k dqi ><·-'dqt 

. . . . . . ;^.;/.f ^.Arm- •>.·./·.·· ^<i(^i,AZ3)r:vi(AafctAJ0)i{A^i,AJ?)^,..e(A^Al?.)}A^/ 

. - · . " . ' . · ; : *rq' .:.Λ'.;Λ;:;. .;Λ)· ' "': - ·' ' ' ' ' · · ' · · 
da\·*· άσ^άφι-·'άφι (81) 

.:'tfteie;th^la,sf:«^^ Acr,* and :?,*· = ,Α#ί·: Note that this, last 
:··.0qad̂ ty:;'n̂ u'iild':;'ί*έ><ί.Ĵ W -̂ii'-v̂ Eiy';.pjcojdtict.··mptiieat: cbntalne'd. .ditac delta terms. '.TMs/can be :seen. by 
;.eOMii^Sg.*i^ that if that term had· the 
: ίθ ί» :ff5^^ «p)<& s= /(,«o) while .the. term, obtained 
:i5y;s»b»titttt jjj f.{Xa)6{X&-'·^$Q)X4<T — A/(so) 5̂  /(«o)< 
. ·.. · la<Me#.;af |§|:th«%l;o«:e<|Eaiity: can: fe'e.-.fttfther. 'written as 

• -:/ ^fftlAClSl^CAia.Ai)^}· 

,· :Λ:ψ-..χΜ*Μ?ψ$*:<• • ψ- / ? . : . tiSmxm;fXD). • ·ί(λβΓ*» AJ9)f(A^, AD)·· · ·£(λ·0*AD)} f . : : .« Jo vo Jo ' 
άσ\ ·«· d&i. 4ψι · ·' άφι (82) 

• .; ..::iy';&ittpitittgu(Si)/aiid:(S2):we.oMaiii 

; ; [ψ^ψψ*^Μφ,ξΜί^A#i{Afe, M)J%-= 'E.{k(tii-l))kh(t3,£>)<} (88) 

•̂•TMs: »siit;
:ca.a. 1»:.sieilaflf :

:·tttended'to -the product ifcwiments· .of. any: order and -'thus we coaclti.de· 
*;.ΐ!ι?Λ ·' . · :' : ",· ·' ·. ; ·.. '" · : . · ' 

• ..··. : ffitffii&itfW+VhiXiiXD)} · · (84) 
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:.:12:'.: ,&ρρφpiii^ Ji^ '̂CieyaKafieer^fcttelMin of tnctenaeiit.at depths 
^&oia4lie:

:UefiiiM©ii;o£^4{ir.I?):in"(2): we obtain' 
« • Λ Λ-j Λ, ' ««β™. 

: / ' ^ | fe{fe l?) I 2 l | :^ :/·· / · •••^[i{%,^)i(^,i?ldfidi2 · 
·:'·:·';.·· i j i - i ) i i(«'-l)2i " J 

: ' · riA . At A 
·;·:. *,· / · ' 7 iZ€<ii--*aii?)<itid*3 

• · . . : ·· ·· · ν(ί-ι)Δ 4(*--1)Δ ' ' ' 

/
'Δ 
-Δ 

• ' ' · /Δ ·. · 
·.: ' =; ::27 ·Λί(ΐ·;·1))(·Λ·-.ί?)ίίτ (85) 

Jo 
,;wli«f#:li«::lafif;:k<itoaf:«<|ialitji results;fronilsiiapliicatwa:of the douMe.in.tegr&i:fty .setting τ = <χ —ί2 
*:aai4©b:«»^ — rjifr with:r varying 'front — Δ : to Δ, 
:*$%#ί#%*Α#1^ is air-even. fnaetioa of r contaning' 
.'-ji0';C»CK#Mtf#;i#^ in-.the above.expressioa we obtain' 
:;; ;.^0;φρ0W^nmn- ' . (86) 
'. :where#«?. ;Δ^:&#ϊΛ ̂ (#f|f is -as deiaM ί»,.(2β'|.;-.-|'ίθΜ Ae above the expression (.25) caa -be easily 
:-.obtained^ . . : '.·; · '· · · " · · 

. . : ' . . . ' - : : " . . ; ••r-.jQ.. '•'/*&&• · . · ·· ' ' · ' : ·' / ' ' : 

:'·: · ' · · · : · '·•;· ·;.:·^:ν:·:/··ν··· %{τ·Λ)(τ-(«*•*1)Δ)<# 

·"· . · - .· : :: ' · · · ·: ,"::'"·>{#»;+'ί)Δ 
••/••'W.f.--'\ :- .iie(r;Z?)(-(frt- + -i)A---r)<ir (87) 

^^Mf^0^:M^^^Mvm^^) *Ptsetti.ttgJ;'=S.*4./JP'WS obtain 

•\\' ' '^;-i^.<m;;^*_;,j^^**^m|«)· -. - . * (88) 

• ̂ ;wis«fe#(Aj^ foivtfae'COvari&nee function, of Χ(ΐ, Δ) is'then easily 



13 Appendix 3: Incompatibility of stationary models with scal
ing properties 

The expected value of the storm depth in any stationary model is given by 

E[h(D,D)] = %D (89) 

where ηχ is the mean instantaneous intensity. Let us examine the possibility that the second 
marginal moment is given by a power function of D, i.e., 

ϋ[Λ(£>,Ζ>)2] = %£* (90) 

where % and θ are constants, la the case of a stationary model we have 
rD rD fD rD 

E{h{D,Df}= / £[£(ίι)ί(ί3)]ΛιΛ2 = / / Βξ(Η - h)dhdh (91) 
Jo Jo Jo Jo 

where Μξ(.) is the second product momexit for the instantaueous intensity £(i) (which is not a 
function of D). The last double integral can be simplified (e.g., as in Papoulis, 1.965, p. 325), and 
then equated to (90) to give 

2 / ReMID - τ)άτ = r^D6 (92) 
Jo 

Taking derivative of the above equation with respect to D we get 

2 / R*(r)dr = r^D9"1 ' (93) 
Jo 

Taking once more derivatives and substituting D with r we obtain the form of Εξ(τ), that is, 

Λξ(τ) = M^Lilr*-*, r > 0 (94) 

Besides, the variance of the storm depth is 

Var[h(D, D)] = mDe - t$D2 = %
2D2[(W%2) i^2 - 1] (95) 

Now we can observe that the case where θ > 2 is impossible since it implies that Var[h(D, D)] 
would be negative for some large D and, also would yield a correlation function of the instantaneous 
intensity increasing with lag r, which is unreasonable. Likewise, the case where θ < 2 is also 
impossible since it implies a negative Var[h(D,D)] for some small D (though in this case we 
don't have any problem with the autocorrelation function). Finally, the only possibility with 
mathematical meaning is the case where 0 = 2. But, as results from (94) in that case R%{.) is 
constant and, consequently, the instantaneous intensity would be constant with zero variance, a 
case with no interest or physical meaning. 

Now let us examine the compatibility of the stationary model with mass curves in the general 
case. From (65) for k = 2 we get 
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:E\b0^f\^E^fDf\E\h{D,Df} ' (96) 

^Wete^t:liat:tlie:left-liaa<i;^Me of. the above equation/in the case of a, stationary'model, is in fact a 
Jfu'nction^of-only |-i:T,hus'denting..^(i) = E[h{t,D)1) and y»(A) = E[h%X)2} we· can rewrite (96) as 

φ{λΒ)^ψ^λ)φ(Β) ' (97) 

;and since 

^(A|il5);.=;.^(A^(|i©);=;^(A)^(/i)^(i)) (98) 

-.while At 'the; staie ..tint© : 

- ,φ(Χββ)-^ψ^4φ^ - ' (99) 

. we:cottclitile;:tiiaif ''.". 

;;. ' ••. ;.^λ|ί);^ :;^|Α)|| |ί)^ ·· · .. (100) 

:Thas: 

• - ·#>λ);β'-λ*· Λ (101) 

;:,fer/:soiie:;C#'iisli,ttt.: J:v.;:Pirtfteriaere,''With th^'Siihstittttipn· of the above Into :(9?) and after setting 
'•&^:Xf:3'm&:%ib'-\. . '. .. 'V. . 

. . 4 ( © | = ' f l # # :.': (102) 

Μ%&έΛ%^-:φΜ%^ί^%:^[/^νΐ. The: above..equation is*-equivalent to: (90)· ami thus it· cannot.be 
;.vaMC#th>tlir^ which:'.was described-Above. We conclude that any 
: 'Statioeiffy. ie.oi^iis.i»<»ia|>aiifeie · with -the .concept: of normalized mass curves. 

ν 14 -: ·;.:- :#|ρρ#βΛ&·:#ί: ;:lB«»iii|i'fttibilifcf'.'<jf-.t lie. iadepfea<ieiice;-:of - mor mal-
".·;. χ ?:tm$^§^::$m^-4m0h^ wilii [ίΜ». wealc* slatieaaaty'-coiiditioii 

/Slafttiif '^w|ti.J.|ft'cliii©ftf Mailon.' 
• : ' .ft'' '" · ···' 
. '·.· \ ;f^*(e)i»:=.l : ' ' ·' ·· ' (103) 
. · · · V0'·.'.';. ·: ':" ' ;"" . . ' · ' ' 

; written.; ittvfte:;fbfnj : ··. ' · · ' . · 

" · ; ·/; i*(«)iiti:;+.' f::mm)ihi; - 1 (104) 
: v-0; ·. ·· -ν' Λ;·· .::' '· · · . 
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'•vifoet&S isvm::^Mtt^f/-nMab^.(fi"<. β • < l;)v'we'obtain that 

= 7 £($*·(*))<*« τ / Ε[Γ(«)}Λ (105) 

^Το; ί̂©νβ;:Λβ:̂ *1>:#¥β;€:<|«»|1ο;ιι :ianltii>iy {;lM);;S«cc@ssiwely,by the:first-.&&d second Itttegrai^erms of 
lts;lfeft^tem<#,Sd© '̂:^ .aad' take;. expected /values.': It is easy-

;;to^sheW";il4t/i)|ft3tiet^(f§S)^ is imcoftsistetit ;wii'hVthe fallowing- «oactifrettfr equations 

.;tAp*«Jl§-:»e;''8^ '^*(.) is;an, 'arbitrary function.1 Indeed, (107) implies that (see 
·.·'mu&gom:::casesΜ:;A|peaii,i; 2-and :3) 

; : ·•/· 7 ; J |0(*) i^Jiai«&:= 2-/.;<f (r),(i~ r)dt- .' (108) 
·- · .. Jo:· Jo;': ·;;·.·· Λ · ·.··;; ' · ·;' · · · · · : Jo - ' · · · · · 

^- :::ίφ''^^φ0^ψ1δ ^^4 ^ φ%τ%\-~6*τ)άτ-- (109) 

ΦΗ^#*:φϊΜ'ί(, '••.. #(r;)(i ~:§-^~ τ)έτ s= : 4 0 -1·/2) (lio). 

:Φ1»8 |H)S|;1»cflia*S: 

ρΊ:~£; 

Ιό 
•iJi&dvMfei^ ;·,«ίΛ--. respect ;i©-# 

ν '•'•§]ψ(^^~φ'/:/ίψ.ξτ)ατ^4 ' (in) 
· . : ' . J o ' • • ; . . : • . . • / • • • ' . : y y J & / - ':•'•'":'"..•. • ' 

• ·.: '\ί:''ψ^*'βτ^4 Λ' . · (112) 
• · . ' Λ-5 ;.',· .·;·: ,.;. . ;.· ;· · ' · 
;:Affat,eatly::;tJi€ri- is i:tt6;fttii;Ct»n:;^*(i):;cottsisteM;;Witll· 'the.-:above equation, (except .for'· the case' 
;.#*(t* :)·'·'*·· Sf»; 3 S p ^ t ^ kave-'coaettrreiitly both properties -(106) a&d .(107). At 
-;th«|-;s8^;iii^ (13).-(14)) along..witit '(M):implm that 

· ; · · ·: · · ': ;:; :^&^^ (1 1 3) . 

: :φnJdyIf.f*(l/;0); attd :';f|£?)' ::a*e:;hy potliesized · ίnd-epeiiden-t, then 

i; · : · , · · ^ ( £ 1 ^ + · φ · ' ' ' (114) 
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wMcfe;is;eqMyMsttt:;M^|li7) With; φ*(ύ) == #(»)/:(c2-*4i c\). We conclude that either ξ*(ί]Β) and 
t(J?) ;Αββ14;;η^ {bat only .orthogonal)··.or the. covatiance function 
i?^iiii2i©);-:-sfe^Mi'-i#t:'feei'.·φηβί<ίβΓ©ιί.·.3δ:-a-function of (fil. — ί2}/£?). ; If :©ae ,:want-s to-keep the 
co:ftiplete^inttfgerMf5iee-il.isap.ptiom te/sfae. has-: to adopt -a-complicated-covari-ance function which' 
aMs-:fio.ttsi<iej**l>ie' «ftn.-pjexity -to the, Model. 



··;·: Dotation (h) 

•IriWrarrival;.time.(h) 

• 'KTotal /depth. (mm.) 

Mem intensity · (mm/k) :· 

.".•Hourly, depth '(mm) 

-Min" 

2 

•10 

• 0.3 

0.1 

0Λ 

; Max' 

45 

470 

·· .38:9 

9 KK 

. 8.2 

Mean 

11.8 

101.3 

7.5 

0.69 

0.64 

Std. 

8.9 · 

106.2·' 

7.7 

0.48 

0.93 

:·^^fe·.'·li;;.-0ieaeral: .characteristics of ί he..W: storms·used;in:the analysis. 

.•v :;<ta»:;:;:;; 

\ : ' i ••;••• 

' : • : $ • : 

'M\. 

: ' Λ · • · , • ' • ' 

•y.\i$-'-'..:' 

ΙΑ£(%$)-: 

"S^M): 

••.•.:rfot«l:.'. 

.Umin 

2 

4. 

8 

12 

,,19 

4 

·. 12 

2 

·. -Cftae 

3 

7 

11 

.18 

.45 

11 

·· 45 

45 

..£.. 
,, 2.2 , 

; 5,4 

9.7 

14.2 .· 

27.. 1 

' 7.4 

.20,3:. 

11.8 

«J?·/ 

0.4 

Xo Λ -

LI 

.1.9· 

' 6.2 

2.4 

' 7.9' 

8.9 

'No...of 
• events 

14 

20 

19 

19 

17 

30 

36 

89 

' Total •&&. --of- ! 

hourly depths-

'."''fa. ·.··''· 
31 

108 

184 

269 

461 

292 

730 

1.053 

/.stable 2r-y61a|sslfiiestf^ The .storms in each class were used 
:to.'-;e8timafevt^ " . · 

« ^ Φ » ^ Κ * ^ ί ΐ ί ^ ' * : : 



Figure 1: Definition of terms. 

Figure 2: Schematic for explanation of scaling. 

Figure 8: Scaling model: empirical and theoretical means (squares and solid line, respectively) and 
standard deviations (triangles and dotted line, respectively) of total storm depths as a fanction of 
storm duration (log-log plot). 

Figure 4: Scaling model: empirical (squares) and theoretical (solid line) coefficient of variation of 
total, storm depths as a function of duration, 

Figure 5: Scaling model: empirical (squares) and theoretical (solid line) first autocorrelation coeffi
cient of hourly rainfall depths as a function of duration. Dotted lines represent the 90% approximate 
confidence limits. 

Figure 6: Scaling model: empirical and theoretical mean (squares and solid line, respectively) and 
standard deviation (triangles and dotted Mae, respectively) of hourly rainfall depths as a function 
of duration. 

Figure 7: Scaling model: empirical and theoretical autocorrelation function of hourly rainfall depths 
as a function of duration. Squares and thin line represent small durations (Ah < D < Uh and 
D = ?A, respectively), while triangles and thick lines represent large durations (12Λ < D < 45ft 
and D = 20A, respectively). 

Figure 8: Stationary models: empirical and theoretical means (squares and dashed line, respec
tively) and standard deviations (triangles and dotted line for model 1, solid line for model 2, 
respectively) of total storm depths as a function of storm duration (log-log plot). 

Figure 9: Stationary models: empirical (squares) and theoretical (dotted line for model 1, solid line 
for model 2) coefficient of variation of total storm, depths as a function of duration. 

Figure 10: Stationary models: empirical (squares) and theoretical (solid line) first autocorrelation 
coefficient of hourly rainfall depths as a function of duration. Dotted lines represent the 90% 
approximate confidence limits. 

Figure 11: Stationary models: empirical and theoretical mean (squares and dashed line) and stan
dard deviation (triangles and dotted line for model 1, solid line for model 2, respectively) of hourly 
rainfall depths as a function of duration. 

Figure 12: Stationary models: empirical and theoretical autocorrelation function of hourly rain
fall depths as a function of duration. Squares and triangles represent empirical values for small 
(Ah < D < lift) and large durations (12/i < D < 45Λ) respectively, while thick and thin lines 
represent models 1 and 2, respectively (same for all durations). 



-figiare:l3::::1?fce<ir€tic:a,I;;(soIid..liiie)̂ amd, simulated (triangles) distribution fn..nctien';pf the incremen-
tal^dffrtb/S^ti^^ iof.a storm with duration :-20:'h-rjs). The -simulated 

:.<jUstri.feutio'tt'';i$;o.litai#W-̂ a;);'by - t-lie .sequential/model :and '(b) by the disaggregation- model, 

;:;f|gafe 1^ί ;3ΓΪ^Λί||;:|ι^#:Μιΐ€8| aa:d--;siiaml*tecl:;{i>oiatŝ  eofrelatioa- straetmre-.of-the incremental · 
• ;fB«ataiE|y);-3ip|iî #;:?teP:'ί#̂ β|ΐί«βΐ::pf : l̂imfal|eii- '.2©;:&rs.' :Th6---simmlated. structure is-obtained; (a) by: the-' 
. -;##gaettfiai,- inpiil; a»§· -(b|:vbj>|lie,di«|l«g^ioni:ino<iel, 

'••J^ut e: . i&/^ -ciifves ©C second .•qnartile storms 
;M:,Gliitt»;itittftiii- ; ^ * 0 ( ^ · | % :i0%^W%:[(Am0mi) :-«n.d/.iMI% - probability levels-·' Syalhetic /curves 
,f t | ici / /se^ --saaiple^by -using the' disaggregation procedure. 
.[ιϊΗ^^^^^ν^ΐήί/ί^ρ0ί!ΐί- Mrves^orfcesfOad -to the -records of: April;(cireles):-aaKi 'all months of 
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