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Abstract. The Hurst phenomenon, which characterises hydrological and other geophysical 

time series, is formulated and studied in an easy manner in terms of the variance and 

autocorrelation of a stochastic process on multiple temporal scales. In addition, a simple 

explanation of the Hurst phenomenon based on the fluctuation of a hydrologic process upon 

different temporal scales is presented. The stochastic process that was devised to represent the 

Hurst phenomenon, i.e. the fractional Gaussian noise, is also studied on the same grounds. 

Based on its studied properties, three simple and fast methods to generate fractional Gaussian 

noise or good approximations of it are proposed. 
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1. Introduction 

While investigating the discharge time series of the Nile River in the framework of the design 

of the Aswan High Dam, E. H. Hurst (1961) discovered a special behaviour of hydrologic and 

other geophysical time series, which has become known as the ‘Hurst phenomenon’. This 

behaviour is essentially the tendency of wet years to cluster into wet periods or of dry years to 

cluster into drought periods. The term ‘Joseph effect’ introduced by Mandelbrot (1977, p. 

248) has been used as an alternative for the same behaviour. Since its original discovery, the 

Hurst phenomenon has been verified in several studies; some of the more recent are those by 

Eltahir (1996); Radziejewski and Kundzewicz (1997); Montanari et al. (1997); Vogel et al. 

(1998). In addition, the Hurst phenomenon has gained new interest today due to its relation to 

climate changes (e.g. Evans, 1996).   
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 Hurst (1951) formulated mathematically his discovery in terms of the so-called rescaled 

range, which is a storage-related feature of a time series (Salas, 1993, p. 19.14; see also 

Appendix A1). Several types of models such as fractional Gaussian noise (FGN) models 

(Mandelbrot, 1965; Mandelbrot and Wallis, 1969a, b, c), fast fractional Gaussian noise 

models (Mandelbrot, 1971), and broken line models (Ditlevsen, 1971; Mejia et al., 1972), 

have been proposed to reproduce the Hurst phenomenon when generating synthetic time 

series (see also Bras and Rodriguez-Iturbe, 1985, pp. 210-280). 

 Although hydrologists may agree that the Hurst phenomenon is inherent to hydrologic time 

series, generally they prefer to use other, more convenient models to generate synthetic 

hydrologic time series, such as autoregressive (AR) models, moving average (MA) models, or 

combinations of the two (ARMA). For example, widespread stochastic hydrology packages 

such as LAST (Lane and Frevert, 1990), SPIGOT (Grygier and Stedinger, 1990), and 

CSUPAC1 (Salas, 1993) have not implemented any of the fractional Gaussian noise or broken 

line models but rather they use AR, MA and ARMA models. It is well known, however, that 

the latter types of models cannot reproduce the Hurst phenomenon. It is also known that the 

reproduction of the Hurst phenomenon may be essential in reservoir studies, especially in 

reservoirs performing overyear regulation with draft close to the mean annual inflow (Bras 

and Rodriguez-Iturbe, 1985, p. 265). 

 There must be several reasons explaining this neglecting of the reproduction of Hurst 

phenomenon in practice. First, it is difficult to understand and explain, at least in comparison 

to typical statistical behaviour of everyday life processes. Stochastic hydrology texts (e.g. 

Yevjevich, 1972, pp. 131-172; Haan, 1977, p. 310; Kottegoda, 1980, pp. 184-203; Bras and 

Rodriguez-Iturbe, 1985, pp. 210-265; Salas et al., 1988, p. 240; Salas, 1993) adopt the 

original Hurst’s approach, which is in terms of range analysis of hydrologic series; as it will 

be shown in Appendix A1, the range analysis involves complexity and estimation problems. 

In addition, the nature of the Hurst phenomenon has been the subject of debate, as discussed 

by Bras and Rodriguez-Iturbe (1985, p. 214). Second, the algorithms that are used to generate 

synthetic data series respecting the Hurst phenomenon are complicated. Third, the typical 

models of this category have several weak points such as narrow type of autocorrelation 
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functions that they can preserve, and difficulties to preserve skewness and to perform in 

multivariate problems. 

  Contrary to these, in this paper we attempt to show that the Hurst phenomenon is 

essentially very simple to formulate, understand and reproduce in synthetic series – in some 

aspects much simpler than the typical ARMA processes (some aspects of which are examined 

in section 2), which, in addition, are not consistent with long historical hydroclimatic records 

(section 3). We offer a mathematical formulation based on the relationship of the process 

variance with the temporal scale of the process (section 4). In addition, we attempt to offer a 

simple explanation of the Hurst phenomenon based on the fluctuation of a hydrologic process 

upon different timescales (section 5). We also provide three simple methods to generate 

fractional Gaussian noise or good approximations of it (section 6). Some mathematical 

derivations are given in Appendix A2. Throughout this paper, we totally avoid using the range 

concept and range analysis; however for linking this presentation with the existing approaches 

of the Hurst phenomenon, we include Appendix A1, which is devoted to range related topics; 

the reader can ignore this. Throughout the paper, the presentation of all issues is purposely 

made as simple as possible; the advanced reader may excuse the author if some parts of the 

paper are overdidactic. 

2. Multiple timescale properties of typical stochastic processes 

Hydrologic processes such as rainfall, runoff, evaporation, etc., are often modelled as 

stationary stochastic processes in discrete time. Let us denote such a process Xi with i = 1, 2, 

…, denoting discrete time (e.g. years). Further, let us denote its autocovariance 

 γj := Cov[Xi, Xi + j],   j = 0, ±01, ±2, … (1) 

and its autocorrelation 

 ρj := Corr[Xi, Xi + j] = γj / γ0,   j = 0, ±1, ±2, … (2) 

 If fact, the time i represents the continuous time interval [(i – 1)δ, i δ) where δ is the 

timescale of interest. Very often, there is not a single scale of interest but many of them, 
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which are integer multipless of a basic timescale δ. For example, when investigating the firm 

yield of a reservoir that performs overyear regulation, the basic timescale could be one year 

but timescales of several years are also of interest. Similarly, in short-scale rainfall modeling 

the basic timescale could be 5 or 10 minutes, but timescales of several hours are of interest, 

too. Let k δ be a timescale larger than the basic timescale δ where k is a positive integer (for 

convenience we will omit δ and speak about timescale k). We denote Z
 (k)
i  the aggregated 

stochastic process on that timescale, i.e., 

 Z
 (k)
i  := ∑

l = (i – 1) k + 1

i k

  Xl (3) 

Obviously, for k = 1, Z
 (1)

i  ≡ Xi. For k = 2, 

 Z
(2)
1  := X1 + X2,     Z

(2)
2  := X3 + X4,     Z

(2)
3  := X5 + X6,  … (4) 

for k = 3, 

 Z
(3)
1  := X1 + X2 + X3,     Z

(3)
2  := X4 + X5 + X6,     Z

(3)
3  := X7 + X8 + X9,  … (5) 

etc. The statistical characteristics of Z
 (k)
i  for any timescale k can be derived from those of Xi. 

For example, the mean is 

 E[Z
 (k)

i ] = k E[Xi] (6) 

whilst the variance and autocovariance (or autocorrelation) is more difficult to derive as it 

depends on the specific structure of γj (or ρj). 

 In the simplest case, let as assume that Xi is white noise (different Xi are independent 

identically distributed random variable), so that γj = 0 (and ρj = 0) for j > 0. Apparently then, 

the aggregated process will have variance 

 γ
 (k) 
0  := Var[Z

(k)
i ] = k γ0 (7) 

and autocovariance and autocorrelation 
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 γ
 (k) 
j  := Cov[Z

 (k)
i , Z

 (k)
i + j] = 0,     ρ

 (k) 
j  := Corr[Z

 (k)
i , Z

 (k)
i + j] = 0 (8) 

 The autocovariance is related to the power spectrum of the process, which in general case 

is the discrete Fourier transform (DFT; also termed the inverse finite Fourier transform) of γj 

(e.g., Papoulis, 1991, pp. 118, 333; Bloomfield, 1976, pp. 46-49; Debnath, 1995, pp. 265-

266), that is 

 s
 (k)
 γ (ω) := 2 γ

 (k) 
0  + 4 ∑

j = 1

 ∞
 γ

 (k) 
j  cos (2 π j ω) = 2 ∑

j = –∞

∞
 γ

 (k) 
j  cos (2 π j ω) (9) 

Because γj is an even function of j (i.e., γj = γ–j), the DFT in (9) is a cosine transform; as 

usually we have assumed in (9) that the frequency ω ranges in [0, 1/2], so that γj is determined 

in terms of sγ(ω) by the inverse DFT, i.e., 

 γ
 (k) 
j  = ⌡⌠

0

1/2

  s
 (k)
 γ (ω) cos (2 π j ω) dω (10) 

 In the simple case of the white noise that we examine, obviously 

 s
 (k)
 γ (ω) / γ

 (k) 
0  = 2  (11) 

In fact, the constant value of the power spectrum, i.e., the presence of all frequencies ω with 

the same magnitude, has been the reason for the term ‘white noise’. 

 As a second example, let us assume that the process Xi at the basic timescale is the simpler 

possible process with some dependence of the current value on previous ones, also termed 

memory of the process. This is the autoregressive process of order 1 (AR(1)) and the 

dependence is expressed by 

 Xi = ρ Xi – 1 + Vi (12) 

where ρ is the lag one autocorrelation coefficient (–1 < ρ < 1) and Vi (i = 1, 2, …) are 

innovations, i.e. independent identically distributed random variables with mean 

(1 – ρ) / (1 + ρ) E[Xi] and variance (1 – ρ2) γ0. The process is also termed Markovian 
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because the dependence of the current variable Xi on the previous variable Xi – 1 suffices to 

express completely the dependence of the present on the past. The autocorrelation of Xi is 

 ρj := Corr[Xi, Xi + j] = ρ| j|   (13) 

Using this autocorrelation function and some elementary statistical properties of sums of 

random variables plus some algebra we find for the aggregated process 

 γ
 (k) 
0  = γ0 

k (1 – ρ2) – 2ρ (1 – ρk) 
(1 – ρ)2  (14) 

 γ
 (k) 
j  = γ0 

ρk j – k + 1 (1 – ρk)
2
 

(1 – ρ)2 ,   j ≥ 1 (15) 

and thus the autocorrelation is 

 ρ
 (k)
j  = ρ

 (k)
1  ρ

k (j – 1)
 ,   j ≥ 1  (16) 

with 

 ρ
 (k)
1  = 

ρ (1 – ρk)
2

k (1 – ρ2) – 2ρ (1 – ρk) (17) 

By examining (16) and (17) we conclude that the correlation structure of Z
 (k)
i  is identical to 

that of the ARMA(1, 1) process (Box et al., 1994, p. 81), that is, Z
 (k)
i  is no longer a Markovian 

process but rather an ARMA(1, 1) process. 

 Τhe power spectrum of the aggregated process Z
 (k)
i  can be found by adapting the power 

spectrum of the AR(1) process (Box et al., 1994, p. 58). After algebraic manipulations we get 

 s
 (k)
 γ (ω) / γ

 (k) 
0  = 2 + 4 ρ

 (k) 
1  

cos (2 π ω) – ρk 
1 + ρ2k – 2 ρk cos (2 π ω)  (18) 

For relatively small k, this gives a characteristic inverse S-shaped power spectrum that 

corresponds to a short memory process. 

 For a large aggregated timescale k, ρk becomes small and from (14) we conclude that the 

variance of the aggregated process is 
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 γ
 (k) 
0  ≈ k 

1 – ρ2

(1 – ρ)2 γ0 (19) 

i.e., it becomes proportional to the timescale k, similarly as in the white noise process. Also, 

from (17) we observe that ρ
 (k) 
1  becomes small too, as does ρ

 (k) 
j . Consequently, from (18) we 

conclude that the power spectrum becomes sγ(ω) / γ0 = 2, which characterises white noise. 

 In conclusion, if the process of interest is Markovian at the basic timescale, it tends to 

white noise for progressively increasing timescales. If we examine a higher order AR or 

ARMA process, the resulting statistical properties of the aggregated process are much more 

complicated than those of AR(1). However, they all exhibit the same behaviour for large 

timescale k, i.e., the aggregated process tends to white noise. 

3. Some real world examples 

Empirical evidence suggests that long historical hydroclimatic series may exhibit a behaviour 

very different from that implied by the ARMA processes. To demonstrate this we use two real 

world examples. The first is a series of the annual minimum water level of the Nile river for 

the years 622 to 1284 A.D. (663 observations), measured at the Roda Nilometer near Cairo 

(Toussoun, 1925, p. 366-385; Beran, 1994). The data is available from http://lib.stat.cmu.edu 

/S/beran. The second example is a series of standardised tree ring widths from a 

paleoclimatology study at Mammoth Creek, Utah, for the years 0-1989 (1990 values; Year 0 

in fact stands for 1 B.C. as the calendar does not contain Year 0). The data, originated from 

pine trees at elevation 2590 m, latitude 37:39, longitude 112:40 (Graybill, 1990) is available 

from ftp://ftp.ngdc.noaa.gov/paleo/treering/chronologies/asciifiles/usawest/ut509.crn. 

 In Figure 1 we have plotted the data values versus time for both example data sets. In 

addition, we have plotted the 5-year and 25-year averages, which represent the aggregated 

processes at timescales k = 5 and 25, respectively. For comparison we have also plotted a 

series of white noise with statistics same to those of standardised tree rings. We can observe 

that fluctuations of the aggregated processes, especially for k = 25, are much greater in the 

real world time series than in the white noise series. These fluctuations could be taken as 

nonstationarities, that is, deterministic rising or falling trends that last 100-200 or more years. 
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For example, if one had available only the data of the period 700-800 of either of the two time 

series, he or she would speak about a deterministic falling trend; similarly, one would speak 

about a regular rising trend of the Nile level between the years 1000-1100 or of the Utah 

series between years 100-300. However, the complete pictures for both series suggest that 

these trends are parts of large-scale random fluctuations rather than deterministic trends. 

 In Figure 2 we have plotted on logarithmic diagrams the standard deviation of the 

aggregated processes versus timescale k for the two example data sets. For comparison we 

have also plotted theoretical curves for the white noise and AR(1) models (equations (7) and 

(14), respectively). Clearly, the plots of both series are almost straight lines on the logarithmic 

diagram with slopes 0.75-0.85. Both the white noise and the AR(1) models depart 

significantly from historical data, resulting in a slope equal to 0.5. 

 Furthermore, in Figure 3 we have plotted the autocorrelation coefficients of the aggregated 

processes for lag one and lag two, versus the timescale k, for the two example data sets. For 

comparison we have also plotted theoretical curves for the AR(1) model. The empirical 

autocorrelation coefficients are almost constant for all timescales whereas the AR(1) model 

results in autocorrelations that drop down to zero for large timescales. 

 Finally, in Figure 4 we have plotted the autocorrelation functions of the two example time 

series at the basic (annual) timescale along with the theoretical curves of the AR(1) model. 

Clearly, the curves of the AR(1) vanish off for lags 4-10 whereas the curves of the historical 

series are fat tailed and do not vanish for lags as high as 50. In conclusion, this discussion 

provides some further evidence, using some additional other means, to the well-known fact 

that the AR(1) model is inconsistent with hydroclimatic reality; a similar conclusion can be 

drawn for more complex processes of the ARMA type.   

4. The fractional Gaussian noise process 

To restore consistency with reality, Mandelbrot (1965) introduced the process known as 

fractional Gaussian noise (FGN). The FGN process can be defined in discrete time (which is 

our scope here) in a manner similar to that used in continuous time (e.g. Saupe, 1988, p. 82; 
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Abry et al., 1995). Specifically, the FGN process can defined in terms of the cumulated 

process Z
 (k)

i  by 

 Z
 (k)

i  =
d
 ⎝⎜
⎛

⎠⎟
⎞k

 l 

H

  Z
 (l)
j  (20) 

where the symbol =
d
 stands for equality in (finite dimensional joint) distribution and H is a 

positive constant (0 < H < 1) known as the Hurst exponent (or coefficient). Equation (20) is 

valid for any integer i and j (that is, the process is stationary) and any timescales k and l. As a 

consequence, for i = j = l = 1 we get 

 γ
 (k)
0  := Var[Z

 (k)
i ] = k2H γ0 (21) 

Thus, the standard deviation is a power law of k with exponent H, which agrees with the 

observation on the real world cases of section 3. The extremely simple relation (21) can serve 

as the basis for estimating H (Montanari et al., 1997).  

 It is easy then to show (see Appendix A2) that, for any aggregated timescale k, the 

autocovariance function is independent of k, again agreeing with the observation of section 3. 

Specifically, it is given by 

 ρ
 (k)
j  = ρj = (1 / 2) [(j + 1)2H + (j – 1)2H ] – j2H,      j > 0 (22) 

Apart from the first few terms, this function is very well approximated by 

 ρ
 (k)
j  = ρj = Η (2 Η – 1) j 2 H – 2 (23) 

which shows that autocorrelation is a power function of lag. 

 Notably, (22) can be obtained from a continuous time process Ξ(t) with autocorrelation 

Cov[Ξ(t), Ξ(t + τ)] = a τ 2 H – 2 (with constant a = Η (2 Η – 1) γ0), by discretising the process 

using time intervals of any length δ and taking as Xi the average of Ξ(t) in the interval [i δ, 

(i + 1) δ]. This enables an approximate calculation of the power spectrum of the process as 

 s
 (k)
 γ (ω) = 2 ∑

j = –∞

∞
  γ

 (k)
 j  cos (2 π j ω) ≈ 4 ⌡⌠

0

 ∞
  a τ 2 H – 2 cos (2 π τ ω) dτ (24) 
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which results in the approximation s
 (k)
γ (ω) ≈ a΄ ω1 – 2 H. To find the constant a΄ so as to 

preserve exactly the process variance γ0 we use (10) to get 

 γ
 (k)
 0  = ⌡⌠

0

1/2

  a΄ ω
1 – 2 H dω = 

a΄
(2 – 2 H) 22 – 2 H  (25) 

from which we finally obtain 

 s
 (k)
γ (ω) / γ

 (k)
 0  ≈ 4 (1 – H) (2 ω)1 – 2 H (26) 

which is a power law of the frequency ω. 

 Similarly to the AR(1) process, which uses one single parameter ρ to express the 

correlation structure of the process, the FGN process uses again one parameter, the Hurst 

exponent H. Therefore we can characterise the FGN process as a simplified model of reality, 

noting that it is much more effective in representing hydroclimatic series than the AR(1) 

process. A generalised and comprehensive family of processes, which can have a larger 

number of parameter and incorporates both the FGN and the ARMA processes, has been 

introduced by Koutsoyiannis (2000a). 

 Comparing the FGN process to the AR(1) process in terms of the expressions of the basic 

statistical properties at multiple timescales, we observe that the former is rather simpler than 

the latter. Thus, the expression of the process variance at any scale k (equation (21)) is much 

simpler that that of AR(1) (equation (14)). Similarly, the expression of the process correlation 

at any scale k (equation (22))) is simpler that that of AR(1) (equations (16) and (17)). 

5. A physical explanation 

We are very familiar with a white noise process, a process where each event is totally 

independent from previous ones, e.g., a sequence of outcomes of consecutive throws of dice. 

Under the assumption of a stationary climate, the maximum flood peaks of consecutive years 

form a white noise process, as well, as there is no stochastic dependence between flood events 

belonging to different hydrologic years. We are less familiar with processes that have some 

memory, but we can understand Markovian (e.g., AR(1)) processes. For example, Yevjevich 
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(1972, p. 27) explained that the annual flow series is dependent and follows a Markovian 

process. To show this, Yevjevich assumed that the catchment is stimulated by an effective 

precipitation process that is white noise and that the water carry-over from year to year is 

ruled by a (groundwater) recession curve that is an exponential function of time. 

 However, the FGN process is very different from a Markovian process in that it implies a 

fat tailed autocorrelation function. For instance, if the Hurst coefficient is 0.85, as in the Nile 

example given in section 3, then the autocorrelation for lag 100 (years) is as high as 0.15, 

whereas if the process were Markovian the autocorrelation would be practically zero even for 

lags 10 times less. Does the explanation of the this behaviour of natural systems, such as 

Nile’s water level or Mammoth Creek’s tree ring widths, rest on the self-organised criticality 

principle (Bak, 1996, pp. 21, 22, 31, 37), i.e., a cooperative behaviour, where the different 

items of large systems act together in some concerted way? Or, is there any natural 

mechanism inducing a long memory to the system, which is responsible for the high 

autocorrelation for a lag of 100 years or more? 

 The author’s explanation is much simpler and relies upon an ‘absence of memory’ concept 

rather than a ‘long-term memory’ concept. That is, we set the hypothesis that not only does 

the system ‘disremember’ what was the value of the process 100 years (or more) ago, but it 

further ‘forgets’ what the process mean at that time was. This explanation is consistence with 

the assertion of the National Research Council (1991, p. 21) that climate “changes irregularly, 

for unknown reasons, on all timescales”. 

 To demonstrate our explanation let us start with a (easy to understand) Markovian process 

Ui, like the one graphically demonstrated in Figure 5(a), with mean µ := E[Ui], variance γ0 and 

lag one autocorrelation coefficient ρ = 0.20. The autocorrelation function (given by (13)) for 

lags up to 1000 is shown in Figure 6(a) along with the autocorrelation function for the FGN 

process with same lag one autocorrelation coefficient (0.20). We observe the large difference 

of the two autocorrelation functions: that of the Markovian process practically vanishes off at 

lag 4 whereas that of the FGN process has positive values for lags as high as 100. 

 Now, let as construct a second process Vi by subtracting from the process Ui its mean E[Ui] 

= µ and superimposing the result to a new random process M that has again mean µ (see 
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explanatory sketch on Figure 5(b)). From a practical point of view, Vi could be consider 

similar to Ui but with time varying mean M. For the latter we assume that (a) any realisation 

m of M lasts for a number of years N and is independent from previous realisations; (b) N is a 

random variable exponentially distributed with mean λ. (This means that N can take non-

integer values, which is not a problem). In other words, M takes a value m(1) that lasts n1 

years, then it changes to a value m(2) that lasts n2 years, etc. The exponential distribution of N 

indicates that the points of change are random points in time (Papoulis, 1991, p. 57). If we 

denote Mi the instance of the M process at time i, it can be shown that Mi is also Markovian 

with lag one autocorrelation φ := e–1 / λ (the proof is omitted). The process Vi can be expressed 

in terms of Ui and Mi as 

 Vi = Ui + Mi – µ (27) 

For a conceptualisation of Vi let as consider the simpler case that Mi is a deterministic 

component, rather that a random process, with known value mi at any time i, in which case Vi 

= Ui + mi – µ. Then Vi would be identical in distribution with Ui except that its mean would be 

E[Ui] + mi – µ = mi rather than µ. That is, Vi would be nonstationary with a time varying mean 

mi (and all other moments constant in time). Returning back to our initial assumption that Mi 

is a random process, we infer from (27) that, since Vi is the sum of two stationary processes 

(Ui and Mi), it is a stationary process itself with mean µ.  

 It can be easily shown from (27) that the autocorrelation of Vi for lag j is 

 Corr[Vi, Vi + j] = (1 – c)ρ j + c φ j (28) 

where c := Var[Mi] / (Var[Mi] + Var[Ui]). Setting for instance λ = 7.5 years and c = 0. 146 we 

get the autocorrelation function shown in Figure 6(b), which has departed from the AR(1) 

autocorrelation and approached the FGN autocorrelation. 

 Further, let us take another step to construct a third process Wi by subtracting from the 

process Vi its mean E[Vi] = µ and superimposing the result to a new random process P that has 

again mean µ (see explanatory sketch on Figure 5(c)). For the latter we make similar 
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assumptions as in the previous step denoting by ν the mean time between changes of the value 

of P and setting ξ := e–1 / ν. The resulting composite process will be 

 Wi = Vi + Pi – µ = Ui + Mi + Pi – 2 µ (29) 

Working as in the previous step we find 

 Corr[Wi, Wi + j] = (1 – c1 – c2)ρ j + c1 φ j + c2 ξ j (30) 

where c1 and c2 are positive constants (with c1 + c2 < 1). Setting for instance λ = 7.5 years, ν = 

200 years, c1 = 0.146 and c2 = 0.036 we get the autocorrelation function shown in Figure 6(c), 

which has now become almost indistinguishable from the FGN autocorrelation for time lags 

from 1 to 1000. 

 This example illustrated that a Markovian underlying process can result in a nearly FGN 

process if there occur random fluctuations of the mean of a process at two different scales 

(e.g., 7.5 and 200 years), yet the resulting composite process being stationary. If we consider 

that fluctuations occur at a greater number of timescales, the degree of approximation of the 

composite process to the FGN process will be even better and can cover time lags greater than 

1000 (although the extension to lags beyond 1000 may not have any practical interest). In 

conclusion, the irregular changes of climate that, according to National Research Council 

(1991, p. 21), occur on all time scales can be responsible for, and explain, the Hurst 

phenomenon. 

 In the above example we considered that the process U, which represents the random 

fluctuations at the finest timescale, takes different values at each time step whereas processes 

M and P, which represent random fluctuations at an intermediate and a large timescale, may 

have the same value for several time steps. This assumption was done for the sake of a 

simpler demonstration and it is not a structural assumption at all; without any change we 

could assume that M and P take different values at each time step, provided that their 

covariance structure remains Markovian with the same autocorrelation.  

 The above explanation may seem similar (from a practical point of view) to that by Klemes 

(1974), who attributed the Hurst phenomenon to non-stationary means. However, there is a 
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fundamental difference here. As shown in the above analysis, we do not assume that means 

are nonstationary but rather, they are randomly varying at several scales. Nonstationarity of 

the mean would be the case if there existed a deterministic function expressing the mean as a 

function of time. Even though in some hydrologic texts (e.g., Kottegoda, 1980, p. 26), the 

falling or rising large-scale trends, traced in several hydrological time series, are classified as 

‘deterministic components’ and are expressed as, say, linear functions of time, it is the 

author’s opinion that these trends are not deterministic at all. For example, (as already 

discussed in section 3) the 25-year moving averages on the time series of Figure 1 indicate 

that there exist falling and rising large-scale trends but they follow an irregular random 

pattern rather than a regular deterministic one.  

 The conclusion of the above demonstration is that the nonstationarity notion is not 

necessary at all to explain the Hurst phenomenon. A stationary process can capture the Hurst 

effect and this agrees with Mandelbrot’s notion. However, our explanation is contrary to the 

concept of long memory; the high autocorrelations appearing for high lags do not indicate 

long memory but they are a consequence of the large-scale random fluctuations as 

demonstrated with our simple example.      

6. Simple algorithms to generate fractional Gaussian noise 

Below we propose three algorithms that are based on the above-discussed properties of FGN 

and can be used to provide approximations of FGN good for practical hydrological purposes. 

In principle, all algorithms provided can be tuned to become as accurate as demanded. 

However, here we preferred to give emphasis to simplicity rather than accuracy. 

Theoretically, the algorithms can perform for any value of the Hurst exponent H in the 

interval (0, 1). However we have tested them on the subinterval (0.5, 1), which corresponds to 

the Hurst phenomenon (when H < 0.5 the autocorrelation function becomes negative for any 

lag, a case that is not met in hydrologic practice). 
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6.1 A multiple timescale fluctuation approach 

In section 5 we saw that the weighted sum of three exponential functions of the time lag 

(equation (29)) can give an acceptable approximation of the autocorrelation function 

(equation (30)) of the FGN process at the basic timescale. This observation can lead to a 

(rather ‘quick and dirty’) algorithm to generate FGN. An extensive numerical investigation 

showed that the values of parameters ρ, φ, and ξ that appear in (30), which provide the best (in 

terms of mean square error) approximation of (22) are given by the following equations 

 ρ = 1.52 (H – 0.5)1.32 ,  φ = 0.953 – 7.69 (1 – H)3.85, 
  (31) 

 ξ = 
⎩⎪
⎨
⎪⎧0.932 + 0.087 H H ≤ 0.76

0.993 + 0.007 H H > 0.76
  

The remaining parameters c1 and c2 can be then estimated such that the approximate 

autocorrelation function (30) match the exact function (22) for two lags, namely for lags 1 and 

100. (Their values result by solving two linear equations). Comparison plots of approximate 

autocorrelation functions based on equations (30) and (31) versus the exact autocorrelation 

functions of the FGN process for various values of the Hurst exponent H are shown in Figure 

7. 

 In section 5 we also saw how to synthesise a process with the autocorrelation function (30) 

by assuming random changes of the mean on two timescales. However, there is a simpler way 

to utilise (30) for generation of a time series. Specifically, (30) represents the sum of three 

independent AR(1) processes like that in (12), with lag one correlation coefficients ρ, φ, and 

ξ, and variances (1 – c1 – c2) γ0, c1 γ0, and c2 γ0, respectively. 

 It must be mentioned that this algorithm is based essentially on the same principle with the 

fast fractional Gaussian noise (FFGN) algorithm (Mandelbrot, 1971); the differences are that 

it uses only 3 AR(1) components, much less than the FFGN, and the parameters of the 

algorithm are determined by the much simpler equation (31). Although the achieved 

approximation with the 3 AR(1) components is sufficient in practice for lags as high as 1000, 

it can be improved by increasing the number of the AR(1) components to 4, 5, etc. However, 
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(31) will be not applicable then and the variances and lag one autocorrelations of the 

components must be estimated by minimising the mean squared departure of the composite 

autocorrelation function from that of the FGN process.  

6.2 A disaggregation approach 

The simple expressions of the statistics of the aggregated FGN process make possible a 

disaggregation approach for generating a time series of a FGN process. Specifically, let us 

assume that be the desired length n of the synthetic series to be generated is 2m where m is an 

integer (e.g., n = 2, 4, 8, 16, …; if n is not a power of 2 we can increase it to the next power of 

2 and then discard the redundant generated items). We first generate the single value of Z
(n)
1  

knowing that its variance is (from (21)) n2H γ0. Then we disaggregate Z
(n)
1  into two variables at 

the timescale n / 2, i.e. Z
(n / 2)
1  and Z

(n / 2)
2  and we proceed that way until the series Z

(1)
1  ≡ X1, …, 

Z
(1)
n ≡ Xn is generated (see explanatory sketch on Figure 8). 

 The disaggregation algorithm that we propose reminds the midpoint displacement method 

(Saupe, 1988, p. 84) but is more accurate. It is based on a disaggregation technique introduced 

by Koutsoyiannis (2000a). Since it is an induction technique it suffices to describe one step of 

the method application. Let us assume that we have completed the generation at the timescale 

k < n and we are generating the time series at the next timescale k / 2. We consider one 

generation step only, in which we disaggregate the higher-level amount Z
(k)
i  (1 < i < n / k) into 

two lower-level amounts Z
(k / 2)
2 i – 1 and Z

(k / 2)
2 i  such that 

 Z
(k / 2)
2 i – 1 + Z

(k / 2)
2 i  = Z

(k)
i  (32) 

Thus, it suffices to generate Z
(k / 2)
2 i – 1 and then obtain Z

(k / 2)
2 i  from (32). At this generation step we 

have available the already generated values of previous lower-level time steps, i.e., Z
(k / 2)
1 , …, 

Z
(k / 2)
2 i – 2 and of next higher-level time steps, i.e., Z

(k)
i + 1, …, Z

(k)
n / k (see explanatory sketch on 

Figure 8). Theoretically, it is necessary to preserve the correlations of Z
(k / 2)
2 i – 1 with all previous 

lower-level variables and all next higher-level variables. However, we can get a very good 

approximation if we consider correlations with only one higher-level time step behind and one 

ahead. Under this simplification, Z
(k / 2)
2 i – 1 can be generated from the linear relationship 
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 Z
(k / 2)
2 i – 1 = a2Z

(k / 2)
2 i – 3 + a1Z

(k / 2)
2 i – 2 + b0 Z

(k)
i  + b1 Z

(k)
i + 1 + V (33) 

where a2, a1, b0 and b1 are parameters to be estimated and V is innovation whose variance has 

to be estimated, too. All unknown parameters can be estimated in terms of correlations of the 

form Corr[Z
(k / 2)
2 i – 1, Z

(k / 2)
2 i – 1 + j] = ρj where ρj is given by (22). Specifically, applying the 

methodology by Koutsoyiannis (2000b) we find 

 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

a2

a1

b0

b1

 = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

1 ρ1 ρ2 + ρ3 ρ4 + ρ5

ρ1 1 ρ1 + ρ2 ρ3 + ρ4

ρ2 + ρ3 ρ1 + ρ2 2(1 + ρ1) ρ1 + 2ρ2 + ρ3

ρ4 + ρ5 ρ3 + ρ4 ρ1 + 2ρ2 + ρ3 2(1 + ρ1)

–1

  

⎣⎢
⎢⎡

⎦⎥
⎥⎤

ρ2

ρ1

1 + ρ1

ρ2 + ρ3

 (34) 

and 

 Var[V] = γ
 (k / 2)
0 (1 – [ρ2, ρ1, 1 + ρ1, ρ2 + ρ3] [a2, a1, b0, b1]T ) (35) 

where the superscript T denotes the transpose of a vector. 

 Note that when i = 1 there are no previous time steps and thus the first two rows and 

columns of the above matrix and vectors are eliminated. Similarly, when i = n / k, there is no 

next time step and thus the last row and column of the above matrix and vectors are 

eliminated. The sequences of previous and past variables that are considered for generating 

each lower-level variable, and the related parameters, can be directly expanded, to increase 

the accuracy of the method. However, as we will see in section 6.4, the above minimal 

configuration of the method gives satisfactory results. 

6.3 A symmetric moving average approach 

Koutsoyiannis (2000a) introduced the so call symmetric moving average (SMA) generating 

scheme that can be used to generate any kind of stochastic process with any autocorrelation 

structure or power spectrum. Like the conventional (backward) moving average (MA) 

process, the SMA scheme transforms a white noise sequence Vi into a process with 

autocorrelation by taking the weighted average of a number of Vi. In the SMA process the 

weights aj are symmetric about a centre (a0) that corresponds to the variable Vi, i.e., 
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 Xi = ∑
j = –q

q
 a|j| Vi + j = aq Vi – q + … + a1 Vi – 1 + a0 Vi + a1 Vi + 1 + … + aq Vi + q (36) 

where q theoretically is infinity but in practice can be restricted to a finite number, as the 

sequence of weights aj tends to zero for increasing j. The autocovariance implied by (36) is  

 γj = ∑
l = –q

q – j
 a|l| a|j + l|,      j = 0, 1, 2, …  (37) 

 Koutsoyiannis (2000a) also showed that the discrete Fourier transform sa(ω) of the aj 

sequence is related to the power spectrum of the process sγ(ω) by 

 sa(ω) = 2 sγ(ω) (38) 

This enables the direct calculation of sa(ω), which in the case of FGN, given (26), will be 

 sa(ω) ≈ 2(2 – 2 H) γ0 (2 ω)0.5 – H (39) 

Comparing (26) and (39) we observe that sa(ω) is identical to the power spectrum of another 

FGN process with Hurst exponent H΄ = (Η + 0.5) / 2 and variance [ 2 – 2 H / (1.5 – H)] γ0. 

Consequently, 

 aj ≈ 
(2 – 2 H) γ0

3 – 2H   [(j + 1)H + 0.5 + (j – 1)H + 0.5 – 2 jH + 0.5],      j > 0 (40) 

 In conclusion, the generation scheme (36) with coefficients aj determined from (40) can 

lead to a very easy algorithm for generating FGN. This method can also preserve the process 

skewness ξΧ by appropriately choosing the skewness of the white noise ξV. The relevant 

equations for the statistics of Vi, which are direct consequences of (36), are  

 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

a0 + 2 ∑
j = 1

s
 aj  E[Vi] = E[Xi],    Var[Vi] = 1,      

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

a0
3+ 2 ∑

j = 1

q
 aj

3  ξV = ξΧ γ0  
3/2 (41) 

 Given that the weights aj are q + 1 in total, the model can preserve the first q + 1 terms of 

the autocovariance γj of the process Xi. Thus, the number q must be chosen at least equal to 

the desired number of autocorrelation coefficients m that are to be preserved. In addition, the 
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ignored terms aj beyond aq must not exceed an acceptable tolerance β γ0. These two terms in 

combination with (23) and (40) result in  

 q ≥ max⎣
⎢
⎡

⎦
⎥
⎤

m‚ ⎝⎜
⎛

⎠⎟
⎞2 β

H2 – 0.25

1 / (H – 1.5)

 (42) 

The number q can be very large (on the order of thousands to hundred of thousands) if H is 

large (e.g. > 0.9) and β is small (e.g. < 0.001). Approximate autocorrelation functions for lags 

up to m = 10 000 based on equations (36) and (40) versus the exact autocorrelation functions 

of the FGN process for various values of the Hurst exponent H and the number of weights q 

are shown in Figure 9.  

 The accuracy of the method depends of the number q. However, even when q → ∞ the 

method does not become exact because of the approximate character of (40). Although more 

accurate estimates the aj series can be obtained numerically by a method by Koutsoyiannis 

(2000a), the estimates given by (40) are sufficiently accurate for practice. This is verified in 

Figure 9 where theoretical and approximate autocorrelation functions are almost 

indistinguishable. 

6.4 Demonstration of the methods 

The three proposed methods for generating FGN are demonstrated by synthesising records 

with length, mean, variance and Hurst exponent equal to those of the historical standardised 

tree rings series at Mammoth Creek, Utah. The generated synthetic records using all three 

methods are plotted in Figure 10. In comparison with the original series of Figure 1 (middle) 

we observe that all three series exhibit a similar general shape with the same fluctuation 

amplitudes at all plotted timescales (1, 5 and 25 years). Figure 11 depicts the standard 

deviation of the aggregated processes Z
(k)
i  versus timescale k for the three synthetic time series 

generated. For comparison we have also plotted the theoretical curves of the AR(1) and FGN 

models. We observe that all three empirical curves are straight lines on the logarithmic plots 

with slope 0.75, i.e., equal to the assumed Hurst exponent. Figure 12 depicts the 

autocorrelation functions of the three synthetic time series at the basic (annual) scale for lags 
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up to 50. For comparison we have also plotted the theoretical curves of the AR(1) and FGN 

models. We observe that the empirical autocorrelation functions of all three synthetic samples 

are close to the theoretical ones of the FGN process with H = 0.75. Some departures are due 

to sampling errors as the record length of 1990 values is too small to accurately estimate 

autocorrelations for lags as high as 50. To verify this, we also generated three additional 

synthetic records with lengths 64 000 values and plotted their autocorrelation functions on 

Figure 12, too. We observe that the empirical autocorrelation functions of the latter series are 

almost indistinguishable from the theoretical ones of the FGN process. In conclusion, this 

demonstration shows that all three methods are good for practical purposes. 

7. Conclusions and discussion 

A first conclusion of this paper is that the Hurst phenomenon can be formulated and studied in 

an easy manner in terms of the variance and autocorrelation of a stochastic process on 

multiple timescales, thus avoiding the use of the complicated concept of rescaled range (see 

Appendix A1). In addition, the Hurst phenomenon can have a simple and easily 

understandable explanation based on the random fluctuation of a hydrologic process upon 

different timescales. A second conclusion is that the generation of the fractional Gaussian 

noise, the process that reproduces the Hurst phenomenon, can be performed by either of three 

simple proposed methods that are based on (a) a multiple timescale fluctuation approach, (b) a 

disaggregation approach, and (c) a symmetric moving average approach. 

 Among these three methods, (a) and (b) are very fast as the required computer time on a 

common Pentium PC is of the order of tens of milliseconds (for the applications presented in 

section 6.4); this becomes of the order of seconds for method (c). Methods (b) and (c) can be 

directly extended to generate multivariate series as well (for a general framework of such 

adaptations for methods (b) and (c), see Koutsoyiannis, 2000b and 2000a, respectively). 

Methods (a) and (c) can generate series with skewed distributions. Method (c) is the most 

accurate but the other methods are sufficiently accurate and can be directly adapted to further 

improve accuracy, as discussed in section 6. In general, all three methods are good for 

practical hydrological purposes. Method (a) may be preferable for single variate problems 
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with symmetric or asymmetric distributions. Method (b) is best for single-variate or 

multivariate problems with normal distribution. Finally, method (c) is good for any kind of 

problems, single-variate or multivariate with symmetric or asymmetric distributions but it is 

slower than the other ones.  

 Obviously, the FGN process with its singe parameter H is a simplified model of reality. 

Therefore, it may be not appropriate for all hydroclimatic series, even though it is much more 

consistent with reality in comparison with the AR(1) process. A generalised and 

comprehensive family of processes, which can include a larger number of parameters and 

incorporates both the FGN and the ARMA processes, has been studied by Koutsoyiannis 

(2000a). 
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Appendix A1: Additional material related to the range concept 

Traditionally, the Hurst phenomenon and related topics are analysed in terms of several 

storage-related families of random variables (e.g., Salas, 1993, p. 19.14; Kottegoda, 1980, p. 

184) like the partial sum  

 Yn := X1 + X2 + … + Xn (43) 

of the stochastic process Xi, i = 1, 2, …, for any integer n; the range 

 Rn := max(Yi – i µ;1 ≤ i ≤ n) – min(Yi – i µ;1 ≤ i ≤ n) (44) 

where µ is the process mean; the adjusted range 

 R*
n  := max(Yi – i Yn / n;1 ≤ i ≤ n) – min(Yi – i Yn / n;1 ≤ i ≤ n) (45) 

where the true mean µ has been replaced by the sample mean Yn / n; and the rescaled range 

 R**
n   = R*

n  / Sn (46) 

where Sn is the sample standard deviation of X1, X2, …, Xn. We emphasise that Rn, R*
n  and R**

n   

are random variables whose distribution depends on the distribution of Xi, the number n and 

the covariance structure of the process X1, X2, …, Xn. The study of the distribution of Rn, R*
n , 

and particularly R**
n  , is a very complicated task. Even their means are difficult to estimate 

accurately (Yevjevich, 1972, pp. 148-173). For instance, in the simple case where X1, X2, …, 

Xn are independent normal variables with known µ and σ, the mean range is (Yevjevich, 1972, 

p. 151) 

 E[Rn] = σ 
 2 
π  ∑

i = 1

n
 
 1 
 i 

  (47) 

and in the yet simple case where Xi is an AR(1) Gaussian process with known µ and σ, the 

mean range is (Yevjevich, 1972, p. 158)  
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 E[Rn] = σ 
 2 

π (1 – ρ2) ∑i = 1

n
 

1 + ρ
i (1 – ρ) – 

2 ρ (1 – ρi)
i2 (1 – ρ)2   (48) 

(Interestingly, (48) is displayed on the cover of the book by Yevjevich (1972)).  

 For R*
n  and R**

n  , only approximate relations have been known. For example the mean 

adjusted range in the simple case where X1, X2, …, Xn are independent normal variables with 

known µ and σ, Yevjevich (1972, p. 152) presents the following equation, obtained by Monte 

Carlo simulation using 100 000 independent standard normal numbers: 

 E[R*
n ] ≈ σ ⎝

⎜
⎛

⎠
⎟
⎞π n

2  – 
 π 
2   (49) 

Generally, it is known that for all ARMA type processes, the rescaled range is asymptotically 

 E[R**
n  ] ≈ c  n   (50) 

and for the FGN process 

 E[R**
n  ] ≈ c nH   (51) 

where c is a constant (e.g., Bras and Rodriguez-Iturbe, 1985, p. 221).  

 Equation (51) has been traditionally used to estimate the Hurst coefficient. However, the 

uncertainty implied by (51) is very high. It suffices to say that H can result greater than one 

(for example, see Figures 7 and 8 in Vogel et al., 1998), which is not allowed theoretically.  

 From a conceptual point of view, the range concept corresponds to the mass curve analysis 

of a reservoir (plot of cumulated inflows and outflows), a graphical method first developed by 

Ripple in 1883 and widely used in reservoir design since then. In this regard, Rn represents the 

required storage of a reservoir operating without any spill or other loss and providing a 

constant outflow equal to the mean flow. Obviously, this is an oversimplification of a real 

reservoir. Therefore, this method has been rather abandoned today and the range concept has 

been replaced by probability-based design methods.  

 Because of the complications in definition and conceptualisation of the different range 

concepts, the complex relationships of their statistical properties, and the estimation problems, 
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we have avoided using these concepts in the paper. As shown in the paper, the concept of 

variance (or standard deviation) on multiple timescales is a much simpler and more accurate 

approach, which does not require the range concept at all. However, for the sake of 

compatibility with previous studies we have included in this appendix a set of figures related 

to the range concept.  

 Thus, in Figure 13 we have plotted the mean rescaled range R**
n   as a function of length n 

for the two example historical time series of section 3. We observe that (51) is validated with 

H = 0.88 for the Nile time series and H = 0.74 for the Utah time series. These values are close 

to the already estimated values (section 3 and Figure 2), H = 0.85 and H = 0.75, respectively.  

 In addition, in Figure 14 we have plotted the mean rescaled range R**
n   as a function of 

length n for the synthetic time series generated in section 6.4. We observe that the slopes of 

the empirical curves of R**
n   versus n on the logarithmic plot are close to the theoretical 

expectation H = 0.75.  

Appendix A2: Derivation of (22)  

We observe that 

 Z
 (k j + k)
1  = Z

 (k j)
1  + Z

 (k)
j + 1 (52) 

and consequently 

 Var[Z
 (k j + k)
1 ] = Var[Z

 (k j)
1 ] + Var[Z

 (k)
j + 1] + 2 Cov[Z

 (k j)
1 , Z

 (k)
j + 1] (53) 

From (21) we get 

 Var[Z
 (k j + k)
1 ] = ⎝⎜

⎛
⎠⎟
⎞k j + k

 k 

H

 Var[Z
(k)
1 ],    Var[Z

 (k j)
1 ] = ⎝⎜

⎛
⎠⎟
⎞k j

 k 

H

  Var[Z
 (k)
 1 ] (54) 

and we conclude that 

 Cov[Z
 (k j)
1 , Z

 (k)
j + 1] = (Var[Z

 (k)
 1 ] / 2) [(j + 1)2H – j2H – 1] (55) 

Besides, 
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 Z
 (k j)
1  = ∑

i = 1

j
 Z

 (k)
i  (56) 

so that 

 Cov[Z
 (k j)
1 , Z

 (k)
j + 1] = Var[Z

 (k)
 1 ] ∑

i = 1

j
  ρ

 (k)
i  (57) 

and thus 

 ∑
i = 1

j
  ρ

 (k)
i  = (1 / 2) [(j + 1)2H – j2H – 1] (58) 

Likewise, 

 ∑
i = 1

j – 1
  ρ

 (k)
i  = (1 / 2) [j2H – (j – 1)2H – 1] (59) 

Subtracting  (59) from (58) we get (22). 
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List of Figures 

Figure 1 Plots of the two example time series: (up) annual minimum water level of Nile; 

(middle) standardised tree rings at Mammoth Creek, Utah. For comparison we have also 

plotted (down) a series of white noise with statistics same with those of standardised tree 

rings.  

Figure 2 Standard deviation of the aggregated processes Z
(k)
i  versus timescale k (logarithmic 
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(up) annual minimum water level of Nile; (down) standardised tree rings at Mammoth Creek, 
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mean; (b) the same time series superimposed to a randomly fluctuating mean at a medium 

timescale; (c) the same time series further superimposed to a randomly fluctuating mean at a 
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constant mean; (b) the same process superimposed to a randomly fluctuating mean at a 
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at a large timescale (see text). 
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example historical data sets: (up) annual minimum water level of Nile; (down) standardised 

tree rings at Mammoth Creek, Utah. For comparison we have also plotted approximate 

theoretical curves for the white noise and FGN models. 

Figure 14 Mean rescaled range E[R**
k  ] versus time length k (logarithmic plots) for the three 
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Figure 1 Plots of the two example time series: (up) annual minimum water level of Nile; 

(middle) standardised tree rings at Mammoth Creek, Utah. For comparison we have also 

plotted (down) a series of white noise with statistics same with those of standardised tree 

rings. 
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Figure 2 Standard deviation of the aggregated processes Z
(k)
i  versus timescale k (logarithmic 

plots) for the two example data sets: (up) annual minimum water level of Nile; (down) 

standardised tree rings at Mammoth Creek, Utah. For comparison we have also plotted 

theoretical curves for the white noise and AR(1) models. 
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Figure 3 Lag one and lag two autocorrelation coefficients of the aggregated processes Z
(k)
i  

versus timescale k for the two example data sets: (up) annual minimum water level of Nile; 

(down) standardised tree rings at Mammoth Creek, Utah. For comparison we have also 

plotted the theoretical curves of the AR(1) model. 
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Figure 4 Autocorrelation functions of the two example time series at the basic (annual) scale: 

(up) annual minimum water level of Nile; (down) standardised tree rings at Mammoth Creek, 

Utah. For comparison we have also plotted the theoretical curves of the AR(1) model. 
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Figure 5 Illustrative sketch for multiple timescale random fluctuations of a process that can 

explain the Hurst phenomenon: (a) a time series from a Markovian process with constant 

mean; (b) the same time series superimposed to a randomly fluctuating mean at a medium 

timescale; (c) the same time series further superimposed to a randomly fluctuating mean at a 

large timescale. 
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Figure 6 Plots of the example autocorrelation functions of (a) the Markovian processes with 

constant mean; (b) the same process superimposed to a randomly fluctuating mean at a 

medium timescale; (c) the same process further superimposed to a randomly fluctuating mean 

at a large timescale (see text). 
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Figure 7 Approximate autocorrelation functions based on equations (30) and (31) versus the 

exact autocorrelation functions of the FGN process for various values of the Hurst exponent 

H. 

 

  
 
 
 
Z

(k / 2)
2 i + 2 

Z
(k / 2)
1  Z

(k / 2)
2  

Z
(k)
1  

Z
(k / 2)
2 i – 3 Z

(k / 2)
2 i – 2 Z

(k / 2)
2 i – 1 Z

(k / 2)
2 i  Z

(k / 2)
2 i + 1 Z

(k / 2)
2 i + 2 

Z
(k)
i – 1 Z

(k)
i  Z

(k)
i + 1 

Z
(k / 2)
2 n / k – 1 Z

(k / 2)
2 n / k 

Z
(k)
n / k 

Z
(n / 2)
1  Z

(n / 2)
2  

Z
(n)
1  

L 

L L

L

M M 

Current step 
 

Figure 8 Explanation sketch for the disaggregation approach for generation of a FGN time 

series. Grey boxes indicate random variables whose values have been already generated prior 

to the current step and arrows indicate the links to those of the generated variables that are 

considered in the current generation step. 
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Figure 9 Approximate autocorrelation functions based on equations (36) and (40) versus the 

exact autocorrelation functions of the FGN process for various values of the Hurst exponent H 

and the number of weights q. 
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Figure 10 Plots of the three synthetic time series generated using the statistics of standardised 

tree rings at Mammoth Creek, Utah, and implementing: (up) the multiple timescale 

fluctuation approach; (middle) the disaggregation approach; (down) the symmetric moving 

average approach. 
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Figure 11 Standard deviation of the aggregated processes Z

(k)
i  versus timescale k (logarithmic 

plots) for the three synthetic time series generated using: (up) the multiple timescale 
fluctuation approach; (middle) the disaggregation approach; (down) the symmetric moving 
average approach. For comparison we have also plotted the theoretical curves of the white 
noise and FGN models. 
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Figure 12 Autocorrelation functions of the three synthetic time series at the basic (annual) 
scale generated using: (up) the multiple timescale fluctuation approach; (middle) the 
disaggregation approach; (down) the symmetric moving average approach. For comparison 
we have also plotted the theoretical curves of the AR(1) and FGN models and empirical 
functions of three additional series with large length (64 000) generated using the same three 
methods. 
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Figure 13 Mean rescaled range E[R**
k  ] versus time length k (logarithmic plots) for the two 

example historical data sets: (up) annual minimum water level of Nile; (down) standardised 

tree rings at Mammoth Creek, Utah. For comparison we have also plotted approximate 

theoretical curves for the white noise and FGN models. 
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Figure 14 Mean rescaled range E[R**

k  ] versus time length k (logarithmic plots) for the three 
synthetic time series generated using: (up) the multiple timescale fluctuation approach; 
(middle) the disaggregation approach; (down) the symmetric moving average approach. For 
comparison we have also plotted approximate theoretical curves for the white noise and FGN 
models. 


