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Unit hydrograph identi f icat ion by the parametric approach Is  based 

on the assumption o f  a proper analytical f o rm  f o r  i t s  shape, with 

a l imited number o f  parameters. This paper p resen t s  various 

suitable analyt ical  fo rms  f o r  t he  instantaneous un i t  hydrograph, 

originated f r om known probabil ity density functions o r  transforma- 

tions o f  them. Analytical expresslons f o r  the moments o f  area o f  

these forms, versus t he i r  definit ion parameters a re  theoretically 

derived. The relat ion between moments and specif ic shape charac- 

t e r i s t i c s  a re  also examined. Two d i f f e ren t  methods o f  parameter 

est imation a r e  studied, the f i r s t  being the well-known method o f  

moments, whlle the second i s  based on the minimization o f  the In- 

tegra l  e r r o r  between derived and recorded f lood hydrographs. The 

above t a s k s  a r e  i l l us t ra ted  wi th application examples or ig inated 

f rom case studies in catchments o f  Greece. 

Key words : Unit hydrograph, instantaneous unit  hydrograph, Iden- 

tif ication, probabi l i ty  density functlon, probabi l i ty  d is t r ibut ion 

funct lon,  method o f  moments, optimization. 

i. IHTRODUCTIOH 

Common m a t h e m a t i c a l  a p p r o a c h e s  t o  mode l  synthesis, i n c l u d e :  

( I )  d i s c r e t i z a t i o n  t e c h n i q u e s ,  i.e. d e t e r m i n a t i o n  o f  t h e  mode l  i n  
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a f i n i t e  number of d iscre te  points,  and (2) parametr ic  tech-  

niques,  i.e. assumption of a proper  analyt ica l  form f o r  t h e  

model, w i t h  a limited number of parameters, and estimation of 

these parameters by  means of known res t r ic t ions  and/or  t h e  op- 

timization of an  objective function. 

Both the  above approaches have been used for  the  unit  hydro- 

graph (UH)  synthesis. The first has  become the  most common method 

and is based on l inear  analysis (matrix inversion technique - 
O t D o n n e l l  [i9861). The second was founded by N a s h  [i959], who 

showed t h a t  t h e  moments of a r e a  of t h e  instantaneous u n i t  

hydrograph ( I U H )  can be easily derived from recorded hydrographs 

and simultaneous r a in f a l l  records.  Nash also s tudied  severa l  

suitable two-parameter analytical forms to represent  t he  shape of 

I U H ,  t h e  most common being the gamma-PDF form. The parametric ap- 

proach has  also been used i n  synthetic un i t  hydrograph deriva-  

tions, w i t h  most common analytical forms t h e  t r i angu la r  and t h e  

gamma-PDF. 

The f i r s t  approach is generally considered a s  more accurate,  

because of t h e  considerable number of points defining UH, while 

t h e  second uses a very limited number of parameters (2 o r  3) f o r  

t he  UH shape representation. In fact  t h e  inaccuracies due to t he  

limited number of parameters, i n  the  parametric approach, a r e  

minor, when compared with t he  uncertaint ies  of t h e  whole process 

of UH der iva t ion  from recorded data,  which a r e  met i n  the  a rea l  

r a i n f a l l  estimation, t h e  establishment of t h e  stage-discharge 

relat ionship,  t he  baseflow separation, and,  f ina l ly ,  t h e  separa -  

tion and t h e  time distr ibut ion of the  ra in fa l l  losses. 



Moreover, i t  is often very d i f f i cu l t  o r  impossible to f i n d  

recorded flood events originated from e n t i r e l y  uniform, over t h e  

catchment, r a i n f a l l ;  f ina l ly ,  t h e  assumption of t h e  catchment 

l i n e a r i t y  i s  not s t r i c t l y  valid, and t h e  catchment response is 

not unique. Because of t h e  above uncer ta in t ies  i t  is very common 

pract ice i n  t h e  formation of design flood hydrograph-s, to con- 

s i d e r  a u n i t  hydrograph more severe t h a n  t h e  der ived from flow 

records  (e.g. by reduct ion  of t h e  time t o  peak by 2 / 3 ,  see 

Sutclif f e Ci978)). 

The above discussion indicates t h a t  t h e  parametr ic  method, 

though seems less accurate  t h a n  t h e  s t a n d a r d  l inea r  method, can 

be a good approximation to t h e  un i t  hydrograph ident i f icat ion on 

rea l  world catchments, since t h e  inaccuracies  introduced by t h e  

use of limited number of parameters a r e  minor. Moreover t h e  

parametr ic  method h a s  some advantages, to be discussed later.  

Problems associated with t h e  application of t h e  parametric 

approach a r e  t h e  selection of t h e  proper  analyt ical  form for  t h e  

UH representat ion,  and, mainly, t h e  method f o r  t h e  parameter es- 

timation. These problems a r e  systematically examined throughout 

t h i s  s tudy.  

2. DEFIHITIONS AHD GEEERAL RELATIOHS 

Let U D ( t )  be t h e  u n i t  hydrograph f o r  a net ra infal l  of dura-  

t ion D (DUH). The instantaneous un i t  hydrograph Uo(t) corresponds 

to t h e  case where D = 0. We denote by Vo t h e  sur face  runoff 

volume, corresponding to t h e  u n i t  r a in fa l l  wlth depth  Ho = 10 mm, 

t h a t  is 



where TD and To a r e  large enough time intervals ,  r e f e r r e d  to  a s  

flood dura t ions  (theoretically a r e  r i g h t  bounds f o r  t h e  functions 

UD(t) and Uo(t), respectively, and can be equal to oo), and A . t h e  

catchment a rea .  Now we define t h e  function 

which w i l l  be r e fe r red  to a s  s t a n d a r d i z e d  i n s t a n t a n e o u s  u n i t  

h y d r o g r a p h  (SIUH); i t  is a posi t ive funct ion ,  w i t h  dimension 

(time)-l, and  h a s  t h e  property 

In genera 1 u(t)  is a single pea .Red function. The time to 

peak, tp ,  and t h e  peak value, up  u(tp), a r e  main charac ter i s -  

t ics  of SIUH. 

Fur thermore  let SD(t) be t h e  S-curve (DSC) derived from t h e  

DUH, which corresponds to  r a i n f a l l  intensi ty  equal to  HO/D, and 

i n f i n i t e  dura t ion .  The DSC is related to DUH by 

and t o  I U H  by 

Addi t iona l ly  we define the  funct ion  
I 



which is dimensionless, independent of the  durat ion D, and has 

the  propert ies  

T h i s  function will be referred t o  a s  s t a n d a r d i z e d  S-curve (SSC). 

SSC and SIUH a r e  related by 

Finally let  Un be the  n-th central moment of area  of the  

function u(t), Urn  the  n-th moment about t h e  origin, and U n n  t he  

n-th moment about the  r i g h t  bound To ( if  exists).  These a r e  

defined by 

To 
U', = f t" U ( t )  dt 

0 



where t u  = Uri  i s  t h e  dis tance of t h e  center  of area of SIUH from 

t h e  or igin,  known a s  l ag  t i m e .  (Note t h e  term ( T O - t )  i n  (ii), 

which is opposite to t h e  usual). 

Each family of moments can theoretically determine t h e  com- 

plete shape  of SIUH, when i n f i n i t e  number of them is known. In 

r e a l i t y ,  only a limited number of them can be estimated; 

nevertheless this limited number keeps s u b s t a n t i a l  information 

about  t h e  shape, which is very helpful f o r  t h e  IUH ident i f ica-  

t i o n .  

Given a specific analytical  form of SIUH, i t  is an  easy mat- 

t e r  to  de r ive  t h e  DUH fo r  whichever duration D. This can be done 

by subsequent application of equations (7), (5) and  (3). 

3. AHALYTICAL FORMS FOR THE SIUH REPRESEHTATIOH 

The functions u(t) and s(t) a r e  mathematically s imi la r  to  

t h e  famil ies  of p robab i l i ty  dens i ty  func t ions  (PDFs) and  d is -  

t r i b u t i o n  functions (CDFs). Those single-peaked PDFs which a r e  

l e f t  bounded by zero a r e  proper f o r  t h e  representat ion of t h e  

SIUH. Normally they should have a r i g h t  bound, too, but  this is 

not necessarily considered a s  a s t r i c t  theore t i ca l  requi rement ,  

s ince a l l  PDFs tend t o  zero f o r  large values of t h e i r  argument. 

Eight pa r t i cu la r  analytical  forms have been systematically 

examined i n  t h i s  study. All of them a r e  or iginated from known 

probabi l i ty  denslty functions (PDFs), or  transformations of them. 

They have two o r  three parameters and a r e  left-bounded by zero o r  

double-bounded. These forms a r e  described below; i n  t h e i r  analy- 

t i ca l  expressions, generally, a denotes a scale parameter ,  while 



b a n d  c denote shape  parameters. The expressions of t h e i r  main 

f e a t u r e s  (theoretically derived i n  t h e  present s tudy,  except t h e  

ones of well Known functions) a r e  summarized i n  Tables i and 2. 

1. Double t r i a n g u l a r  (DT) (double-bounded / two-parameter) 

In f ac t  this form is a single t r i a n g l e  consis t ing of two 

successive t r i a n g u l a r  PDFs ( thus  t h e  c h a r a c t e r i z a t i o n  "doublen), 

t h e  f i r s t  w i t h  a  negative skewness and t h e  second w i t h  a  positive 

one. The SIUH is expressed by 

The double-triangular form has  been widely used f o r  t h e  expres- 

sion of synthe t ic  u n i t  hydrographs ( for  example see S u t c l i f  f e 

[1978]), but  not so much f o r  t h e  IUH itself .  

2. Gamma (r] (left-bounded / two-parameter) 

T h i s  form h a s  been suggested by Nash [1959], and i t  is t h e  

most common f o r  t h e  IUH analytical  expression, e i t h e r  synthet ic  

o r  from recorded data .  I t s  analytical  expression is 



3. Log-Normal ( L N )  (lef t-bounded / two-parameter)  

T h i s  form was also suggested by Nash [1959]; its analyt ical  

express lon  is 

-1n2( t / a )  
1  

u ( t )  = e b I t 2 0  

t  (nb)  i / 2  

4. Weibull (W) (lef t-bounded / two-parameter)  

Originat ing from t h e  Weibull d i s t r i b u t i o n  func t ion  we get  

t h e  following form f o r  SSC 

5. Beta (B) (double-bounded / t h ree -pa ramete r )  

Beta dens i ty  funct ion w i t h  a n  e x t r a  scale parameter a = TO, 

can  glve a  nice form f o r  t h e  SIUH representa t ion ,  t h a t  is 

6. Double-Power (DP) (double-bounded / t h ree -pa ramete r )  

T h i s  term is used to describe t h e  following three-parameter  

f u n c t i o n  

The slmpliclty of t h e  SSC analytical  expresslon, a s  well a s  t h e  

one of SIUH (see Table 2) is remarkable. Th i s  form h a s  been ex- 

t r a c t e d  from a s lmllar  CDF suggested by Kumaraswamy [i980]. 



7 .  Shif ted  Log-Pearson I11 (SLP)  (lef t-bounded / three-parameter )  

The usual  logarithmic transformation, (x = l n t )  applied to  

t h e  Pearson type I11 d is t r ibut ion ,  

is not proper  f o r  t h e  SIUH expression, since t = ex ranges i n  

[eA, 09).  In o r d e r  to decrease t h e  lower bound to zero, we apply 

t h e  following s h i f t e d  logarithmic t ransformation 

and we get 

where a = eA is a  scale parameter. 

8. Minus Log-Pearson I11 (MLP] (double-bounded / three-parameter )  

T h i s  form is originated,  also, from t h e  Pearson type I11 

d l s t r lbu t ion ,  by applylng the  minus logarithmic t ransformat ion ,  

i.e. x = -lnt, which gives 

where a = eA is a  scale parameter. 



TABLE 1 t TWO-PARAWETER IUH ANALYTICAL FORMS 

it andard- 
I zed 
1 UH 
2nd 
i-curve 

L20 
a > O  : scale parameter 
~ > 1  : shape parameter 

L -ranse 
'para- 
net ers 

?as time 

Xt<a 
i > O  : scale parameter 
><l : shape parameter 

"LO 
i > O  : scale parameter 
>> 1 : shape parameter 

.,o 
i > O  : scale parameter 
>> 0 : shape parcune t er 

Lu = Us = rr(l+l/b) 

U2 - u; -'u; 
U, = u; - 3u;u; + 2u; 

where 

U; - a2r(1+2/b) 
U; = anr<1+3/b) 

In gewral 

U0 = anr( 1 +n/ b) 

Moments 
3f area 

'n 

and/or 

U:, 
and/or 
u; 

In general 

Yariat ion 
C v 

Skewness 
C r 

Parame t er 
est tm- 
at ion 
by the 
met hod 
of 
moments 

b: by numerical solution 
of the equation: 

restriction: 1 1 6  5 Cv 5 I/&? 

T i m e  to 
p e d  
<mode> 

Remarks Dcjini t ion oj r-junct ion Definition of the normal 
probability distribution 
function G 

Y 

GCy) - .re -xZ/adx 
llz;; -00 

0 

Dejini t ion of the 
incompLete y-junctton 

Note : The above given ranse for the parameters corresponds to the case that u<t> is bell-shaped. 



f D L E  2 r THREE-PARAMETER IUH ANALYTICAL FORMS 

DOUBLE-POWER < DP 1 331 FTED LOG-PEARSON I I I < SLP) a NUS LOG-PEARSON I11 ( HLP) 

;t andard- 
:tad 
! UH 
znd 
;-curue 

* - r a w s  
'para- 
net err 

5<t) = y(c.ln<t/a+l),b)/r(b) 

LEO 
a>O : scale parcuneter 
b>l .c>O : shape parameters 

s < t )  - y[-c-ln<t/a).b) / r<b) 

3 S t a  
a>O : scale parameter 
~ . c > l  : shape parcunsters 

E t S a  
0 0  : scale parcuneter 
>.c>l : shape parameters 

DStSa 
a> 0 : scaLe parameter 
b. c>l : shape parameters 

Lag time tU Us - a 
Uz = u; - u:f 

"3 
= u; - 3u; u:' + 2u:' 

where 

u: = .[A]" 
u: = =[sib 

b 

u: = as [A] 
In general 

n C 
b 

U' = a [-] 
c -n 

Cv = f l  / Ui 

C c  = un / u y  

LU = a - U;' 

U2 E U.. - u;'= 
2 

Urn = 3U" U;' - 2u;' - u; 
where 

Uy - P'C BC1+3/b. E >  

Voment s 
>f area 

'n 
and/or 

u; 
m W o r  

u; 
1 n general 

U; = a'c BCi+3/b. c) 

In general In general 

u: = an [A]~ c +n 

Variat ior 
Cv 

Skewness 
C c  

Parame t el 
est im- 
at ion 
by the 
m e  t hod 
of 
moments 

By mwnerical solution 
Ce. g. Newton-Ramon 
method, of the above 
equations of moments. 

By mumerical solution 
Ce.8. Newton-Ramon 
metho& of the above 
equal ions of moments. 

By m k r i c a l  solution 
Ce. g. Newton-Raphson 
method;, of the abow 
equations of moments. 

where' 

rime to 
peak 
Cmode> 

UemarCls Definition of B function 
Definition of parameter U: 

C= n-th momrnt about the 
point t = -a> 

Definition of the 
incomplete P function 

Note : The above diven range /or the parameters corresponds to the case that uCt> is bell-shaped. 



V A R I A T I O N  C v  

Figure 1: SKewness coefficient versus coefficient of variation, 
for the two parameter forms. 
Relatlon between deflnltion parameters and coefficients 
of variation and skewness, for the double-power (DP) 
form. 
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Figure 2: Relation between definition parameters and coefficients 
of variation and skewness, for the shifted log-Pearson 
(SLP) form 



Figure 3: Relation between definition parameters and coefficients 
of variation and skewness, for the minus log-Pearson 
(MLP) form. 
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4. COHPARISOH OF T H E  ANALYTICAL FORMS 

Since t h e  def in i t ion  parameters of t h e  above described forms 

(a, b, C) a r e  not comparable, i t  is preferable  to use t h e  first 

t h r e e  moments (tu,  U2, UJ) instead, which can be expressed i n  

terms of t h e  def in i t ion  parameters (Tables 1 and 2). The de r iva -  

t ive  dimensionless desc r ip to r s  

c o e f f i c i e n t  of v a r i a t i o n  Cv = ( U 2 )  1 / 2  / t u  , and 

skewness c o e f f i c i e n t  Cs = UJ / ( U 2 )  3 /2  

a r e  best  ind ica to r s  f o r  t h e  comparison. 

The two-parameter forms have a fixed relation between Cv and 

Cs, t h a t  is 

f o r  t h e  gamma form, 

f o r  t h e  log-normal form, while t h e  relat ions f o r  t h e  o the r  two 

forms have  not simple analytical  expressions. All t h e  f o u r  rela-  

t ions a r e  plotted i n  Fig. 1, from which we conclude t h a t  t h e  

double t r i a n g u l a r  form gives t h e  lowest value of Cs f o r  a given 

value of Cv, and t h e  log-normal t h e  h i g h e r  one. 

The domain of Cv and  Cs f o r  t h e  three-parameter forms d i f -  

f e r s  from one form to another .  In pa r t i cu la r ,  i n  t h e  case of beta 

form, i t  is easi ly  shown t h a t  t h i s  domain extends below the  curve 

(21) corresponding to t h e  gamma form; i n  t h e  s h i f t e d  log-Pearson 

form t h e  domain extends above t h e  curve  (21) and exceeds t h e  



c u r v e  (22),  corresponding to  t h e  log-normal form (see Fig. 

2); i n  t h e  double-power form t h e  domain is q u i t e  s imilar  to t h e  

one of t h e  beta form, b u t  w i t h  an  extension above t h e  curve  (21) 

(see Fig. 1); f inal ly ,  t h e  minus log-Pearson form h a s  t h e  widest 

domaln, extending below t h e  curve  (22) (see Fig. 3). The above 

observat ions and Figures 1 through 3 a r e  qu i t e  helpful f o r  t h e  

selection of t h e  proper form. 

Systematic examination of t h e  va r ious  SIUH shapes,  f o r  

specified values of t h e  f i r s t  t h r e e  moments (or  parameters tU, Cv 

and  C ) ,  showed tha t ,  generally, t h e  shapes  a r e  q u i t e  s imilar .  

Fig. 4 and 5 i l lus t r a t e  t h e  va r i a t ion  of two main charac ter i s -  

t ics,  i.e. t h e  time to peak and t h e  peak discharge,  of t h e  SIUH 

and of t h e  DUH f o r  dura t ion  D = t U ,  respectively, versus t h e  var ia -  

t ion of coefficients Cv  and Cs. Due to t h e  s i m i l a r i t y  of t h e  

va r ious  shapes,  i t  is d i f f i c u l t  to d i s t i n g u i s h  t h e  cu rves  f o r  

each separa te  form. Thus, i n  most cases, one single curve,  f o r  

each value of Cv, has  been drawn in  Fig. 4 and 5; t h i s  curve rep- 

resents  a l l  t h e  three-parameter forms. The cha rac te r i s t i c s  of t h e  

two-parameter forms a r e  also i n  agreement w i t h  these curves. An 

exception to t h a t  i s  t h e  double-triangular form, yielding to  a 

devia t ing  h igher  peak of SIUH, due to t h e  discont inui ty i n  i t s  

der iva t ive ;  however t h e  devlation reduces i n  t h e  case of D U H ,  

which is of more pract ical  in teres t .  

The above discussion shows t h a t  a l l  t h e  examined forms a r e  

of s imi lar  performance f o r  t h e  SIUH representation. I t  is obvious 

t h a t  t h e  three-parameter forms a r e  more adjustable,  while t h e  

two-parameter a r e  simpler. The selection of a specif ic  form may 

be based on t h e  values of t h e  descr iptors  Cv  and Cs (see next 



p a r a g r a p h ) .  The s impl ic i ty  of t h e  form may, also, be con- 

s ide red .  We notice that  t h e  double- t r iangular ,  Weibull and 

double-power forms have t h e  simpler expressions f o r  both u(t)  and 

s ( t )  funct ions; .  ca lcula t ions  r e q u i r e  no use of computers o r  

s t a t i s t i c a l  tables. From t h e  o t h e r  s i d e  t h e  double- t r iangular ,  

gamma, log-normal and beta forms have t h e  simpler relations be- 

tween t h e i r  moments and t h e i r  def in i t ion  parameters; t h i s  is of 

i n t e r e s t  when parameters a r e  estimated from moments. 

A f i n a l  observation at t h i s  point, drawn from Fig. 5, is 

t h a t  t h e  magnitude of t h e  peak discharge of t h e  IUH o r  DUH in-  

creases w i t h  t h e  decrease of the  coefficient of var ia t ion  as  well 

a s  with t h e  increase of t h e  skewness coefficient. 

5. PARAMETER ESTIMATION BY THE METHOD O F  HOHEPTS 

We assume t h a t  t h e  IUH ident i f icat ion is based on recorded 

r a i n f a l l  and runoff  d a t a  of t h e  catchment and not on various 

catchment  c h a r a c t e r i s t i c s .  

Let I ( t )  be t h e  net hyetograph of a  recorded ra in fa l l  event 

and  Q(t)  is t h e  corresponding sur face  runoff  hydrograph,  derived 

from t h e  recorded data .  Dividing t h e  above funct ions with the to- 

t a l  net  r a l n f a l l  depth,  H, and the  total  su r face  runoff volume, 

V,  respectively, we get t h e  s t a n d a r d i z e d  n e t  h y e t o g r a p h  i(t) and 

t h e  s t a n d a r d i z e d  s u r f  ace  runof f  h y d r o g r a p h  q(t). Furthermore let 

t1 and t~ be t h e  times from the  or igin to  t h e  centers  of a rea  of 

i ( t )  and q(t), respectively, and In and Qn t h e  n-th central  mo- 

ments of i ( t )  a n d  q( t) .  
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Figure 4: Dimensionless p e e  discharge of (A) standardized in- 
stantaneous unit hydrograph (SIUH) and (B) unit hydro- 
graph with duration D = tu, versus the coefficients of 
variation and skewness, for various analytical forms. 
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Figure 5 :  Dimensionless time to peak of ( A )  standardized instan- 
taneous unit hydrograph (SIUH) and (8) unit hydrograph 
wlth duration D.. = tU, versus the coefficients of 
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varlatlon and sKewness, for various analytical forms. 
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N a s h  [1959] showed 

t h e  above moments by 

t u  = t~ - t I  

U2 = Q2 - I 2  

U3 = Q3 - I 3  
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t h a t  t h e  moments of SIUH a r e  related to 

Somewhat more complex relat ions exist  f o r  moments of h igher  or- 

d e r .  

These relat ions permit a simple calculation of t h e  SIUH mo- 

ments, which can then determine t h e  def ini t ion parameters of a 

specific SIUH form. 

The whole process of t h e  SIUH i d e n t i f i c a t i o n ,  wi th  t h i s  

method, consists of t h e  following steps:  

I. Calculate t h e  moments of i ( t )  and q ( t ) ;  

2. Calculate t h e  moments of u( t )  using (23) through (25); 

3. Calculate t h e  descr iptors  Cv  and Cs; 

4. Select an  analytical  form, which is proper  f o r  CV and Cs; 

5. Calculate t h e  def ini t ion parameters of t h e  selected form; 

The equations i n  Tables I and 2, re lat ing t h e  SIUH's moments 

and descr iptors ,  to the  def ini t ion parameters should be used f o r  

t h e  s tep  5 of t h e  process. Double-triangular, gamma, log-normal 

and beta forms a r e  the  simplest to be used with t h i s  method. The 

o the r  analytical  forms r e q u i r e  t h e  use of a numerical procedure 

f o r  t h e  solutlon of equations. The nomographs of Fig. 1, 2 and 3 

support  t h e  form selection i n  s tep  4 and may replace numerical 
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methods of equation solving I n  s tep 5, when t h e r e  Is  no need 

f o r  h i g h  accuracy. 

The rea l  problem w i t h  t h i s  method Is t h a t  the  SIUH's moments 

calculated from separa te  recorded ra infa l l / runoff  events usually 

d i f f e r  a t  a remarkable degree. One solut lon to  t h a t  problem, 

or iented  towards t h e  der iva t ion  of a mean un i t  hydrograph, Is ob- 

t a i n e d  by t ak ing  t h e  average  of each  moment. The obtained 

parameters  of t h e  SIUH can then be modified, i n  order  to get more 

severe  u n i t  hydrographs,  to be used i n  design floods. 

6. PARAHETER ESTIHATIOH 

B Y  THE METHOD O F  LEAST IHTEGRAL SQUARE ERROR 

The method of moments i s  t h e  simplest parameter estimation 

procedure,  but  i t  i s  not t h e  only obtainable one, s ince  o t h e r  

methods could also be se t  u p  f o r  this aim. 

The method proposed h e r e  i s  or iented towards t h e  minimiza- 

t ion  of a n  objective function, defined a s  t h e  in teg ra l  square  e r -  

r o r  between t h e  recorded runoff hydrograph, and the  derived, w i t h  

t h e  use of t h e  selected analytical  form, convoluted runoff  hydro- 

graph.  This  objective funct ion can be formulated a s  

where g ( )  i s  t h e  objective function, a, b, c a r e  t h e  parameters 

of t h e  SIUH, which i n  t h i s  point a r e  considered a s  decision vari-  

ables, ( t h e  method can be applied f o r  more t h a n  3 parameters, as  

well), i is a time index, Qi i s  t h e  ord ina te  of t h e  recorded s u r -  
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face runoff hydrograph, Q * ~  is the corresponding ordinate of the 

convoluted surface runoff hydrograph, and rn is a sufficiently 

large integer constant. 

We note that g ( )  is a convex function, and neither itself, 

neither its derivatives can have simple analytical forms; thus 

the analytical optimization methods can not be applied here. The 

minimization of g ( )  is carried out through a proper iterative 

numerical procedure. In each iteration a set of values of the 

parameters is assumed and the value of the objective function is 

calculated, as described in the following steps: 

I. Calculate SIUH and SSC for the assumed set of parameters; 

2. Calculate unit hydrograph for the appropriate rain duration, 

using (5) and (3); 

3. Calculate flood hydrograph by convolution of the unit 

hydrograph and the recorded net hyetograph; 

4. Calculate the integral error between recorded and convoluted 

flood hydrographs, by (26). 

A ful ly general algorithm, in pascal programming language, 

has been developed for the above minimization procedure, which 

executes systematically the required iterations. It looks like 

the bisection algorithm, used for the equation solving, but uses 

three successive points of each (decision) variable, in the way 

that the mlddle point corresponds to the lowest value of g o .  

There is not any restriction about the number of decision vari- 

ables, but the addition of more variables increases exponen- 

tially the required number of computations. Thus the algorithm is 
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time consuming, but its generality is considerable. In the 

examined problem, the use of double-triangular, Weibull, or 

double-power forms speeds up computations, because of the 

simplicity of functions s(t) in these forms. 

This method produces better results than the method of mo- 

ments, and this will be verified later on. The method can be 

easily extended to the case that more than one recorded flood hy- 

drographs are available; in that case the objective function 

should be def ined as the total error for a1 1 hydrographs. 

7. ADVANTAGES OF THE PARAMETRIC APPROACH 

As it was pointed out in the introduction, the parametric 

approach is in general less accurate than the standard linear ap- 

proach, but it has certain advantages, the first being its simple 

and secure numerical computations (though the mathematical back- 

ground may seem somewhat complicated). 

Not only the limited number of parameters is a handicap, but 

it is also a superiority in some cases, especially when we need 

to establish the relationship between unit hydrograph and catch- 

ment characteristics; such a relationship assist the unit 

hydrograph derivation in neighbouring ungauged catchments. 

The pre-selection of a smooth analytical form for the repre- 

sentat ion of IUH, guarantees smooth unit hydrograph and S-curve. 

Thus the parametric method can be applied also to the smoothing 

of a DUH, derived by the usual linear method, in order to avoid 

problems, that frequently appear when a DUH is converted from one 



duration to another (negative ordinates, unexpected succes- 

sive peaks etc. ) .  

Finally a main advantage of the parametric approach is the 

possibility to be applied to large catchments, where the usual 

1 lnear method f a1 1 s. 

8 ,  APPLICATIOB EXAHPLES FROM CASE STUDIES 

The first example is taken from the study of the Thessalia 

basin, middle Greece (Xanthopoulos et al. [i988] 1 .  One of the 

aims of the study was the derivation of design floods in several 

sites of the basin. Because of the inadequate equipment of the 

basin, the unit hydrograph derivation has been based mainly in 

the data of one sub-basin, of the Pinios river, named Sarakina, 

with the area of 1061 km2. A preliminary investigation of re- 

corded flood hydrographs and simultaneous charts of the two rain- 

fall recorder stations of the sub-basin, gave six flood events, 

proper for analysis. The large area of the catchment and the in- 

adequate number of rain recording stations inhibited the use of 

the usual linear method for the unit hydrograph derivation. Fur- 

thermore, the parametric method was superior in the examined 

problem, because of the need to transfer Sarakinar s unit hydro- 

graph to other sites of the basin. 

The method of moments 'was used for the parameter estimation. 

The moments of SIUH were computed by (23) through (25). As shown 

in Table 3, moments computed from separate events display large 

deviations amongst them, apparent ly due to unmeasured spatial 

non-uniformity of rainfall over the large area of the catchment. 



TABLE 3 

SIUH MOMENTS FROM SIX FLOOD EVENTS AT SARAKINA BASIN 

S IUH MOMENT MIN VALUE MAX VALUE AVERAGE VALUE 

The coefficient of va r i a t ion ,  calculated from t h e  average 

moments, is Cv = 0.563 and t h e  skewness coefficient Cs = 0.557. 

These values normally suppor t  t h e  selection of t h e  double- 

t r i a n g u l a r  o r  Weibull form (see Fig. i), bu t  f o r  reasons of major 

seve r i ty  of t h e  design floods, t h e  log-normal form was f ina l ly  

selected. The parameters of t h a t  form, calculated by t h e  rela-  

t ions of Table 1 a r e  b = 0.55 and a  = 1.79. The flood hydrographs 

of t h e  s i x  events were reconstructed by convolution of t h e  I-hour 

DUH (obtained b y  (5) and (3)), and t h e  related hyetographs. Com- 

parisons between them and t h e  corresponding recorded hydrographs 

gave r e l a t i v e l y  s a t i s f a c t o r y  re su l t s ,  t h e  dev ia t ions  being un- 

avoidable, because of t h e  la rge  ranges  of t h e  SIUH's moments. 

Fig. 6 i l l u s t r a t e s  two of these comparisons, concerning t h e  cases 

of t h e  minimum and maximum deviations. 

A second example is oriented towards t h e  comparison between 

u n i t  hydrographs  derlved by each of t h e  above parameter estlma- 

t ion methods. The da ta  i n  t h i s  example come from t h e  study of 
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AjaK s t ream,  n o r t h e r n  Greece ( K o u t s o y l a n n l s  et al .  C19821). T h e  

a r e a  of t h e  catchment, upstream t h e  examined Iliolousto d a m  s i t e ,  

is 252 k m 2 .  The u n i t  hyd rog raph  w a s  de r ived  by t h e  usual l i n e a r  

method, from f o u r  recorded flood events.  One of these  events, oc- 

c u r r e d  a t  14-15/6/1981 was used h e r e ,  t o  develop this  example. 

The moments of SIUH, computed from this event  by (23) t h r o u g h  

(25) a r e  t u  = 5.30 h, U2 = 5.02 h2 and  U 3  = 13.04 h3, which g lve  

Cv = 0.423 and  Cs = 1.159. The double power form is su i t ab l e  f o r  

t he se  values,  a n d  h a s  been selected. The paramete rs  calculated by 

t h e  method of moments a r e  a  = 116.9, b  = 61.0 and  c  = 9.15. The 

pa rame te r s  calculated by t h e  method of l eas t  s q u a r e  e r r o r  a r e  

q u i t e  d i f f e r e n t :  a  = 203.9, b  = 160.0 and  c  = 25.75. The s q u a r e  

e r r o r  Is 188.2 f o r  t h e  f i r s t  case a n d  41.6 f o r  t h e  second. The 

1-hour D U H s  f o r  both  cases a r e  plot ted i n  Fig. 7, i n  comparison 

w i t h  t h e  one der ived  by l i n e a r  analys ls .  T h i s  f i g u r e  shows t h a t  

t h e  method of moments underes t imates  t h e  peaK flow, a n d  t h e  

method of l e a s t  s q u a r e  e r r o r  is s u p e r i o r .  

9. COHCLUSIOHS 

I .  The pa rame t r i c  approach g ives  a  good approximation t o  a  

ca t chmen t ' s  u n i t  hydrograph, though u s e s  l i m i t e d  number of 

paramete rs .  U n c e r t a i n t i e s  of th i s  approach a r e  mainly due t o  

d i f f e r e n t  catchment behaviour I n  d i f f e r e n t  f l o o d  even ts ,  a s  

wel l  a s  i n a c c u r a c i e s  i n  p r e l i m i n a r y  d a t a  p rocess ing  ( such  a s  

basef low and r a i n f a l l  l o s s e s  s e p a r a t i o n ) ,  and secondary due 

t o  t h e  l i m i t e d  number of t h e  used  parameters .  
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2. Advantages of this approach are the simple numerical com- 

putations required for the UH identification and its ability 

to be applied to large gauged catchments, where the standard 

method fails. The approach assists the unit hydrograph 

derivation in ungauged catchments. 

3. Eight different suitable analytical forms for the instan- 

taneous unit hydrograph, are presented in this paper, accom- 

panied with complete analytical expressions and nomographs, 

requlred for the application. Two different methods of para- 

meter estimation are studied, the first being the well-known 

method of moments, while the second is based on the mini- 

mization of the integral error between derived and recorded 

f 1 ood hydrographs. 

4. When the method of moments is used for the parameter estima- 

tion, those IUHs with smaller variation coefficient and 

larger skewness coefficient yield higher peak discharge. 

From the examined two-parameter analytical forms, the log- 

normal one yields the highest peak discharge, when 

parameters are calculated from the first two moments. The 

three-parameter forms give quite similar unit hydrographs, 

no matter which particular form is used. 

5. The parameter estimation method based on the integral square 

error gives more accurate results, particularly in the es- 

timation of the peak discharge, but its application proce- 

dure is more complicated than the one of the method of mo- 

ment s. 
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Figure 6: Comparison between recorded flood hydrographs at 
Pinlos, site Sarakina, and convoluted hydrographs, 
using the log-normal form, concerning the events wlth 
the mlnirnum (A) and the maximum (B) deviation. Para- 
meters were calculated by the method of moments. 
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Figure 7: Comparison between 1-hour unit hydrographs of Ajak 
stream at Iliolousto site, derived by (A) the usual 
linear method, (B) the parametrlc approach wlth the 
method of moments, and (C) the parametrlc approach wlth 
the method of least square error. All Unit hydrographs 
have been derived from one flood event, occurred at 
14-15/8/1981. 
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HOTAT 1 OBS 

catchment area 

definitlon parameters (generally a is a scale para- 

meter, whlle b and c are shape parameters) 

coefficient of varlation 

skewness coeff iclent 

net rainf a1 1 duration 

probability density function (PDF) 

cumulative (probablllty) dlstributlon function (CDF) 

objective function 

net rainfall depth 

unit (net) rainfall depth (=i0 mm) 

net hyetograph 

standardized net hyetograph (SNH) 

n-th central moment of the standardized net hyetograph 

surface runoff hydrograph 

standardized surface runoff hydrograph (SSRH) 

n-th central moment of the standardized surface runoff 

hydrograph 

S-curve derived from unit hydrograph of duration D 

standardized S-curve (SSC) 

time 

flood duration of the unlt hydrograph UD(t) 

flood duration of the instantaneous unit hydrograph 

Uo(t) ( =  right bound of the function Uo(t) 

IUH lag time (defined as the time from the origin to 

the center of area of IUH or SIUH) 
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time from the o r ig in  t o  the  cen te r  of area  of net  

hyetograph 

t~ time from the o r ig in  t o  the  cen te r  of area  of surface  

runoff hydrograph 

t~ time from the  o r ig in  t o  the  peak of IUH ( o r  SIUH) 

U ~ ( t 1  u n i t  hydrograph f o r  r a i n f a l l  of durat ion D (DUH) 

U o ( t )  instantaneous un i t  hydrograph (IUH) 

u ( t )  s tandardized instantaneous u n i t  hydrograph (SIUH) 

Un n- th  cent ra l  moment of area  of IUH 

U' n n- th  moment of IUH about the  o r ig in  

u'ln n - th  moment of IUH about the  r i g h t  bound (when e x i s t s )  

V surface  runoff volume 
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