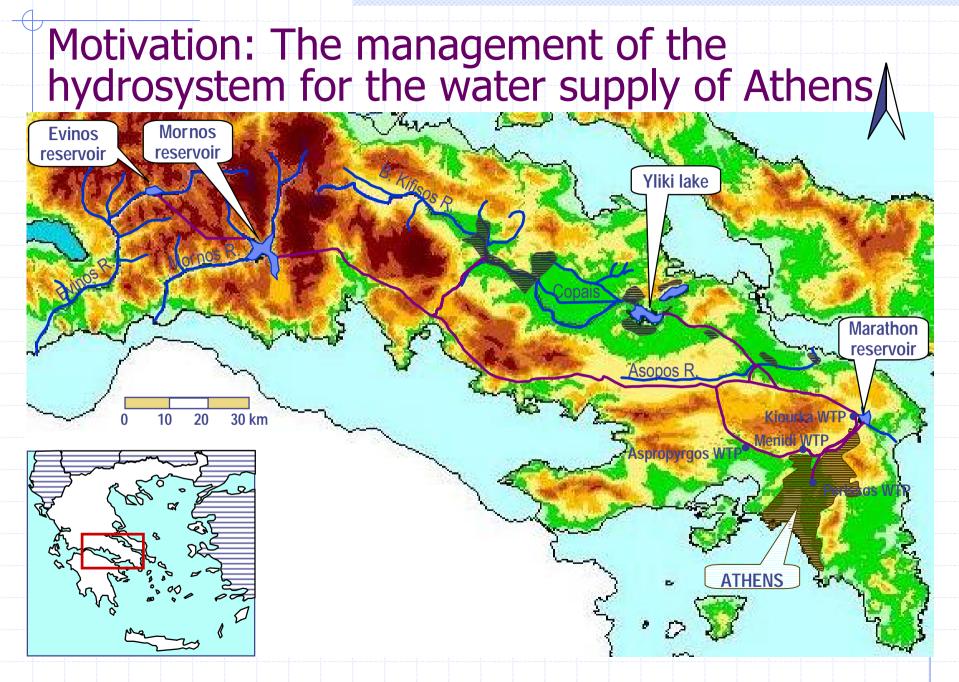
XXVI General Assembly of the European Geophysical Society Nice, France, 25 - 30 March 2001 Session HSC3/ Concepts of risk and uncertainty in reservoir design and control

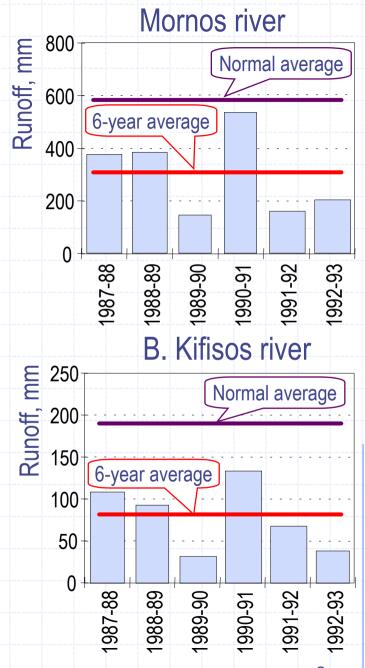
A stochastic hydrology framework for the management of multiple reservoir systems

Demetris Koutsoyiannis & Andreas Efstratiadis
Department of Civil Engineering, National Technical University, Athens



Requirements for stochastic simulation

- 1. Multivariate model
- Time scales from annual to monthly or sub-monthly
- 3. Preservation of essential marginal statistics up to third order (skewness)
- 4. Preservation of joint second order statistics (auto- and cross-correlations)
- 5. Capturing/reproduction of "patterns" observed in the last severe drought – Preservation of long-term persistence



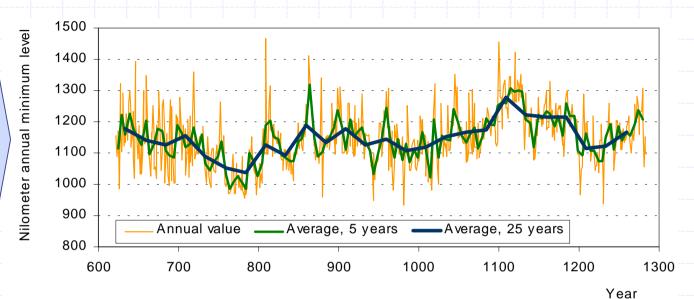
Climatic persistence versus climatic variability

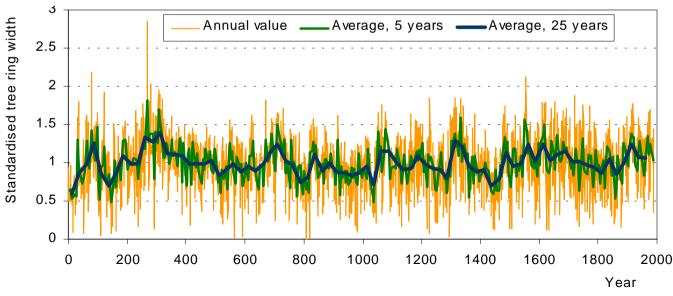
Annual minimum water level of the Nile river for the years 622 to 1284 A.D. (663 years)

Hurst exponent = 0.85

Standardised tree ring widths from a paleoclimatological study at Mammoth Creek, Utah, for the years 0-1989 (1990 years)

Hurst exponent = 0.75





Methodology 1: The generalised autocovariance function (GAS)

General expression

$$\gamma_j = \gamma_0 (1 + \kappa \beta j)^{-1/\beta}$$

where

 y_j : autocovariance for lag j

 y_0 : variance

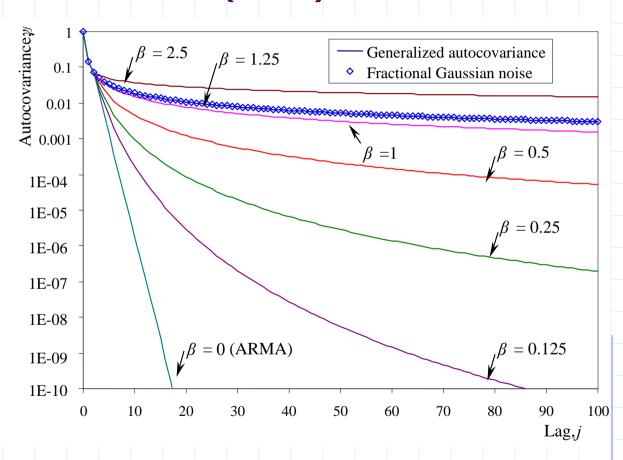
 κ , β : parameters

(The two parameters allow for preservation of γ_1 and Hurst exponent)

For
$$\beta = 0 \Rightarrow ARMA$$

$$\gamma_j = \gamma_0 \exp(-\kappa j)$$
For $\kappa = (1/\beta)(1 - 1/\beta)$

For $\kappa = (1/\beta) (1 - 1/\beta)^{-\beta}$ $(1 - 1/2\beta)^{-\beta} \Rightarrow \text{FGN}$



See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series *Water Resources Research*, 36(6), 1519-1534, 2000.

Methodology 2: Generalised generating scheme for any covariance structure

Typical (backward) moving average (BMA) scheme

$$X_i = ... + a_1 V_{i-1} + a_0 V_i$$

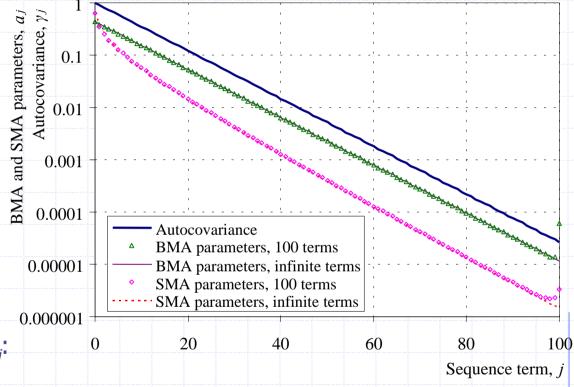
where V_i innovations and a_i parameters.

Symmetric moving average (SMA) scheme

$$X_i = \dots + a_1 V_{i-1} + a_0 V_i + a_1 V_{i+1} + \dots$$

SMA has several advantages over BMA. Among them, it allows a closed solution for a;

 $s_a(\omega) = [2 s_v(\omega)]^{1/2}$



where $s_a(\omega)$ and $s_v(\omega)$ the DFTs of the series a_i and γ_i , respectively.

Both schemes are applicable for multivariate problems.

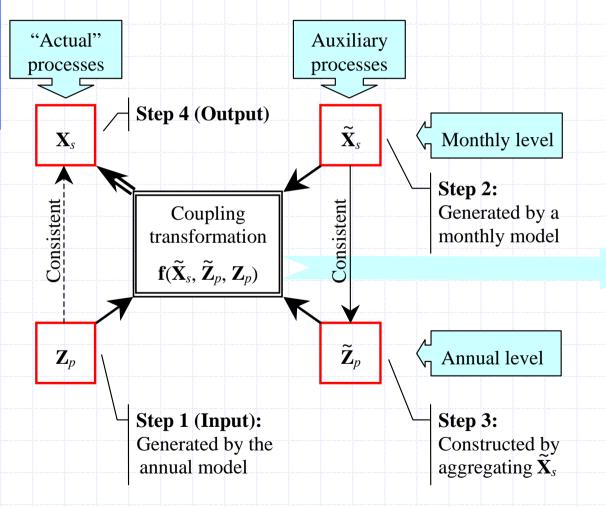
See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series Water Resources Research, 36(6), 1519-1534, 2000.

Methodology 3: Stochastic simulation in forecast mode

- In terminating simulations of a hydrosystem the present and past states must be considered.
- The observed values of the present and past must condition the hydrologic time series of the future.
- This is attainable using a two-step algorithm
 - 1. Generate future time series without reference to the known present and past values.
 - 2. Adjust future time series using the known present and past values and a linear adjusting algorithm.
- The linear adjusting algorithm:
 - 1. is expressed in terms of covariances among variables;
 - 2. preserves exactly means, variances and covariances;
 - 3. is easily implemented.

See details in: Koutsoyiannis, D., A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series *Water Resources Research*, 36(6), 1519-1534, 2000.

Methodology 4: Coupling stochastic models of different time scales



The linear transformation

$$\mathbf{X}_s = \widetilde{\mathbf{X}}_s + \mathbf{h} \ (\mathbf{Z}_p - \widetilde{\mathbf{Z}}_p)$$

where

$$\mathbf{h} = \operatorname{Cov}[\mathbf{X}_s, \mathbf{Z}_p] \cdot \left\{ \operatorname{Cov}[\mathbf{Z}_p, \mathbf{Z}_p] \right\}^{-1}$$

preserves the vectors of means, the variance-covariance matrix and any linear relationship that holds among \mathbf{X}_s and \mathbf{Z}_p .

See details in: Koutsoyiannis, D., Coupling stochastic models of different time scales, *Water Resources Research*, 37(2), 379-392, 2001.

Methodology 5: Preservation of skewness in multivariate problems via appropriate decomposition of covariance matrices

Consider any linear multivariate stochastic model of the form

$$Y = a Z + b V$$

where **Y**: vector of variables to be generated, **Z**: vector of variables with known values, **V**: vector of innovations, and **a** and **b**: matrices of parameters.

The parameter matrix **b** is related to a covariance matrix **c** by

$$\mathbf{b} \mathbf{b}^T = \mathbf{c}$$

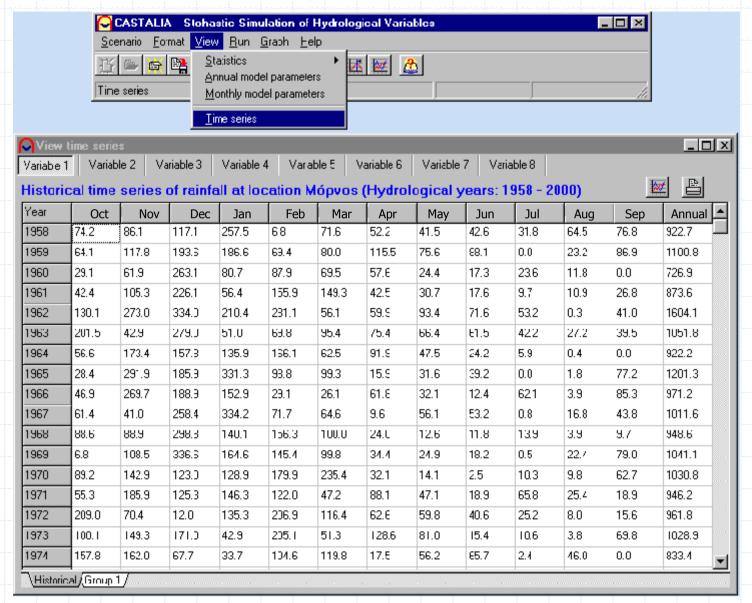
- This equation may have infinite solutions or no solution.
- The skewness coefficients ξ of innovations V depend on b.
- \bullet The smaller the values of ξ , the more attainable the preservation of the skewness coefficients of the actual variables Y.
- Therefore, the problem of determination of b can be solved in an optimisation framework, that combines
 - minimisation of skewness ξ , and
 - minimisation of the error $||\mathbf{b} \mathbf{b}^T \mathbf{c}||$.
- A fast optimisation algorithm has been developed for this problem.

See details in: Koutsoyiannis, D., Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, *Water Resources Research* 35(4), 1219-1229, 1999.

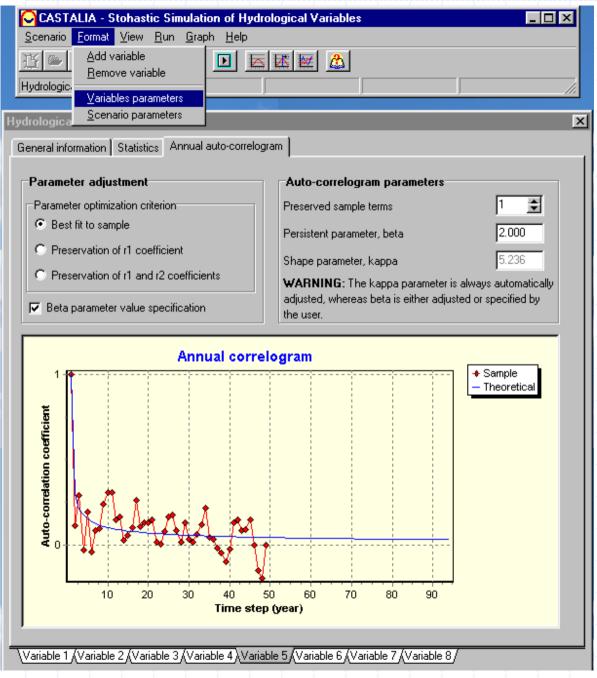
Implementation of the methodology: The **Castalia** software

- Designed as part of a decision support system for the water resource system of Athens
- Linked to a simulation-optimisation model of a hydrosystem
- Can also perform as a stand-alone software
- Written in **Delphi**; utilises **Oracle**.
- Simulates several hydrological variables at multiple sites
- Uses annual and monthly time scales
- Preserves:
 - essential marginal statistics up to third order (skewness)
 - joint second order statistics (auto- and cross-correlations)
 - long-term persistence

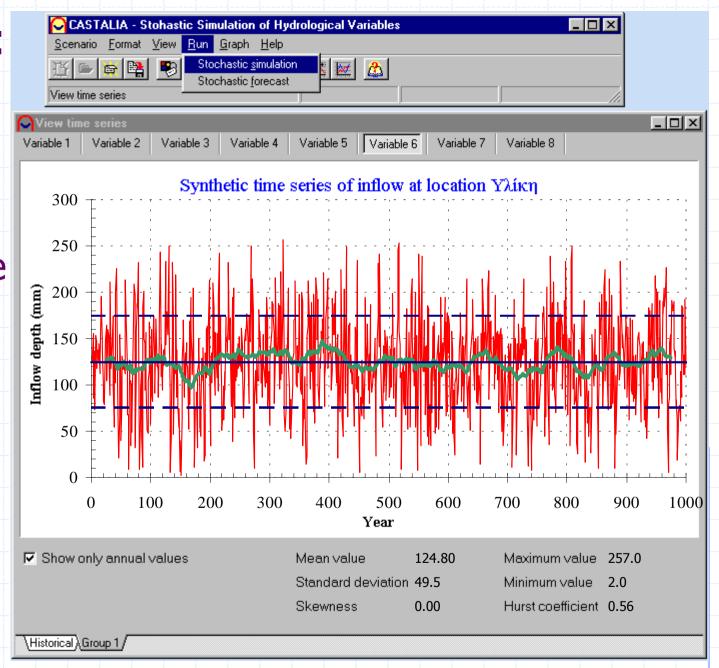
Castalia: Data base operations for time series



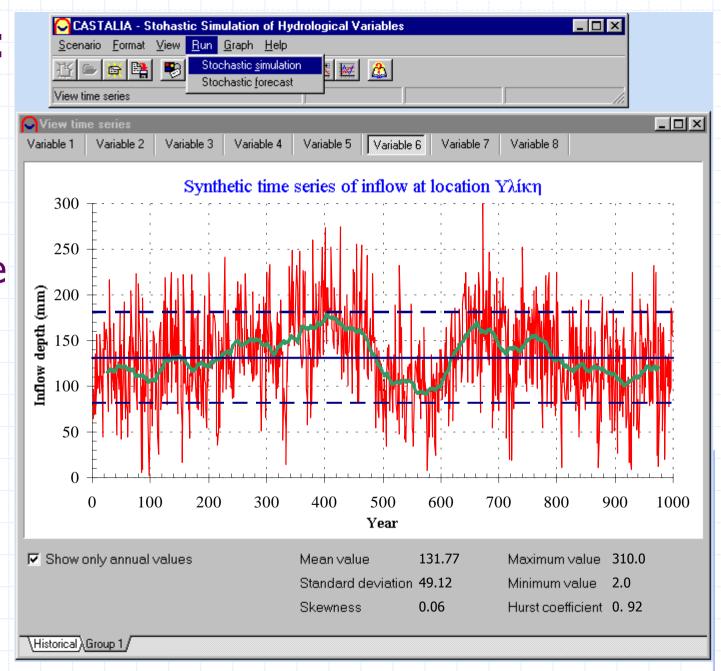
Parameter estimation-Parameters of autocorrelation and persistence



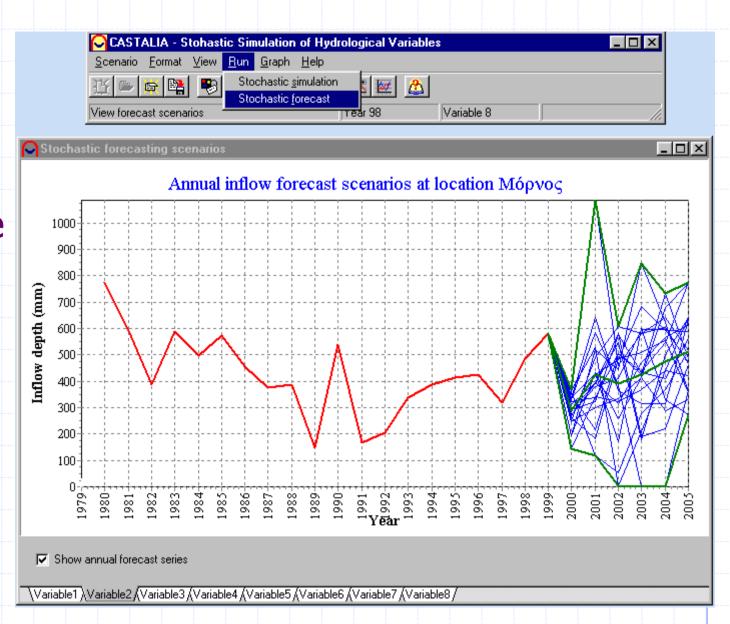
Stochastic simulation without long term persistence



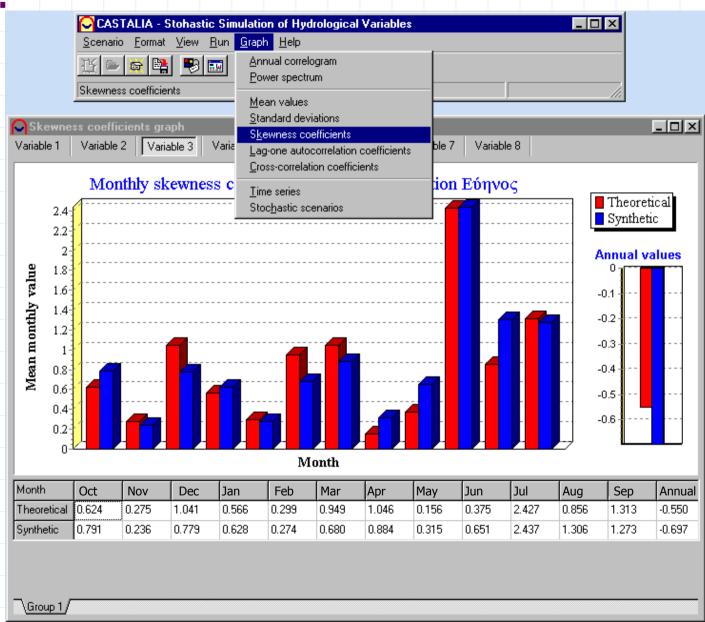
Stochastic simulation with long term persistence



Stochastic forecasting with long term persistence

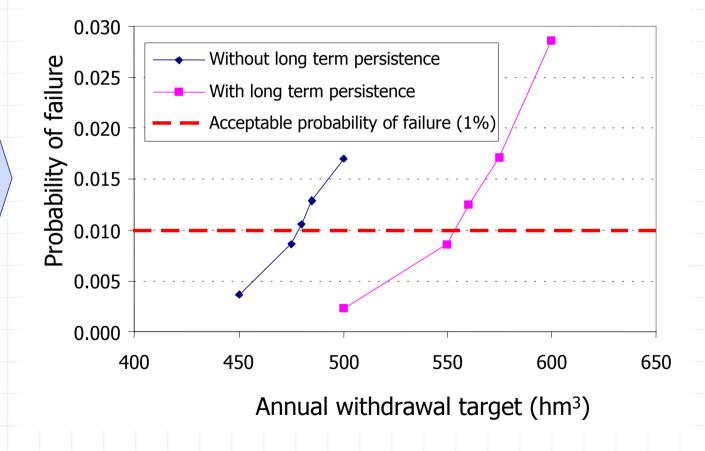


Preservation of marginal statistics – Skewness



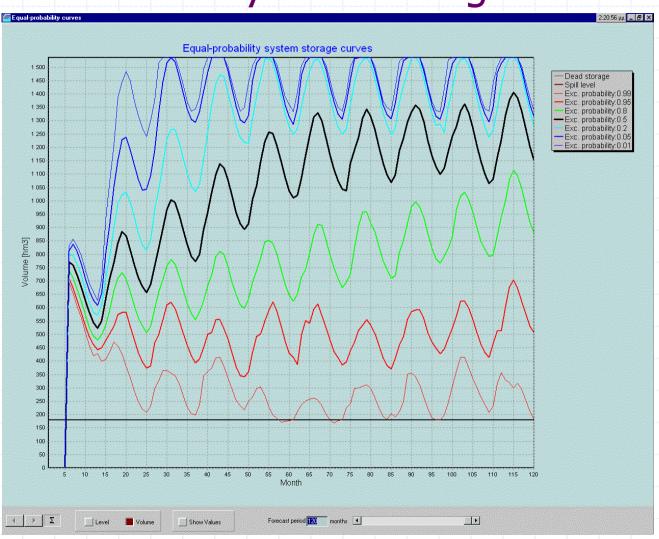
Utilisation of Castalia's results in the hydrosystem of the Athens water supply: System's firm yield

Results of steady-state simulations for 2000 years with and without longterm persistence



Utilisation of Castalia's results in the hydrosystem of the Athens water supply: Stochastic forecast of system storage

Evolution of quantiles of system storage (for several levels of probability of exceedance) for the next 10 years as a result of 200 terminating simulations with long-term persistence



Summary

- A generalised stochastic modelling framework for hydrological variables has been developed.
- The methodology involves the combination of novel stochastic techniques, and preserves longterm persistence and asymmetric distributions in multivariate, sequential or disaggregation, problems.
- The methodology has been implemented in the Castalia program.
- The methodology and the program have been tested in a large hydrosystem involving 4 hydrologic catchments with 4 reservoirs.