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ABSTRACT
Unit hydrograph identification by the parametric approach i1s based
on the assumption of a proper analytical form for its shape, with
a limited number of parameters. This paper presents various
suitable analytical forms for the ins;cantaneous unit hydrograph,
originated from Known probability density functions or transforma-
tions of them. Analytical expressions for the moments of area of
these forms, versus their definition pararﬁeters are theoretically
derived. The relation between moments and specific shape charac-
teristics are also examined. Two different methods of parameter
estimation are studied, the first being the well-known method of
moments, while the second is based on the minimization of the in-
tegral error between derived and recorded flood hydrographs. The
above tasks are illustrated with application examples originated

from case studies in catchments of Greece.
Key words : Unit hydrograph, instantaneous unit hydrograph, iden-
tification, probability density function, probability distribution
function, method of moments, optimization.

i. INTRODUCTIOHN

Common mathematical approaches to model synthesis, include:

(1) discretization techniques, i.e. determination of the model 1in
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a finite number of discrete points, and (2) parametric tech-
nigues, 1.e. assumption of a proper analytical form for the
model, with a limited number of parameters, and estimation of
these parameters by means of Known restrictions and/or the op-
timization of an objective function.

Both the above approaches have been used for the unit hydro-
graph (UH) synthesis. The first has become the most common meihod
and 1s based on linear analysis (matrix i1inversion technique -
O’Donnell [1986]). The second was founded Dby ~Nash [1959], who
showed that the moments of area of the instantaneous unit
hydrograph (IUH) can be easily derived from recorded hydrographs
and simultaneous rainfall records. Hash also studied several
suitable two-parameter analytical forms to represent the shape of
IUH, the most common being the gamma-PDF form. The parametric ap-
pProach has also been used in synthetic unit hydrograph deriva-
tions, with most common analytical forms the triangular and the
gamma-PDF.

The first approach 1is generally c¢onsidered as more accurate,
because of the considerable number of points defining UH, while
the second uses a very limited number of parameters (2 or 3) for
the UH shape representation. In fact the inaccuracies due to the
limited number of parameters, in the parametric approach, are
minor, when compared with the uncertainties of the whole process
of UH derivation from recorded data, which are met in the areal
rainfall estimation, the establishment of the stage-discharge
relationship, the baseflow separation, and, finally, the separa-

tion and the time distribution of the rainfall losses.



Moreover, it 1s often very difficult or impossible to find
recorded flood events originated from entirely uniform, over the
catchment, rainfall; finally, the assumption of the catchment
linearity 1s not strictly valid, and the catchment response 1s
not unique. Because of the above uncertainties it is very common
practice in the formation of design flood hydrographs, to con-
sider a unit hydrograph more severe than the derived from flow
records (e.g. by reduction of the time to peak by 2/3, see
Sutcliffe [(19781}).

The above discussion 1indicates that the parametric method,
though seems less accurate than the standard linear method, can
be a good approximation to the unit hydrograph identification on
real world catchments, since the 1naccuracies introduced by the
use of limited number of parameters are minor. Moreover the
parametric method has some advantages, to be discussed later.

Problems associated with the application of the parametric
approach are the sélectlon of the proper analytical form for the
UH representation, and, mainly, the method for the parameter es-
timation. These problems are systematically examined throughout

this study.
2. DEFINITIONS AND GERERAL RELATIONS

Let Up(t) be the unit hydrograph for a net rainfall of dura-
tion D (DUH). The instantaneous unit hydrograph Ug(t) corresponds
to the case where D = O. We denote by Vg the surface runoff
volume, corresponding to the unit rainfall with depth Hg = 10 mm,

that 1is



Tp To
Vo = f Up(t) dt = f Ug(t) dt = Hgp-A
o} o}

where Tp and Tgo are large enough time intervals, referred to as
flood durations (theoretically are right bounds for the functions
Up(t) and Ugp(t), respectively, and can be equal to o), and A .the

catchment area. Now we define the function
u(t) = Upg(t) / Vo (1)

which will be referred to as standardizZzed instantaneous unit
hydrograph (SIUH); it 1s a positive function, with dimension
(time)"l, and has the property

To

J u(t) dt = 1 (2)
o)

In general u(t) is a single peakKed function. The time to
peak, tp, and the peak value, up =@ u(tp), are main characteris-

tics of SIUH.

Furthermore let Sp(t) be the S-curve (DSC) derived {from the
DUH, which corresponds to rainfall intensity equal to Hg/D, and

infinite duration. The DSC is related to DUH by
Up(t) = Sp(t) - Sp(t-D) (3)

and to IUH by

1 t
Sp(t) = — [J Ugp(t) at (4)
D O

Additionally we define the function



s(t) = Sp(t) - (D/Vp) (5)

which 138 dimensionless, independent of the duration D, and has

the properties
$(0) = O, s8(Tg) = 1 (6)

This function will be referred to as standardized S-curve (SSC).

SSC and SIUH are related by

t
sS(t) = [ u(t) dt (T)
0
ds(t)
u(t) = / (8)
dt

Finally let Up be the n-th central moment of area of the
function u(t), U’y the n-th moment about the origin, and U", the
n-th moment about the right bound Ty (if exists)., These are
defined by

To

S (t-ty)D u(t) dt (9)
o

c
o
1}

To
$ th uety dt (10)
0o

a
o]
1

To
S (To-t)D u(t) dt (11)
0
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where ty = U’y is the distance of the center of area of SIUH from
the origin, Known as 1lag time. (Note the term (TO-1) 1in (11),
which 1s opposite to the usual).

Each family of moments can theoretically determine the com-
plete shape of SIUH, when 1infinite number of them is Known. In
reality, only a limited number of them can be estimated;
nevertheless this limited numbper Keeps substantial 1nformafion
about the shape, which 1s very helpful for the IUH identifica-
tion.

Given a specific analytical form of SIUH, it is an easy mat-
ter to derive the DUH for whichever duration D. This can be done

by subsequent application o¢f equations (7), (5) and (3).

3. ANALYTICAL FORMS FOR THE SIUH REPRESENTATION

The <functions u(t) and s(t) are mathematically similar to
the families of probability density functions (PDFs) and dis-
tribution functions (CDFs). Those single-peaked PDFs which are
left bounded Dby 2zero are proper for the representation of the
SIUH. Normally they should have a right bound, too, but this is
not necessarily considered as a strict theoretical requirement,
since all PDFs tend to zero for large values of their argument.

Eight particular analytical forms have Dbeen systematically
examined in this study. All of them are originated from Known
probabilility density functions (PDFs), or transformations of them.
They have two or three parameters and are left-bounded by zero or
double-bounded. These forms are described below; in their analy-

tical expressions, generally, a denotes a scale parameter, while
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b and ¢ denote shape parameters. The expressions of their main
features (theoretically derived in the present study, except the

ones of well Known functions) are summarized in Tables 1 and 2.

1. Double triangular (DT) (double-bounded / two-parameter)

In fact this form 1s a slngle’ triangle consisting of two
successive triangular PDFs (thus the characterization "double"),
the first with a negative sKewness and the second with a positive

one. The SIUH 1s expressed by

] 2gt/a
. O £ t/a ¢ b
ab
u(t) = A (12)
2(1-t/a)
e — s b £ tza < 1
L. a(1-b)

The double-triangular form has been widely used for the expres-
sion of synthetic unit hydrographs (for example see Sutcliffe

{1978)), but not so much for the IUH itself.

2. Gamma (') (left-bounded / two-parameter)

This form has been suggested by ~Nashk [1959], and it 1is the
most common for the IUH analytical expression, either synthetic
or from recorded data. Its analytical expression 1is

(t/a)b‘i e-t/a
(13)

v
o

u(t) = -, t
al (b)
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3. Log-Normal (LN) (left-bounded / two-parameter)

This form was also suggested by W~Nash {i1959]}; 1its analytical

expression 1is

-1n2(t/a)

(14)

v
o

u(t) = ——— e b , t
t(np)is2

4., Weibull (W)} (left-bounded / two-parameter)

Originating from the Weibull distribution function we get

the following form for SSC

-(t/a)®
s(t) = 1 - e ' t 20 (15)
5. Beta (B) (double-bounded / three-parameter)
Beta density function with an extra scale parameter a = Tq,
can give a nice form for the SIUH representation, that 1is
(t/a)yP-1(1-tsayc-t
u(t) = ) O £t <& a (16)

aB(b, c)

6. Double-Power (DP) (double-bounded / three-parameter)

This term 1is used to describe the following three-parameter

function

o

(17)

W
o

s(t) = {1 - (1-tza)b , t

The simplicity of the SSC analytical expression, as well as the
one of SIUH (see Table 2) is remarkable. This form has been ex-

tracted from a similar CDF suggested by KXumaraswamy [1980]




7. Shifted Log-Pearson III (SLP) (left-bounded / three-parameter)

The wusual logarithmic transformation, (x = 1nt) applied to

the Pearson type III distribution,

f(x) = R X 2 A (18)
r(b)
is not proper for the SIUH expression, since t = eX ranges 1in
[eA, »). In order to decrease the lower bound to zero, we apply
the following shifted logarithmic transformation
X = ln(t + ed)
and we get
cb [In(t/a+1))b-1
u(t) = , t 20 (19)
ar (b) (t/a+1)c+1
where a = ef is a scale parameter.

8. Minus Log-Pearson III (MLP) (double-bounded / three-parameter)

This form 1s originated, also, from the Pearson type III
distribution, Dby applying the minus logarithmic transformation,
ie. ¥ = -Ilnt, which gives

cb

u(t) = —— (t/a)¢-i{-in(tr/ayjP-1 , o0 <t < a (20)
alr (b)

where a = eA jis a scale parameter.




TABLE 1 3 TWO-PARAMETER IUH ANALYTICAL FORMS

FORM + |DOUBLE-TRIANGULAR (DT) GAMMA (I LOG-NORMAL (LN) WEIBULL (W)
2t/a b-4 -t/a z b
- e’ e -1 =Ct/
?tandard 25 O<t=<ba ull) = (L/7a) e _ln (17ad ulL) = (b/n)(t/a)b 1. (tL/7a)>
t2zed uCt) = al(b) b
TUH 2(1-t/a) ult) = e
pre e Aol <t <
and ai-py '  Dpasi=a Y(t/a,b> t/nb v
-CL/a)
S-curve (Lrad? s(L) = By s(t) =1 ~ e
a2l | 0%t<ba 1nCt/ad
s(L) = b s(L) = G| —m——~
(1-t/a? /br2
R0 <<
3 1 =5 » bast=za
t-range Ost<a 120 tz0 tz0
s/para- a>0 : scale parameter a>0 : scale parameter a>0 : scale parameter a>0 : scale parameter
meters b<1 : shape parameter b>1 shape parameter b>0 : shape parameter b>1 : shape parameter
) a - YA} -
Lag time Lu = - (1+b) tu ab tu = a@ Lu = U‘ alc1+1/b)
t z e al 2 bs2 b/2_ - us -2y
u Uz - f%_ (1-b+b2> Uz a’b Uz = a'e (e 1> Uz U: U‘
g‘;”“::;: .? u, = 2a u, = a%e™™ ‘e -t B |u = Uy - suLuy v,
U : Ua = r§§(1+b)(1—b/2)(1—2b) In general wvhere
n In general 2
and/or In general U’ = a"b(b+1) - -(b+n-1) 2 U’ = a"I"(1+2/b)
R n . n n b/4 2
Un aar\ 1_bn01 Un s a e ®
and~or v, = (n+1)(n+2) 1-b Us = a'T(1+3/b)
U: In general
U= a"ra1+n/bd
) - /2 = v /erz +
Vaétatlon o = 1—b*bz 1 Cv 1/ b Cv = o eb/z_1 cv -{/’t%l_gigl_ _ .
2 1+b ————— r“<1+1/b>
Skewness b/ 2 b/ 2
Cs ce = 2YE (1+b)1-b/2)(1-2b) Cs =27 9Bk =20y Cs = ""e -1 [+*%42) ce =y, /U2
(1-b+p2r2/ 2 = Cv + 3Cv b
2
= 7/ = . ¢ 1
Parameter 3 - /24C3 -3 a Uz tu b 2ln(1+Cv) b: by numerl;al solution
estim- b = t of the eguation:
ation /_z— b=t/ v a=t e ¥t Y
by the 3+ 24Cv - 3 u 2 u (1acs F§1+2/b) - o+
me thod 3, v r‘c1+1/b)
of 217 1
moments a = u
restriction: 1/v8 < Cv < 1/v2 fci+1/b>
Time to | wap u =2/a t = aCb-1) L =ae®? Lt = a1 - 1/p>Y"Y
peak P P P P P
Cmode)
Remarks Definttion of I'~function Definition of the normal
® .- probadbility distribution
I'tb) = J x e * dx Junction G
° 1 T
Definition of the Gly) = I e dx
incomplete y-jfunction n -c
y - -
Y(y.,b) = f xb o™ dx
[
Note :

The above given range for the parameters corresponds to the case that u(td is bell-shaped.




TABLE 2 3+ THREE-PARAMETER IUH ANALYTICAL FORMS

FORM + |BETA (B) DOUBLE-POWER (DP) SHIFTED LOG-PEARSON 111 (SLP) [MINUS LOG-PEARSON 111 (MLPO
- - - -
Standard- (/2> M4 -trarS t utt> = (be/ad (1-tsa)®™*. v (nctzas)t et/ 7! (-incLszad)v !
ized uct) = 25t p1e-t uLd = e e uct) =
1UN 2 B(b.c - a-ras®] CL/a+1) arcb)
and Ly = pct/a,.b,c) o1t
S-curve | T B(b,c) s(t) = [1 - (1-tsad ] sCL) = y(c-lnCt/a+1),b)/T(b) |sC(t> = y(-c-1nCt/ad,b) 7/ I'(b)
t-range ost<a O<t<a t20 O<t=a
/para-~ a>0 : scale parameter a>0 : scale parameter a>0 : scale parameter a>0 : scale parameter
meters b,c>1 : shape parameters b.c>1 : shape parameters b>1,c>0 : shape parameters b,c>1 : shape parameters
L
) [ 3
Lag time | _ _ab L, =a-u t, =y, -a L-U'-a[C]
t v btc z - .z v 1 c+1
v 2 U2=U;-U; Uz‘Uz-U’ 2
a"be U =y - v
Moments U o= — w e o w8 _ g -t - LS *3 2 2 1
of area z (b+c>¥(bre+1) U' = 3Uz Ua BU‘ Us Us s 3Uz Us * ZU‘ M ' .2 . ®
U =y -3U' U + 2U
Un s where vhere ® ] [ ] F 1
and or u, = Za_belcob) Uy = a%e BCi+a/b, o u =a ‘5_1] where b
U (b+c)?(b+c+1 )(btc+2) . ' < . u = a2{ <S_
n U; = a"c B(1+3/b, ©) U' = a2fc 2 c+2
and-or In general ° 2 i G sfc®
u U+ = __a"btbH1). . (bn-1) U = a7c Basa/p, © o e as[ c ]" T [c+3]
n (b+c)(b+c+1) .. (b+c+n—-1) In general £ c-3 In general .
w oo an n In general s = anfc
Un a c B[l +T' c] - n[ c ]b Un a [c——+n)
U =a |—
n c—n
Vartatiton c Cv= JU 77U Cy = U /7 U Cv = /U /U
Cv Cv = /bibresDd 2 2o 2 e
Sh;\:ness o = 2¢c-b) ToTi Cs = Us / Uz Cs = Ua / Uz Cs = U’ / Uz
s b c+2 be
Parameter b = 1 - AC1 + C\zf) By mumerical solution By mumerical solution By mumerical solution
estim- c? Ce. g. Newton-Raphson Ce. g. Newton—~Raphson Ce. g. Newton~Raphson
ation 31X v method> of the above method> of the above method> of the above
by the c = == b, a=&t 7/ X equations of moments. eqQuations of moments. eguations of moments.
me t hod wh . hd
O/ ere
noments 2Cv - Cs
A =
4Cv - CsC1-CH)
Time to 1/ b-1 b-~1
(b-1) -1 -——
ak L = aro-i) t = - [.hi____] -
?:ode) p btc-2 P a albe=1 tp = a2 @ evt a L’ =a2e © :
Remarks Deftnr.tlor: of B function Definttion of parameter U:
B(b.c> = fx° t1-%%"tdx = C= n-th moment about the
° potnt t = —-a>
= F(birce) /7 (b+c) ©
Definition of the U® = J oct+ad™ uct) dt
tncomplete B function " °
Yy
BCy,b,e) = fx® " t(1-30° tax
[ ]
Note :

The above given range for the parameters corresponds to the case that ult) is bell-shaped.
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4. COMPARISON OF THE ANALYTICAL FORMS

Since the definition parameters of the above described forms
(a, b, ¢) are not comparable, it 1s preferable to use the first
three moments (ty, Uy, Usz) 1instead, which can be expressed 1in
terms of the definition parameters (Tables 1 and 2). The deriva-

tive dimensionless descriptors

coefficient of variation Cy = (Ua)i/a / ty , and

skewness coefficient Cg = Uz / (Up)3/2

are best indicators for the comparison.

The two-parameter forms have a fixed relation between C,, and

Cg» that is

Cg = 2Cy (21)
for the gamma form,
Cg = 3Cy + Cy3 (22)

for the log-normal form, while the relations for the other two
forms have not simple analytical expressions. All the four rela-
tions are plotted 1in Fig. 1, from which we conclude that the
double triangular form gives the lowest value of Cg for a given
value of Cy, and the log-normal the higher one.

The domain of Cy, and Cg for the three-parameter forms dif-
fers from one form to another. In particular, in the case of beta
form, it 1is easily shown that this domain extends below the curve
(21) corresponding to the gamma form; in the shifted 1log-Pearson

form the domain extends above the curve (21) and exceeds the
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curve (22), corresponding to the log-normal form (see Fig.
2); in the double-power form the domain 1is quite similar to the
one of the Dbeta form, but with an extension above the curve (21)
(see Fig. 1); finally, the minus log-Pearson form has the widest
domain, extending below the curve (22) (see Fig. 3). The above
observations and Figures 1 tﬁrough 3 are quite helpful for the
selection of the proper form.

Systematic examination of the various SIUH shapes, for
specified values of the first three moments (or parameters ty, Cy
and Cg), showed that, generally, the shapes are quite similar.
Fig. 4 and 5 illustrate the variation of two main characteris-
tics, 1i.e. the time to peakK and the peak discharge, of the SIUH
and of the DUH for duration D=ty, respectively, versus the varia-
tion of coefficients Cy and Cg. Due to the similarity of the
various shapes, 1t 1is difficult to distinguish the curves for
each separate form. Thus, in most cases, one single curve, for
each value of Cy, has been drawn in Fig. 4 and 5; this curve rep-
resents all the three-parameter forms. The characteristics of the
two-parameter forms are also in agreement with these curves. An
exception to that 1is the double-triangular form, yielding to a
deviating higher peaK of SIUH, due to the discontinuity 1in its
derivative; however the deviation reduces 1in the case of DUH,
which 1is of more practical interest.

The above discussion shows that all the examined forms are
of similar performance for the SIUH representation. It is obvious
that the three-parameter forms are more adjustable, while the
two-parameter are simpler. The selection of a specific form may

be based on the values of the descriptors Cy and Cg (see next
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paragraph). The simplicity of the form may, also, be con-
sidered. We notice that the double-triangular, Weibull and
double-power forms have the simpler expressions for both u(t) and
s(t) functions; calculations require no use of c¢omputers or
statistical tables. From the other side the double-triangular,
gamma, log-normal and beta forms have the simpler relations be-
tween their moments and their definition parameters; this 1§ of
interest when parameters are estimated from moments.

A final observation at this point, drawn from Fig. 5, is
that the magnitude of the peaK discharge of the IUH or DUH in-
creases with the decrease of the coefficlent of variation as well

as with the 1increase of the sKewness coefficient.
5. PARAMETER ESTIHATION BY THE METHOD OF MOMENTS

We assume that the IUH identification is based on recorded
rainfall and runoff data of the catchment and not on various
catchment characteristics.

Let I(t) be the net hyetograph of a recorded rainfall event
and Q(t) is the corresponding surface runoff hydrograph, derived
from the recorded data. Dividing the above functions with the to-
tal net rainfall depth, H, and the total surface runoff volume,
V, respectively, we get the standardized net hyetograph i(t) and
the standardized surface runoff hydrograph q(t)., Furthermore let
1ty and tg be the times from the origin to the centers of area of
i(t) and q(t), respectively, and In and QG the n-th central mo-

ments of 1(t) and q(t).
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Nasn [1959] showed that the moments of SIUH are related to

the above moments by

ty = tq - 1 (23)
Up = Qp - Ip (24)
Uz = Q3 - I3 (25)

Somewhat more complex relations exist for moments of higher or-
der.

These relations permit a simple calculation of the SIUH mo-
ments, which can then determine the definition parameters of a
specific SIUH form.

The whole process of the SIUH identification, with this

method, consists of the following steps:

1. Calculate the moments of i(t) and q(t);

2. Calculate the moments of u(t) using (23) through (25);
3. Calculate the descriptors Cy and Cg;

4, Select an analytical form, which is proper for Cy and Cg;

5. Calculate the definition parameters of the selected form;

The equations in Tables 1 and 2, relating the SIUH’s moments
and descriptors, to the definition parameters should be used for
the step 5 of the process. Double-triangular, gamma, log-normal
and beta forms are the simplest to be used with this method. The
other analytical forms require the use of a numerical procedure
for the solution of equations. The nomographs of Fig. {, 2 and 3

support the form selection in step 4 and may replace numerical
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methods of equationvsolvlng in step 5, when there 1s no need
for high accuracy.

The real problem with this method is that the SIUH’s moments
calculated from separate recorded rainfali/runoff events usually
differ at a remarkKable degree. One solution to that problem,
oriented towards the derivation of a mean unit hydrograph, is ob-
tained by taKing the average of each moment. The obtalined
rarameters of the SIUH can then be modified, in order to get more

Ssevere unit hydrographs, to be used 1n design floods.

6. PARAMHETER ESTIMATION

BY THE METHOD OF LEAST INTEGRAL SQUARE ERROR

The method of moments 1s the simplest parameter estimation
procedure, but it is not the only obtainable one, since other
methods could also be set up for this aim.

The method proposed here 1is oriented towards the minimiza-
tion of an objective function, defined as the integral square er-
ror between the recorded runoff hydrograph, and the derived, with
the use of the selected analytical form, convoluted runoff hydro-

graph. This objective function can be formulated as

m
g(a, b, ¢) = L (Q - @*;)@ (26)

i=1
where ¢g() is the objective function, a, b, ¢ are the parameters
of the SIUH, which in this point are considered as decision vari-
ables, (the method can be applied for more than 3 parameters, as

well), 1 1s a time index, @ is the ordinate of the recorded sur-
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face runoff hydrograph, Q'l is the corresponding ordinate of the
convoluted surface runoff hydrograph, and m 1is a sufficiently
large 1integer constant.

We note that g() is a convex function, and neither 1itself,
neither its derivatives can have simple analytical forms; thus
the analytical optimization methods c¢can not be applied here. The
minimization of g() is carried out through a proper iterative
numerical procedure. In each iteration a set of values of the
parameters 1s assumed and the value o¢of the objective function is

calculated, as described 1in the following steps:

1. Calculate SIUH and SSC for the assumed set of parameters;

2. Calculate unit hydrograph for the appropriate rain duration,
using (5) and (3);

3. Calculate £lood hydrograph by c¢onvolution of the unit
hydrograph and the recorded net hyetograph;

4, Calculate the integral error between recorded and convoluted

flood hydrographs, by (26).

A fully general algorithm, in pascal programming language,
has Dbeen developed for the above minimization procedure, which
executes systematically the required iterations. It looks 1like
the bisection algorithm, used for the equation solving, but uses
three successive points of each (decision) variable, in the way
that the middle point c¢orresponds to the lowest value of g{(].
There is not any restriction about the number of decision vari-
ables, but the addition of more variables increases exponen-

tially the required number of computations. Thus the algorithm is
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time consuming, but its generality 1s considerable. In the
examined problem, the use of double-triangular, Weibull, or
double-power forms speeds up computations, because of the
simplicity of functions s(t) in these forms.

This method produces better results than the method of mo-
ments, and this will be verified later on. The method can be
easily extended to the case that more than one recorded flood hy-
drographs are available; in that case the objective function

should be defined as the total error for all hydrographs.
7. ADVANTAGES OF THE PARAMETRIC APPROACH

As it was pointed out in the introduction, the parametric
approach is in general less accurate than the standard linear ap-
pProach, but it has certain advantages, the first being its simple
and secure numerical computations (though the mathematical back-
ground may seem somewhat complicated).

Not only the limited number of parameters is a handicap, but
it is also a superiority in some cases, especially when we need
to establish the relationship between unit hydrograph and catch-
ment characteristics; such a relationship assist the unit
hydrograph derivation in neighbouring ungauged catchments.

The pre-selection of a smooth analytical form for the repre-
sentation of IUH, guarantees smooth unit hydrograph and S-curve.
Thus the parametric method can be applied also to the smoothing
of a DUH, derived by the usual linear method, in order to avoid

problems, that frequently appear when a DUH is converted from one
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duration to another (negative ordinates, unexpected succes-
sive peakKs etc.).

Finally a main advantage of the parametric approach is the
possibility to be applied to large catchments, where the usual

linear method fails.

8. APPLICATICH EXAMPLES FROM CASE STUDIES

The first example is takKen from the study of the Thessalia
basin, middle Greece (Xanthopoulos et al. f1988}). One of the
aims of the study was the derivation of design floods 1n several
sites of the basin. Because of the inadequate equipment of the
basin, the unit hydrograph derivation has been based mainly in
the data of one sub-basin, of the Pinios river, named SarakKina,
with the area of 1061 kme. A preliminary investigation of re-
corded flood hydrographs and simultaneous charts of the two rain-
fall recorder stations of the sub-basin, gave six flood events,
proper for analysis. The large area of the catchment and the in-
adequate number ¢f rain recording stations inhibited the wuse of
the usual linear method for the unit hydrograph derivation. Fur-
thermore, the parametric method was superior in the examined
problem, because of the need to transfer Sarakina‘’s unit hydro-
graph to other sites of the basin.

The method of moments was used for the parameter estimation.
The moments of SIUH were computed by (23) through (25). As shown
in Table 3, moments computed from separate events display large
deviations amongst them, apparently due to unmeasured spatial

non-uniformity of rainfall over the large area of the catchment.




TABLE 3

SIUH MOMENTS FROM SIX FLOOD EVENTS AT SARAKINA BASIN

SIUH MOMENT MIN VALUE MAX VALUE AVERAGE VALUE

ty  (h) 3. 50 9. 75 6. 84
Us (h?) 9.15 24, 42 14,78
Uz (h3) 6. 34 47, 95 31.66

The coefficient of variation, calculated £rom the average
moments, is Cy = 0563 and the skewness coefficient Cg = 0.557.
These values normally support the selection of the double-
triangular or Weibull form (see Fig. 1), but for reasons.of ma jor
severity of the design floods, the log-normal form was finally
selected. The parameters of that form, calculated by the rela-
tions of Table 1 are b = 0.55 and a = 1.79. The flood hydrographs
of the six events were reconstructed by convelution of the i-hour
DUH (obtained by (5) and (3)), and the related hyetographs. Com-
parisons between them and the corresponding recorded hydrographs
gave relatively satisfactory results, the deviations Dbeing un-
avoidable, because of the large ranges of the SIUH’s moments.
Fig. 6 illustrates two of these comparisons, concerning the cases
of the minimum and maximum deviations.

A second example is oriented towards the comparison between
unit hydrographs derived by each of the above parameter estima-

tion methods. The data in this example come from the study of
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AjaK stream, northern Greece (KXoutsoylannis et al. [19821). The
area of the catchment, upstream the examined Iliolousto dam site,
1s 252 Km2. The unit hydrograph was derived Dby the usual linear
method, from four recorded flood events, One of these events, oc-
curred at 14-15/8/1981 was used here, to develop this example.
The moments of SIUH, computed from this event by (23) through
(25) are ty = 530 h, Up = 502 h2 and Uz = 13.04 h3, which give
Cy = 0.423 and Cg = 1.159. The double power form is suitable for
these values, and has been selected. The parameters calculated by
the method of moments are a = 1169, b = 61.0 and ¢ = 9.45  The
parameters calculated by the method of least sgquare error are
guite different: a = 2039, b = 160.0 and ¢ = 25.75. The square
error 1is 188.2 for the {first case and 41.6 for the second. The
i-hour DUHs for both cases are plotted in Fig. 7, in comparison
with the one derived by linear analysis. This figure shows that
the method of moments underestimates the peaK flow, and the

method of least square error is superior.
9. CONCLUSIONS

1. The parametric approach gives a good approximation to a
catchment’s unit hydrograph, though uses limited number of
parameters. Uncertainties of this approach are mainly due to
different catchment behaviour in different flood events, as
well as inaccuracies in preliminary data processing (such as
baseflow and rainfall IOSSes separation), and secondary due

to the limited number of the used parameters.
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Advantages of this approach are the simple numerical com-
putations required for the UH identification and its ability
to be applied to large gauged catchments, where the standard
method fails. The approach assists the unit hydrograph
derivation in ungauged catchments.
Eight different suitable analytical forms for the instan-
taneous unit hydrograph, are presented in this paper, acéom-
panied with complete analytical expressions and nomographs,
required for the application. Two different methods of para-
meter estimation are studied, the first being the well-Known
method of moments, while the second 1s based on the mini-
mization of the integral error between derived and recorded
flood hydrographns.
wWhen the method of moments is used for the parameter estima-
tion, those IUHs with smaller variation coefficient and
larger sKewness coefficient yield higher peaK discharge.
From the examined two-parameter analytical forms, the log-
normal one vields the highest peak discﬁarge, when
parameters are calculated from the first two moments. The
three-parameter forms give quite similar wunit hydrographs,
no matter which particular form is used.
The parameter estimation method based on the integral square
error gives more accurate results, particularly in the es-
timation of the peaK discharge, but 1its application proce-
dure 1is more complicated than the one of the method of mo-

ments.
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NOTATIONS

catchment area

definition parameters (generally a 1s a scale para-
meter, while b and ¢ are shape parameters)

coefficient of variation

skewness coefficient

net rainfall duration

probability density function (PDF)

cumulative (probability) distribution function (CDF)
objective function

net rainftall depth

unit (net) rainfall depth (=10 mm)

net hyetograph

standardized net hyetograph (SNH)

n-th central moment of the standardized net hyetograph
surface runotf hydrograph

standardized surface runoff hydrograph (SSRH)

n-th c¢entral moment of the standardized surface runoff
hydrograph

S-curve derived from unit hydrograph of duration D
standardized S-curve (S5C)

time

flood duration of the unit hydrograph Up(t)

flood duration of the instantaneous unit hydrograph
Ug(t) (= right bound of the function Ugp(t)

IUH 1lag time (defined as the time from the origin to

the center of area of IUH or SIUH)
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time from the origin to the center of area of net

tx
hyetograph
ta time <from the origin to the center of area of surface
runoff hydrograph
ip time from the origin to the peak of IUH (or SIUH)
Up(t) unit hydrograph for rainfall of duration D (DUH)
Up (1) instantaneous unit hydrograph (IUH)
u(t) standardized instantaneous unit hydrograph (SIUH)
Un n-th central moment of area of IUH
u'n n-th moment of IUH about the origin
u”, n-th moment of IUH about the right bound (when exists)
v surface runoff volume
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