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Introduction 
 

The understanding of hydrological processes that occur in nature is one of the 

most important tasks for both hydrologists and civil engineers for the design of almost 

all hydrological applications and civil engineering works. Rainfall is the main input to 

all hydrological systems, and a wide range of hydrological analyses, for flood 

alleviation schemes, management of water catchments, water quality or ecological 

studies, require quantification of rainfall inputs at both daily and hourly time scales. 

This may be possible using empirical observations, but there is often a need to extend 

available data in terms of record length, temporal resolution and/or spatial coverage.  

In Europe and many other countries in the world, there is a large number of daily 

raingages, which have often been operational for a few decades and offer a large 

amount of daily data but at the same time there is a lack of sub-daily information due 

to the absence of hourly raingages or to the fact that the existing ones have been 

operational only for a few years making the length of the recorded series insufficient 

for all hydrological purposes and statistical analyses. 

Therefore a common problem in hydrological studies is the limited availability of data 

at appropriately fine temporal and/or spatial resolution. 

Rainfall disaggregation emerged as an important tool for facing this problem. 

Disaggregation techniques have the ability to increase the time or spatial resolution of 

certain processes, such as rainfall and runoff while simultaneously providing a 

multiple scale preservation of the stochastic structure of the hydrologic processes. 

This definition of disaggregation distinguishes it from downscaling, which aims at 

producing hourly data with the required statistics but that do not necessarily add up to 

the observed hourly data. 

The first developed disaggregation models were multivariate, i.e performed a 

simultaneous disaggregation at several sites. Typical examples of such models are 

those by Valencia and Schaake [1972, 1973], Mejia and Roussrelle [1976], Tao and 

Delleur [1976], Hoshi and Burges [1979], Todini [1980], Stedinger and Vogel [1984]. 

These models express the vector containing all unknown lower-level variables as a 

linear function of the higher-level variables of all sites and some innovation variates.  

Thus they attempt to reproduce all covariance properties between lower-level 

variables as well as those between lower-level and higher-level variables among all 
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sites and time steps. This results in a huge number of parameters because of the large 

number of cross correlations that they attempt to reproduce. 

 Different procedures reducing the required number of parameters have been 

developed. The staged disaggregation models [Lane 1979, 1982; Salas et al. 1980; 

Stedinger and Vogel 1984; Grygier and Stedinger 1988, 1990; Lane and Frevert 

1990] disaggregate higher-level variables at one or more sites to lower-level variables 

at those and other sites in two or more steps. The condensed disaggregation models 

[Lane 1979, 1982; Pereira et al. 1984; Oliveira et al. 1988; Stedinger and Vogel 

1984; Stedinger et al. 1985; Grygier and Stedinger 1988] reduce the number of 

parameters by explicitly modeling fewer of the correlations among the lower-level 

variables. Stepwise disaggregation schemes [Santos and Salas 1992; Salas, 1993] 

perform the disaggregation always in two parts. For example an annual value is 

disaggregated into 12 monthly values by first disaggregating the annual value into the 

first monthly and the sum of the remaining 11 months. Then the latter sum is 

disaggregated into the monthly value and the sum of the remaining 10 values, and so 

on until all monthly values are obtained. 

However, modeling schemes of this kind are not suitable for the disaggregation of 

rainfall for time scales finer than monthly, due to the skewed distributions and the 

intermittent nature of the rainfall process at fine time scales. Other disaggregation 

models have been proposed and used, particularly for the disaggregation of rainfall, 

but do not exhibit the generality of these linear schemes. 

Another stepwise disaggregation approach was proposed and developed by 

Koutsoyiannis and Xanthopoulos  (1990). This approach, called the “Dynamic 

Disaggregation Model” (DDM), at each step disaggregates a given amount in two 

parts, the variable of the next period and the amount to be disaggregated (in 

subsequent steps) across the remaining periods. In this respect, DDM is very similar 

to the Santos and Salas stepwise disaggregation scheme. However, there are some 

differences. At each step, DDM uses two modules from which one is a nonlinear 

generation module that disaggregates the given amount in two parts and the second is 

linear, closely related to a seasonal AR(1) also known as PAR(1), that determines the 

parameters required for the generation. 

In this way the overall model uses exactly the same parameter set as the PAR(1) 

model, which involves the minimum number of parameters, significantly lower than 

direct disaggregation schemes. 
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A further approach proposed and developed by Koutsoyiannis and Manetas (1996) is 

the “Simple disaggregation by Accurate Adjusting Procedures”. This method keeps 

some ideas of the Dynamic Disaggregation Model approach but is simpler. It initially 

retains the formalism, the parameter set, and the generation routine of the PAR(1) 

model and then uses an adjusting procedure to achieve the consistency of lower-level 

and higher-level variables by modifying  the values of the PAR(1) model as to 

preserve the additive property. Another idea that is used in this method is repetition: 

Instead of running the generation routine of the PAR(1) model one for each period, 

we run it several times and choose that combination of generated values, which is in 

closer agreement with the known value of the higher-level variable. 

  The general idea of the adjusting procedures in disaggregation developed by 

Koutsoyiannis and Manetas was later on combined with a successful generation 

model based upon a Poisson cluster process (Onof and Wheater 1993). This is the 

approach proposed in “Rainfall Disaggregation using Adjusting Procedures on a 

Poisson Cluster model” by Koutsoyiannis and Onof (2001). The rainfall model chosen 

is the Bartlett-Lewis because of its proven ability to reproduce important features of 

the rainfall field from the hourly to the daily scale and above. Then using the 

adjusting procedures the time series of lower-level (hourly) generated by the rainfall 

model are modified so as to be consistent with the given higher-level time series 

(daily) and simultaneously preserve the stochastic structure implied by the rainfall 

model. This methodology is of important practical interest because it offers the 

possibility to extend short hourly time-series using longer-term daily data at the same 

point and because, at the same time it represents a theoretical basis for application 

when no hourly data are available. 

 More recently Koutsoyiannis  (2001) studied the problem of multiple site 

rainfall disaggregation as a means for simultaneous spatial and temporal 

disaggregation at a fine time scale. He investigated the possibility of using available 

hourly information at one raingage to generate spatially and temporally consistent 

hourly rainfall information at several neighboring sites in the case, met very 

frequently, that the cross-correlation coefficients between the raingages are 

significant. The combination of spatial correlation and available single-site hourly 

rainfall information enables more realistic generation of the synthesized hyetographs, 

i.e. the synthetic series generated will resemble the actual one. 
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  This particular case of general multivariate spatial-temporal disaggregation 

problem is the subject of this thesis, which is essentially based on the disaggregation 

methodology proposed and studied by Koutsoyiannis. 

 In Chapter I there is a schematic description of two of the models proposed and 

studied by Koutsoyiannis et al. in the last decade and more specifically The Dynamic 

Disaggregation Model, Simple disaggregation by accurate adjusting procedures. 

These two models are introduced in the present work because the represent the 

theoretical basis that guided the development of two other models studied by 

Koutsoyiannis et al.  regarding the problems of single-site and multiple-site spatial 

temporal disaggregation at fine scale. 

The methodologies proposed for facing these problems are the subject of “Rainfall 

disaggregation using adjustment procedures on a Poisson cluster model” and 

“Multivariate Rainfall Disaggregation at a fine time scale” which are described in 

Chapters II and III respectively, along with their computer implementations, Hyetos 

and MuDRain. 

A detailed case study, concerning the application of the disaggregation procedure to 

the basin of Tiber River and conclusions on the methodology proposed are included in 

chapter IV. 

Some additional information on the implementation of the multivariate rainfall 

disaggregation, i.e. the help mode of the program MuDRain, is contained in the 

Appendix. 
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CHAPTER I 
 

THE DISAGGREGATION METHODOLOGY DEVELOPED IN 

NTUA 
Here are described two models regarding short-scale disaggregation, proposed and 

studied in the last decade by Koutsoyiannis. This section can be seen as a sort of path 

through time of the approaches chosen to achieve the multiple-site disaggregation at a 

fine scale.  

A dynamic model for short-scale rainfall disaggregation 
 

 The single-site dynamic disaggregation model developed by Koutsoyiannis 

and Manetas (1990) is a generalized step-by-step approach to stochastic 

disaggregation problems. The model development was intended for application to 

short-scale rainfall disaggregation problems. Important features of the model are: 

1. the modular structure (composed of two parts studied separately) allowing 

various configurations of the model 

2. the flexible step-by-step approach allowing the use of side procedures, 

adjusting properly the generated values in each step without loss of the 

additive property; 

3. the simple analytical equations allowing a varying number of low-level 

variables and varying scales. 

A combination of the dynamic disaggregation model with a developed rainfall model 

gives a point rainfall generator, performing with monthly through hourly time scales. 

The rainfall model can incorporate a varying number of parameters (4 to 12), 

depending on the desired accuracy. 

An advantaged of the combined model is that the same disaggregation procedure is 

used for four different purposes: 

• the determination of the starting points of the rainfall events  

• the generation of rain durations  

• the generation of event rain depths 

• the disaggregation of event rain depths into hourly depths. 
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The rainfall generator models the total rainfall regardless of intensity. The internal 

disaggregation part of the model (phase 2) may be applied independently to severe 

storms in order to simulate their time profiles. Therefore the model may be useful for 

simulation of severe flood-producing storms and estimation of design storms. 

 

The Dynamic Disaggregation Model (DDM)  

The essential elements of the model, described in detail by Koutsoyiannis (1988), 

are the following: 

(a) The disaggregation of a high-level variables, Z, into its k components (low-

level variables, Xi , i= 1,…, k ), is performed in k-1 sequential steps. 

(b) At the beginning of the ith step, the amount-still-to-go, Si, is known, and Xi is 

generated. The remaining quantity Si+1= Si-Xi is transferred to the next step. 

(c) In each step the distribution function of (Xi, Si), conditional on previous 

generated information, is determined or approximated via conditional 

moments. It is assumed that the sequence of Xi has certain properties allowing 

the calculation of conditional moments, e.g. it is an autoregressive sequence 

(AR). 

(d) The generation of Xi is performed by the so-called bisection procedure, which 

can take several forms depending on the particular marginal distribution of the 

low-level variables. 

The realization of the model includes two parts, the conditional moments 

determination that is influenced by the type of stochastic structure, and the bisection 

procedure affected mainly by its marginal distribution type, which can be studied 

separately. 

The configurations studied by the model concern mainly single-site problems, 

described by Markov sequences, with Gaussian or Gamma marginal distributions. 

Therefore it can be used in any single-site hydrological application fulfilling or 

approximating these conditions. 

 

Model Equations 

The two parts of the realization are the determination of conditional moments and the 

bisection procedure and are studied separately. 
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Conditional moments determination 

Let the low-level variables Xi , i= 1,…, k, add up to the high-level variable, Z : 

ZXXX k =+++ ...21  

The low-level variables are considered as a sub-set of an infinite stochastic sequence, 

(…,X-1, X0,  X1,…, Xk, Xk+1, …), that characterizes the current stage of disaggregation. 

It is assumed that the disaggregation procedure has already been completed at the 

previous stages; thus all previous Xi’s have known values (X0=x0, X-1=x-1,…). 

 The initial parameters of the model, at the current stage are the first and 

second moments of the low-level variables and form the following groups: 

a. mean values of Xi, iµ  ; 

b. variances of Xi, 2
i

σ ; 

c. covariances between Xi, Xj ( i, j>0 ), ijσ ; and 

d. covariances between Xi, ( i>0 ), with variables  Xj ( j<0 ) of previous stages. 

The number of independent parameters of groups (a), (b), (c) is k, k, k(k-1)/2, 

respectively, and in total, (k2+3k)/2. If k previous variables are considered as affecting 

the current stage, the number of parameters of group (d) is k2. The total number of 

initial parameters is 3(k2+k)/2. 

Consider now the ith disaggregation step of the current stage, concerning the 

generation of the low-level variable Xi based on: 

iii SSX =+ +1  

where the amount still to go: 

          111 ...... −+ −−−=+++= ikiii XXZXXXS  

has a known value, given that previous steps have been completed. Consider as 

intermediate parameters of the ith step, the first and second moments of the remaining 

low-level variables  kjiX i ≤≤, , conditional on the previous generated 

information ( )110011111 ,,,... −−−−− =====Ω xXxXxXxX iii . These parameters form 

groups similar to the groups (a), (b), and (c) of the initial parameters. 

 Finally, consider, as final parameters of the ith step at the current stage of the 

model, the first and second moments of the variables Xi and Si, conditional on the 

previously generated information. These final parameters are: 
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[ ] [ ]
[ ] [ ]

[ ]1
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2

1

1
2

1

, −

−−
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Ω=

Ω=Ω=

Ω=Ω=

iiiXS

iiSiis

iiXiiX

SXCov

SVarSE

XVarXE

σ

σµ
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and they are fully determined by linear combinations of the intermediate parameters. 

These parameters are the link with the bisection procedure; at the ith step, their values 

(as well as the known value of Si ) are passed to the bisection procedure, which 

proceeds to the generation of the Xi value (as well as Si+1).  

 Take now the case in which the sequence of low-level variables is “wide 

sense” Markov. The following relation is a consequence of the Markovian property: 

[ ] [ ] [ ] [ ] lkiXVarXXCovXXCovXXCov jliljji ≤<= ,,,  

 This property reduces the number of the initial parameters. Thus the initial 

parameters of group (c) can be determined in terms of the parameters of group (b) and 

the (k-1) lag-one correlation coefficients: 

[ ] ( ) .,...,2/, 11,1 kiXXCorr iiiiiii === −+− σσσρ  

Similarly, the independent parameters of group (d), are reduced to one, since the 

covariances with the low-level variables of previous stages can be determined in 

terms of groups (b) and (c) of the current and previous stages, and the lag-one 

correlation coefficient  ρ1. Therefore the total number of parameters in this case is 3k. 

Any covariance between low-level variables is given by: 

 kjiijijij ≤<= + σσρρσ 1...  

 The intermediate parameters of the ith step are easily derived, considering that 

the wide sense Markov sequence Xi satisfies the difference equation 

iiii VXaX =− −1  

where Vi  is a sequence of uncorrelated random variables and ai is a sequence of 

constants. The resulting equations are: 

[ ]
[ ] ( )
[ ] ( )

( ) 1111

22
111

222
11

111

/~;1

...1...,

...1

~...

−−−−

+−−

−−

−−−

−=≤<<≤

−==

−==

+==

iiii

jlijjliijl

ijjiij

ijijjiij

xxandkljiwhere

xXXXCov

xXXVar

xxXXE

σµ

σσρρρρ

ρρσ

σρρµ

 

The final parameters of the ith step are: 
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Bisection Procedure 

The bisection problem, i.e the generation of variables X and Y, such that  

   X+Y=S 

where S has a known value, s, can be studied independently of the other part of the 

model. What is required here is to determine the conditional distribution of X |S. the 

variable X can then be generated by this conditional distribution, and Y is obtained by 

X+Y=S. Due to the difficulties of the determination of conditional distribution, a 

simpler-based approach is preferable. This is done by assuming a proper auxiliary 

random variable W, and an explicit form R(S,W), such as: 

 X =R(S, W) 

with parameters being determined via marginal and joint moments of (X, S). 

 The linear bisection scheme: 

 X =R(S, W)=aS+W 

where W is a random variable independent of S, is ideal for joint normal variables. If 

W is assumed normal, then the bisection scheme preserves completely the distribution 

function of (X, Y, S). Moreover, when this scheme is combined with the other part of 

the model (conditional moments determination), the complete joint distribution 

function of low-level variables is preserved, if it is multidimensional normal. 

However, this bisection scheme is not proper for skewed distributions, since it cannot 

preserve non-zero skewness coefficients. 

 Another simple bisection scheme, the so-called proportional one, is defined 

by: 

  X =R(S, W)= W S 

where W is a random variable generally dependent on S, referred to as proportional 

variable. The degree of correlation between W and S, and this simplifies the problem. 

The proportional scheme is ideal for gamma distributed variables, since it has been 

shown that when X and Y are independent gamma distributed, having equal scale 
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parameters, and W is assumed independent of S and beta distributed, the complete 

distribution FXYS() is preserved. 

 This preservation expands to the whole sequence of low-level variables under the 

same assumptions. In the general case of dependent gamma marginal variables, with 

different scale parameters, the proportional scheme still gives satisfactory 

approximations of the gamma marginal distributions. 

 The parameters of the proportional scheme, i.e. the moments of W conditional 

on S, for the general gamma case are given by: 

22

2

2

2
2

22

222
2

2

2

2

2

:

3
2

1

SS

SXS

S

X

S

S

SS

XSsX
SW

SS

S

S

S
SW

where

s

σµ
θσση

µ
µθ

σ
µη

µσ
θσσθσσ

µσ
µ

η
σ
µ

ηθµ

+
−

==







+−

+
−+

=

+





+−=

 

The above equations have been obtained under the assumption of a linear dependence 

between S and W. when X and Y are independent with common scale parameter, S and 

W should be assumed independent and η=0 

 It must be emphasized that in the above analysis and the relevant equations, all 

variables are in their initial form (no differences from means). Hence, if the variables 

are positive, W should be bounded in [0,1]. The two parameter beta distribution is a 

proper representation for the distribution of X|S. finally if X and S have three 

parameter gamma distributions, they can be replaced in the above analysis with their 

respective differences from their lower bounds, and the same bisection procedure 

used. 

 

The Rainfall Model 

The rainfall model used in combination with the dynamic disaggregation model 

represents the rainfall process in discrete time, from an hourly to a monthly time 

scale, using as a base the intermediate scale of a rainfall event. The main parts of the 

rainfall model are summarized as follows: 
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Rainfall event-rainfall occurrence 

A rainfall event is considered as an individual entity which can be identified in a 

historical rainfall record. Successive rainfall events were defined as statistically 

independent, with starting points forming a Poisson process. Values of the separation 

time (c), i.e. the minimum dry time interval for two successive rainfall pulses to be 

considered as indipendent events, were obtained by a developed criterion, based on 

the Kolmogorov-Smirnov test, and were found to lie in the range c=5-7h. 

 The complete description of the rainfall occurrence process requires that the 

joint distribution function FVDB (v, d, b) is known, where V is the rainfall inter-arrival 

time, D is the duration of the event and B is the time between events (dry interval). 

This was based on: 

(a) the obvious relation: 

      D+B=V  

(b) the consequence of the event definition (a property of the Poisson process ) 

that the marginal distribution of V-c is exponential, that is: 

      ( ) ( ) cvevf cv
V ≥= −−ωω  

(c) the assumption that the conditional distribution of d, given V, comprises two 

additive parts, an exponential part independent of V, and a triangular part dependent 

on V, that is:      

 

( )
( ) ( )



 −≤≤−+=

−−−

elsewhere
cvdcvdeevdf

cvd

VD 0
0/2,

2δδδ  

  

 The marginal densities of the distributions of the event duration, D, and the time 

between storms, B, derived theoretically from these assumptions are: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )( ) ( )( )[ ] ( )( )[ ]

( ) ( )∫
∞ −

−+−−−

+−

=

≥−+−+++−
+

=

≥++−+=

x

cbcb
B

d
D

dexwhere

cbcbcbeebf

dddedf

ξξε

ωδεωδωω
ωδ

ωδ
ωδεωδωωδ

ξ

ωδω

ωδ

/

122

022

 

fD(d) is quite similar to the exponential distribution, but fB(b) deviates, mainly in its 

lower tail, from the exponential, Weibull and gamma distributions (see figures 2, 3). 

 The distribution of the event rain depth, H, conditional on D, has been assumed 

gamma, with mean and standard deviation linearly depending on the duration: 
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[ ] ( )
[ ]{ } ( ) φ

φ

σ

µ

adDHVar

badDHE

+=

−+=
2/1    

where φφ σµ andba ,.,  are constants. 

Internal rainfall event structure 

Given a specific rainfall event, with duration D (considered as an integer multiple of 

∆=1h), and total depth H, the sequence of hourly depths Xi, in the interior of the event, 

is related with H by: 

HXXX D =+++ ∆...21  

The following main assumptions concerning the structure of the hourly depths have 

been used: 

(a) The sequence of hourly rain depths is non-stationary; the statistics of a        

specific Xi   depend on duration of the event, as well as on its time position in 

the event. It is accepted that these two influences are separable, and can be 

described by: 

    ( ) ( ) iii ZgDkX θ=  

     where iθ  is the non-dimensionalized time position ( )Dti / ; Zi is a       sequence 

of dependent, identically distributed random variables, referred to as homogenized 

hourly rain depths, with mean µZ and standard deviation σz; k() and g()  are 

properly defined functions. 

(b) The covariance structure of  Zi, in a specific event is assumed to be stationary 

Markovian: 

           [ ] ( ) 2
11, Z

j
ii ZZCov σρ=+  

The lag-one correlation coefficient, ρ1, generally depends on duration. The 

covariance between variables of different events is zero. 

Secondary assumptions concern the form of g(θ), which has been assumed 

linear, i.e.: 

( ) θθ 10 ggg +=  

  where  g0 and g1 are constants, and the distribution of Z, which is J-shaped and has 

been considered as gamma or Weibull, depending on the fit historical data. 

 The distribution of Xi, marginal or conditional on D, may be approximated by 

the same type as one of Z. The conditional mean and standard deviation are: 
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 For estimating the correlation coefficient, ρ1 : 
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Monthly rainfall 

The three variables describing the monthly rainfall are the number of rainfall events, 

N, the monthly rainfall depth, S, and the monthly rain duration, U. 

 The marginal distribution of N is a modified Poisson, the modification caused 

by the lower bound (c) of the inter-arrival time; given the month duration, τ, the 

probability function is accurately approximated by: 

( ) ( )( ) ( )

( )
( )

[ ] [ ]κλτ
µωκ
µτωτλ

κλκτ κλ

//
/
/

:

...,,1,0
!

1Pr

==
−==
−==

=−+=== −−

cm
ccc
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mne
n

nnNP

V

V

n
n

n

 

 

 As a satisfactory approximation for simulation purposes, the gamma 

distribution was used for both S and U; their moments are completely determined by 

the corresponding moments of V, D and H  

 

Model parameters 

All the rainfall model parameters can be expressed in terms of four main independent 

parameters, namely the separation time (c), and the mean values of rainfall inter-

arrival time (µV), event duration (µD) and event depth (µH), and five secondary 

independent parameters, namely a, b, σφ, σΖ and g1. 



Chapter I :                               The Disaggregation Methodology developed in NTUA 

 

10  

Three more secondary parameters may be introduced concerning the mean and 

standard deviation of events with duration equal to 1 h, (µH1, σH1), because it was 

found that equations      

[ ] ( )
[ ]{ } ( ) φ

φ

σ

µ

adDHVar

badDHE

+=

−+=
2/1    

may not apply to these events, and the probability that hourly depth equals zero (p0), a 

possibility permitted by the event definition. This probability may be represented by 

the value of the continuous distribution function of X or Z (gamma or Weibull) at the 

point x=0.05 mm, since, in fact, values less than 0.05mm are interpreted as zero (see 

Fig. 5). However, if this representation is not satisfactory, then p0 should be used as an 

independent parameters is 12, and thisnumber may be reduced to 4, by omitting 

secondary parameters. All parameters are season-dependent. 

 

The Rainfall Disaggregation (combination of DDM with a rainfall model) 

Consider now the problem of disaggregation of monthly rainfall into hourly depths. 

Because of the intermittent nature of the rainfall process, a two-phase disaggregation 

procedure has been adopted. The first phase, external disaggregation, is to generate 

the rainfall events, while the second, internal disaggregation, generates hourly depths 

within each event. 

 The disaggregation in both phases is a combination of the dynamic 

disaggregation model and rainfall model. The latter calculates the initial parameters 

for the former which performs the generation. The Markovian configuration of the 

model studied, with the proportional bisection scheme, is satisfactory for both phases; 

for cases in which low-level variables are independent, the correlation coefficients are 

set to zero. Particular additional procedures, causing proper side effects on the 

generated variables, have been designed and used along with disaggregation model. 

The step-by-step course of the model permits the use of such side procedures. 

 It is supposed that, at the start of use of model, monthly rainfall variables, i.e. 

the number of rainfall events, N, the monthly depth, S, and the monthly rain duration, 

U, have known values. Nevertheless, the implementation was designed to include a 

separate part, generating, if needed, one or more of these values, in order to be a 

complete rainfall generator, from monthly through hourly time scales. 

Below is a coded description of each disaggregation phase. 
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External disaggregation 

1(a) External disaggregation-section a 

 Input: Number of events, N=n 

Output: Inter-arrival times Vi(=low-level variables) determining the starting points of 

events. 

Basic relation: 

( )∑ =
∗=−n

i i TcV
1

 

where BAncT +−−=∗ τ , is the high-level variable, A is the time distance of the 

starting point of the first event of the current month, and B is the same for the next 

month. 

Remarks: The distribution of (Vi-c) is exponential, a particular case of the 

gamma.Successive low-level variables are independent. 

Side procedures: A and B are generated separately, using the same exponential 

distribution of Vi  

1(b) External disaggregation-section b 

Input: Number of events, N=n, monthly duration, U=u (=high-level variable), event 

times  Vi =vi  

Output: Event durations Di (=low-level variables) 

Basic relation: 

∑ =
=n

i i UD
1

 

Remarks: The disaggregation model uses only the exponential part of conditional 

distribution of equation  

( )
( ) ( )



 −≤≤−+=

−−−

elsewhere
cvdcvdeevdf

cvd

VD 0
0/2,

2δδδ  

while the triangular part is left to a side procedure. Succesive low-level variables are 

independent. 

Side procedures: If the value, di , generated by the disaggregation model is greater 

than vi-c, it is rejected and new one is generated in the range (0, vi-c), using the 

triangular distribution. 

1(c) External disaggregation-section c 

Input: Number of events, N=n, monthly rain depth, S=s (=high-level variable), event 

times, event durations,  Di =di  
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Output: Event durations Hi (=low-level variables) 

Basic relation: 

∑ =
=n

i i SH
1

 

Remarks: Distributions of Hi , conditional on Di , is gamma, with moments depending 

on  di . Succesive low-level variables are independent. 

Side procedures: None. 

 

Internal disaggregation 

Input: Event rain depth, Hi =hi (=high-level variable), event duration, Di =di 

Output: Hourly rain depths Xij (=low-level variables). 

∑ ∆

=
=/

1
id

j iij HX  

Remarks: Distributions of Xij, conditional on Di , is gamma or Weibull, with moments 

depending on  di  and j.Both distribution types are treated with the proportional 

bisection scheme, and the adjustment of the Weibull distribution is left to a side 

procedure. The covariance structure of low-level variables is Markovian. The 

correlation coefficients depend on di. 

Side procedures: An empirical procedure, based on the generation of uniform rando, 

numbers, handles the probability of zero depth, p0 ; also it adjusts the short interval 

tail of FX(xij), when it is Weibull. Moreover, the side procedure handles the number of 

successive zero rain depths, disallowing exceedance of the value (c/∆). 
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Simple Disaggregation by Accurate Adjusting Procedures 
 

This method keeps some ideas of the Dynamic Disaggregation Model (DDM) 

presented in the last section but it is simpler. The method is based on three simple 

ideas: 

• First, it starts using directly a typical PAR(1) model (seasonal AR(1)) and 

keeps its formalism and parameter set, which is the most parsimonious among 

linear stochastic models, for generating a time series.  

• Second, it uses accurate adjusting procedures to allocate the error in the 

additive property, i.e. to correct the generated lower-level times so that its 

terms add up to the corresponding higher-level variables. 

• Third, it uses repetitive sampling in order to improve the approximations of 

statistics that are not explicitly preserved by the adjusting procedures. 

There are three different methods of adjustment: the proportional, linear and power 

method. The proportional method is ideal as it uses a very simple proportional scheme 

to correct the time series but it is only fully accurate for lower-level variables with 

gamma distribution incorporating a similar scale parameter as the higher level 

variables. the linear method is able to cope with any distribution but has the 

disadvantage of returning negative values. The power method is a combination of the 

first two methods and is able to perform calculations with the logarithms of statistics, 

having the disadvantage however, of not being an exact procedure. 

The model, owing to the wide range of probability distributions it can handle 

(from bell-shaped to J-shaped) and to its multivariate framework, is useful for a lot of 

hydrological applications such as disaggregation of annual rainfall or runoff into 

monthly or weekly amounts, and disaggregation of event rainfall depths into partial 

amounts of hourly or even less duration.   

The main advantages of the model are the simplicity, parsimony of parameters, and 

mathematical and computational convenience (due to the simplicity of equations and 

the reduction in the size of matrices). 

 

The Methodology 

 We consider a specific higher-level time step or period (e.g. 1 year), denoted 

with an index t=1, 2, …, and a subdivision of the period in k lower-level time steps or 
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subperiods (e.g. 12 months), each denoted with an index s= 1, …,k. Let a specific 

hydrologic process with the symbols (rainfall, runoff, etc.) be defined at n locations 

specified by an index l= 1, …, n. We denote this process with the symbols X and Z for 

the lower- and higher-level time step, respectively. Generally, we use uppercase 

letters for random variables, and lowercase letters for values parameters, or constants. 

Furthermore, we use bold letters for arrays or vectors, and normal letters for their 

elements. In particular: 
l
st X   lower-level variable at period t, sub-period s and location l  

l
t Z   higher-level variable at period t and location l 

 tXs  vector of lower-level variables of sub-period s at all locations n 

tXl    vector of lower-level variables of all sub-period  at location l 

tZ     vector of higher-level variables at all locations n 

The vectors  tZ  tXs  are related by the additive property: 

 ∑
=

k

1s
 tXs=tZ (1) 

The case studied concerns lower-level variables that are related by a contemporaneous 

seasonal AR(1) (or PAR(1)) model: 

 Xs =asXs-1+bsVs  (2) 

Where as is an (n×n) diagonal matrix; bs is an (n×n) matrix of coefficients and 

Vs= [ ]Tn
ss VV ,...,1  is a vector of independent random variates, not necessarily Gaussian.  

The parameters that this specific model explicitly preserves are  

1. the mean values of lower-lever variables, k vectors (size n) ξξξξs= E[Xs] 

2. the variances and the lag-zero cross-covariances of lower-level variables 

σσσσss=Cov[Xs, Xs]= E[(Xs -ξξξξs) (Xs -ξξξξs)T] 

3. the lag-one autocovariances of lower-level variables, k vectors: 

[ ] ( )( )[ ]l
s

l
s

l
s

l
s

l
s

l
s XXEXXCov 111 −−− −−=− ξξ  

4. the third moments of lower-level variables γγγγs= ( )[ ][ ]3l
s

l
sXE ξ−  

The total number of second order parameters of this model configuration is 

kn(n+3)/2. 

The parameters as and bs are related with the variances, the lag-zero cross-covariances 

and the lag-one autocovariances of lower-level variables by: 
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[ ] [ ] [ ] ll
ss

l
s

l
s

l
s

l
s

l
s

l
s XXCovXVarXXCova 1,1111 // −−−−− −=−= σ              (3) 

 bs (bs)T=σσσσss- asσσσσs-1,s-1 as               (4) 

The statistics of the variates l
sV that are needed for complete determination of  

Xs =asXs-1+bsVs  are given by: 

 E[Vs] = (bs)-1{ E[Xs]- as E[Xs-1]}    (5) 

 Var [ ]l
sV =1  (6)

  

 µ3[Vs] = ( b s
 (3))-1(γγγγs-a s

 (3) γγγγs-1) (7)  

where µ3[Vs] is the vector of third central moments of Vs and the superscript (3) in a 

matrix indicates that this matrix has to be cubed element by element.  

A case alternative to Xs=asXs-1+bsVs is the PAR(1) for some non-linear 

transformations of the lower-level variables:  

                            Xs
* = asXs – 1

*  +bs Vs                                         (8) 

 Xs
* := ln (Xs -cs)                       (9) 

where cs is a vector of parameters to be estimated in the manner that the Xs
* are 

Gaussian. 

 The models defined by (2) and (8)-(9) are proper for sequential generation of 

Xs but they do not take account of the known higher-level variables Z and apparently 

are not disaggregation models. What disaggregation models typically do is to 

incorporate  Z into the model equations and perform a sort of conditional generation 

using the given values of higher-level variables. The method proposed is much 

simpler  and consists of the following steps: 

1. Use (2) or (8)-(9) to generate directly some X
~

s within a period (s=1, …, k) 

without reference to the given higher-level variables Z of that period. 

2. Calculate Z
~

 = ∑−

k

s 1
X
~

s and the distance ∆Z= ZZ ~− considering all sites. 

3. Repeat steps 1 and 2 until the distance ∆Z is less than an accepted limit, and 

choose the final set of  X
~

s and Z
~

, which has the minimum distance 

4. Apply an adjusting procedure to correct the chosen X
~

s  

5. Repeat steps 1-4 for all periods that have given Z 

An adjusting procedure may be viewed as a transformation or function: 
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( )statisticsZZXfX ss ,,~,~=                                  (10) 

which given its arguments returns the correct lower-level variables that satisfy (1). 

The adjustment is done separately in each location. 

 

Accurate Adjusting Procedures 

Here are presented three different methods of adjustment: the proportional, linear and 

power method. First is the proportional procedure that is appropriate for lower-level 

variables with gamma distributions that satisfy certain constraints. Second is the linear 

procedure, which is more general, as it can apply to any distribution and it can 

preserve the first and second moments regardless of the type of distribution. Third is 

the power procedure, which is a modification of the linear one for positive lower-level 

variables and also incorporates, as a special case, the proportional procedure. 

 

a. Proportional Adjusting Procedure  

(Preservation of Gamma Marginal Distributions) 

Proposition 1: Let X
~

s be independent variables with gamma distribution functions 

and parameters κs and λ (s=1, …, k).Let also Z be a variable of X
~

s with gamma 

distribution and parameters: 

  ∑
=

=
k

s
s

1
: κκ   (11) 

and λ. Then the variables : 

ksZ
X

XX k

j
j

s
s ,...,1

~

~
:

1

==
∑

=

                                     (12) 

are independent and have gamma distributions with parameters κs and λ. 

(Koutsoyiannis 1994). Note that the variables Xs have the same joint distribution 

function as their corresponding  X
~

s and they add up to Z. Also, note that the attained 

result cannot be extended theoretically for gamma variables with different scale 

parameters or for normal variables even if they obey quite similar restrictions. This 

proposition gives rise to the adjusting procedure defined by: 

                                                     ss X
Z
ZX ~
~=                                                           (13) 
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where Z
~

 is the sum of all X
~

s The contribution of proposition 1 is that it reveals a set of 

conditions that make the procedure exact in a strict mathematical sense. Apparently, 

this set of conditions introduces severe limitations : 

1. the variables Xs should be two parameter gamma distributed 

2. the variables Xs should have common scale parameter, i.e. E[Xs]/Var[Xs] 

should be constant for all sub-periods and 

3. all the Xs should be mutually independent  

Koutsoyiannis (1994) after an empirical investigation of its performance proposed the 

following relaxed restrictions in order, for the proportional adjustment, to give 

satisfactory results, when applied without explicit dependence of lower-to-higher-

level variables : 

1. the variables Xs have a distribution approaching the two parameter gamma  

2. the statistics E[Xs]/Var[Xs] are close to each other for different sub-periods s 

and, 

3. the variables Xs are correlated with Corr[Xs-1, Xs] not too large (0.60-0.70) 

All these relaxed restrictions are satisfied in the case of short-scale rainfall series, and 

thus the procedure was used for the disaggregation of total amounts of rainfall events 

into hourly depths with a stationary AR(1) model. 

 

b. Linear Adjusting Procedure  

(Preservation of Second-Order Statistics in the General Case) 

Proposition 2 Let X
~

s (s=1,…, k) be any random variables with mean values ξξξξs=E[X
~

s] 

and variance-covariance matrix σσσσ with elements σij=Cov[X
~

s, X
~

j] =E[(X
~

s-ξs) (X
~

j-1-ξj-1)]  

Let also Z be a variable independent of X
~

s with mean : 

[ ] ∑
=

==
k

s
sZE

1
: ξξ                                                      (14) 

and variance                          [ ] ∑∑
= =

==
k

s

k

j
sjZE

1 1
: σσ                                                   (15) 

Then the variables  

ksXZXX
k

j
ssss ,...,1~~:

1
=





−+= ∑

=

λ                                      (16) 
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have identical mean values and variance-covariance matix with those of X
~

s if λs is 

defined properly: 

λs= σs/ σ                                                      (17) 

where  

∑
=

=
k

j
ijs

1

σσ                                                     (18) 

the proposition gives rise to the linear adjusting procedure defined by: 

( )ZZXX sss
~~: −+= λ                                            (19) 

It is obvious from (17), (18) and (15) that λs always add up to unity, which assures the 

preservation of the additive property by the procedure  

The linear procedure with adjusting coefficients is very general and can be applied 

regardless of the distribution function or the covariance structure of X
~

s It preserves 

both the means and  the variance covariance matrix of lower-level variables. Notably, 

the procedure involves only linear transformations of the variables. This leads to the 

preservation of the complete multivariate distribution function of the lower-level 

variables in single-site problems, if they are Gaussian. In fact, if the higher-level 

variables Z and the initial low-level variables X
~

s have been generated with Gaussian 

distribution, then the adjusted variables will also have Gaussian distribution. The 

procedure must be applied for the real higher-and lower –level variables; if 

transformation are applied to the variables, then the inverse transformation must be 

applied before the procedure is used. 

In this disaggregation scheme, the covariance structure is described by a PAR(1) 

model. The independent parameters in the PAR(1) model are lag-one covariances 

only (σs,s-1). Any other covariance σsj for j>s+1 can be computed by combining lag-1 

covariances, i.e. using  

1,11,1

,12,11,

,...,
,...,

−−++

−+++=
jjss

jjssss
sj σσ

σσσ
σ                                               (20) 

 

c. power Adjusting Procedure  

(Modification for Positive Lower Level Variables ) 
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 A weakness of the linear procedure is that it may result in negative values of 

the lower-level variables, while most hydrological values must be positive. The 

proportional procedure always results in positive variables, but it is strictly exact only 

in some special cases. The combination of these two procedures forms the power 

adjusting procedure which must: 

1. result in positive values only 

2. be identical to the proportional procedure if the related constraints are satisfied  

3. be identical to the linear procedure in some area and preferably in the 

neighborhood of mean values, i.e. (Xs , Z, Z
~

 )=(ξs, ξ, ξ) 

Both procedures, the linear and the proportional, can be written in a common form: 

 







=

ss
s

s

s

X
Z

X
Zf

X
X

~
~

,~~                                            (21) 

 

for the linear procedure:                 ( ) wuwuf s /, =                                                    (22) 

for the proportional procedure:     ( ) ( )wuwuf ss −+= λ1,                                        (23) 

for the power procedure:              ( ) ss wuwuf s
νµ /, =                                                (24) 

where µs and νs are parameters to be estimated. This equation always results in 

positive lower-level values and it is more general than (22). If the lower-level values 

are independent and  

σξσξ // =sss                                                  (25) 

then consistency with (22) demands µs = νs. To examine the consistency with (23), we 

linearize (24) in the neighborhood of means, taking the three terms of its Taylor series 

about the point (u, w)=(1/ηs, 1/ηs ) where ηs=ξs/ξ: 

( ) ( )( ) ( )( )
( )( )wu

wuwuf

ssssss

ssssssss

ss

ssssss

ηνηµνµη

ηηνηηµη
νµ

νµνµνµ

−++−≈

≈−−−+≈
−

−−−−−

1/1

/1//1//1, 11

     (26) 

By comparison with (24) we obtain: 

 µs = νs= λs/ ηs                                                                             (27) 

 

 

For independent lower-level variables satisfying (25), (27) becomes: 
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1====
s

s

s

s
ss ξ

ξ
σ
σ

η
λ

νµ                                               (28) 

Hence: 

 

(30) 

Finally the power adjusting procedure is: 

( ) ( )( )( )ssss ZZXZZXX sss
ξξσσηλ /// ~/~~/~ ==                               (31) 

The adjusting procedure does not preserve the additive property at once. Thus its 

application must be iterative, until the calculated sum of the lower-level variables are 

equal to the given Z. Due to the iterative application and the approximations made for 

its development, the procedure is not exact in strict sense, except for special cases. 

However the power adjusting procedure may be a useful approximate generalization 

of the proportional procedure retaining the advantage of returning positive values. 

 In case Xs and Z have lower bounds cs and c respectively, (31) can be modified to: 

( ) ss

cZ
cZcXcX ssss

ηλ /

~
~








−
−−=−                                    (32) 

with ηs now defined by ηs =(ξs-cs)/(ξ-c). 

If  we take the logarithms in the (32) we obtain: 

( )

( )
( )

)34(:

ln

ln
:

)33(~~

ss

s

s

s
s

sss

sss

c
c

cZZ
cXX

with
ZZXX

−
−==

−=

−=

−+=

∗

∗

∗

∗∗∗∗∗

ξ
ξ

σ
σ

η
λλ

λ

 

 

Equation (33) is the linearized form of the power adjusting procedure. 

 

( ) ( ) ( )( )ssss wuwuwuf s
ηληλ // //, ==
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Selection of the Adjusting Procedure 

 

DISTRIBUTION OF             TRANSFORMATION OF ADJUSTING 

LOWER-LEVEL                      LOWER-LEVEL PROCEDURE 

VARIABLES                           VARIABLES 

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• For normal variables the best choice is the linear procedure, which preserves 

the entire multivariate normal distribution. If negative values are meaningless, 

any generated negative value is either rejected (and the generation repeated) or 

set equal to zero. In the latter case the produced error is corrected by 

reapplying any of the adjusting procedures; if the linear procedure is chosen 

for this correction, it will require some iterations. The power adjusting 

procedure is also iterative and the proportional adjusting procedure performs 

the correction without iterations. 

• For two-parameter or three-parameter gamma distributed variables, all three 

procedures can be used. More specifically if the constraints of the proportional 

adjusting procedure are satisfied, then this procedure is the best choice. 

Normal Linear No 

Gamma Proportional 

Log-normal Power Yes 

No 
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Otherwise, the linear adjustment is a good choice when the probability of 

generating negative values is small, which happens if the coefficients of 

variation of all variables are relatively low. The power procedure has no 

limitations and will work in any case. 

• For log-normal variables one could follow the same method as in the case of 

gamma variables and use either the linear or the power procedure. However it 

is more reasonable to use the logarithmic transformation of the variables and 

perform the generation of the transformed variables applying the linearized 

form of the power adjustment (equation (33)).     

Repetition scheme 

The preservation of the skewness of the variables and of the cross-correlation 

coefficients among them is not assured by the adjusting procedures viewed, apart 

from very special cases. In fact, in the general case these procedures give some 

approximations of these statistics, which tend to be lower than the correct values and 

may not be adequate. However the approximation of these statistics can be improved 

by repetition. The idea behind the repetition is that of conditional sampling. The 

disaggregation may be viewed as the problem of generating lower-level variables Xs 

conditional on the given higher-level variables Z such that: ZXk

s s =∑ =1
. 

The method proposed by Koutsoyiannis is the repetitive generation of Xs from their 

unconditional joint distribution function until the error at the additive property is 

small, and then apply an adjusting procedure to allocate this error among the different 

sub-periods. For each period an unspecified number of generations through the 

PAR(1) model is performed, until the distance ZZZ ~−=∆  drops below a specified 

tolerance level. The lower the tolerance is the greater is the accuracy of the results 

and, also, the number of repetitions. To avoid the huge number of repetitions, it is 

advisable to set a maximum allowed number of repetitions. 

The distance, in a dimensionless and independent of the number of locations form, is 

given by: 

[ ]∑
=

−
=∆

n

l
l

ll

ZVar

ZZ

n
Z

1

~
1  

Repetition and minimization of the distance ∆Z helps preserving also the correlation 

coefficients. 
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CHAPTER II 

RAINFALL DISAGGREGATION USING ADJUSTING 

PROCEDURES ON A POISSON CLUSTER MODEL  
 

This disaggregation methodology concerns the combination of a rainfall 

simulation model based upon the Bartlett-Lewis process with techniques that aim  to 

the adjustment of the finer scale (hourly) values generated by the rainfall model so as 

to be consistent with the coarser scale (daily) values, given. The adjusting procedures 

proposed are the proportional, linear and power procedure studied by Koutsoyiannis 

and Manetas (1996) and discussed in detail in the previous section. 

 

The Rainfall Model 
The rainfall model used is the Bartlett-Lewis Rectangular Pulse Model (BL) and was 

chosen due to its wide applicability and experience in calibrating and applying it to 

several climates and to its ability on reproducing important features of the rainfall 

field from the hourly to the daily scale. The BL is a model that represents rainfall at a 

point in continuous time. Therefore it is particularly useful in a disaggregation 

framework where it may be used at a time-step different from that at which it is fitted. 

The model incorporates Poisson cluster processes, i.e. storms arrive according to a 

Poisson distribution and are constituted by clusters of cells or rectangular pulses with 

constant depth. The general assumptions of  the model are: 

1. Storm arrivals follow a Poisson process with rate λ;  

2. cells arrivals follow a Poisson process with rate β;  

3. Cell arrivals of each storm terminate after a time exponentially distributed 

with parameter γ;  

4. Each cell has a duration exponentially distributed with parameter η; and  

5. Each cell has a uniform intensity with a specified distribution. 

In the original version of the model, all model parameters are assumed constant. In the 

modified version, the parameter η is randomly varied from storm to storm with a 

gamma distribution with shape parameter α and scale parameter ν. Subsequently, 

parameters β and γ also vary so that the ratios κ := β / η and φ := γ / η are constant.  
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 The distribution of the uniform intensity is typically assumed exponential with 

parameter 1 / µX. Alternatively, it can be chosen as two-parameter gamma with mean 

µX and standard deviation σX. Thus, in its most simplified version the model uses five 

parameters, namely λ, β, γ, η, and µX (or equivalently, λ, κ, φ, η, and µX) and its most 

enriched version seven parameters, namely λ, κ, φ, α, ν, µX and σX. 
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The adjusting procedures 
The synthetic time series of the lower-level generated by the Bartlett-Lewis 

Rectangular Pulse model must be “modified” so as to be consistent with the higher-

level time series given and simultaneously not affect the stochastic structure implied 

by the model. 

Provided that a data series Zp (p = 1, 2, …) is known at a daily time scale and an 

hourly synthetic series ~X s  (s = 1, 2, …) has been generated by the Bartlett-Lewis 

model, disaggregation by adjusting procedures is a methodology to modify the lower-

level series (thus getting a modified series Xs, s = 1, 2, …) so as to make it consistent 

with the higher-level one. To achieve this, it uses accurate adjusting procedures to 

allocate the error in the additive property, i.e., the departure of the sum of lower-level 

variables within a period from the corresponding higher-level variable. These 

procedures are accurate in the sense that they preserve explicitly (at least under some 

specified conditions) certain statistics or even the complete distribution of lower-level 

variables. In addition, the methodology uses repetitive sampling in order to improve 
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the approximations of statistics that are not explicitly preserved by the adjusting 

procedures. 

 Three such adjusting procedures have been developed and studied 

(Koutsoyiannis, 1994; Koutsoyiannis and Manetas, 1996) and are summarily 

described below: 

1. Proportional adjusting procedure 

This procedure modifies the initially generated values ~X s  to get the adjusted values 

Xs according to  
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where Z is the higher-level variable and k is the number of lower-level variables 

within one higher-level period. 

The proportional adjusting procedure gives exact, in a strict mathematical sense, 

results, only if the variables Xs are two parameter gamma distributed, have common 

scale parameter and are mutually independent. Nevertheless as shown by 

Koutsoyiannis (1994), this procedure gives satisfactory results when applied to 

variables that have distributions approaching the two-parameter gamma, with scale 

parameters not necessarily common but close to each other for different sub-periods 

and with mutual correlation being not very high.   

2. Linear adjusting procedure 

The linear adjusting procedure modifies the initially generated values ~X s  to get the 

adjusted values Xs according to  
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where λs are unique coefficients depending on the covariances of Xs with Z. This 

procedure is very general and can be applied regardless of the distribution function or 

the covariance structure of the generated values. It preserves both the means and the 

variance-covariance matrix of lower-level variables. In addition, in single-site 

problems with variables having a Gaussian distribution function, the procedure results 

in complete preservation of the multivariate distribution function of the lower-level 



Chapter II : Rainfall Disaggregation Using Adjusting Procedures on a Poisson cluster 

model 

29  

variables. The main disadvantage of this technique is that it may result in negative 

values. In fact, if the term in parenthesis (equ. 2) is negative, all zero values become 

negative after the adjustment.     

3. Power adjusting procedure 

The power adjusting procedure modifies the initially generated values ~X s  to get the 

adjusted values Xs according to  
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where λs are appropriate coefficients depending on the covariances of Xs with Z and ηs 

are coefficients depending on the mean values of Xs and Z. This procedure is a 

combination of the proportional and linear methods and returns always positive values 

and it is also able to perform calculations with the logarithms of the statistics. This 

method does not preserve the additive property so the adjustment must be iterative. As 

well known, the iterative application requires many approximations and this makes 

the power adjusting procedure not fully exact in a strict mathematical sense, apart 

from very special cases.   

  

Selection of the Adjusting Procedure 

  The choice of the appropriate adjusting procedure is conditional to the 

characteristics of the disaggregation problem: 

The rainfall disaggregation problem at a short-scale is characterized by a large 

proportion of zero values, (an hourly series is formed by long sequences of zero 

values corresponding to dry intervals and relatively brief sequences of positive values 

that correspond to the rainy intervals). 

In addition the stochastic structure of the rainfall model assumes that the rainfall 

process is stationary  within a specific period (e.g. month) and that the rainfall depths 

in rainy intervals are approximately gamma distributed. 

Under these conditions it can be easily observed that the linear adjusting procedure is 

inappropriate due to its tendency of returning negative values when the number of 

zero entries is high. Moreover it can be easily demonstrated that due to the stationarity 

of the rainfall process the power procedure becomes identical to the proportional one. 

In fact, the stationarity implies that the exponent λs/ηs in the power adjusting equation 
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equals 1 making equations (1) and (3) identical (for the proof of this assumption see 

section 2 of this chapter). All these conditions in addition with the already mentioned 

gamma distribution of the rainfall depths makes the proportional adjusting procedure 

the most adequate for the examined rainfall disaggregation problem. 

 However, the proportional adjusting procedure, as well as any other adjusting 

method, does not explicitly preserve the skewness of the variables nor the cross-

correlations among variables of different locations, instead it gives some 

approximations of these statistics. In order to improve these approximations a 

repetition scheme is required. This means that instead of  running the generation 

routine of the rainfall model once for a certain period, it is run several times until the 

sequence of  generated values reproduces the higher-order statistics that resemble the 

actual data available. 

 

Coupling of the Bartlett-Lewis model with the adjusting procedure  
The coupling of the Bartlett-Lewis rectangular pulse model with the adjusting 

procedures contains several problems.  

First of all, the Bartlett-Lewis, models the rainfall process as continuous in 

time while the disaggregation operates on discrete time through two different time 

scales, the higher-level (e.g., daily) and lower-level (e.g., hourly) ones. The storms 

and cells generated by the Bartlett-Lewis model may lie on more than one higher- or 

lower-level time steps. Therefore, the application of the adjusting procedure on these 

storms and cells must extend to more than one day. In order to optimize the 

computational  time of the adjusting and repetitions schemes especially in cases of 

long simulation periods, the simulation period is divided in sub-periods. This is 

possible due to the fact that different clusters of wet days separated by at least one dry 

day, can be assumed independent and therefore they can be handled separately. This 

assumption is in complete agreement with the stochastic structure of the BL model in   

which the storm arrivals occur accordingly to a Poisson process. Thus, the Bartlett-

Lewis model runs separately for each cluster of wet days. Several runs are performed 

for each cluster, until the departures of the sequence of daily sums from the given 

sequence of daily rainfall becomes lower than an acceptable limit.  

The whole disaggregation methodology is implemented in a computer program 

produced by Koutsoyiannis and Onof and described in detail below.  
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The implementation of the methodology : HYETOS Υετός 

A computer program for temporal rainfall disaggregation using adjusting 

procedures. 
 

The computer program Hyetos, produced by Koutsoyiannis and Onof (2000),   is a 

software that performs temporal disaggregation of daily rainfall into hourly rainfall by 

adjusting procedures. 

The method used is a process that can be represented by the following three steps: 

Generate a time series according to an appropriate stochastic rainfall model. 

Use an accurate adjusting procedure to correct the generated lower-level time series 

so that its terms add up to the corresponding higher-level variables. 

Repeat the process until a suitable time series can be obtained in order to improve the 

statistics that are not explicitly preserved in the adjusting procedure (e.g. skewness, 

cross-correlation coefficients.)  

Hyetos follows exactly this process, it uses the Bartlett-Lewis rainfall model 

as a background stochastic model for rainfall generation. Then it uses repetition to 

derive a synthetic rainfall series, which resembles the given series at the daily scale, 

and, subsequently, an appropriate adjusting procedure, namely the proportional 

adjusting procedure to make the generated hourly series fully consistent with the 

given daily series.  

In this program the user is required to enter in the parameters from the 

Bartlett-Lewis Rectangular Pulse Model. The actual historical rainfall time series can 

also be entered, so that the disaggregated and historical statistics can be compared. As 

an output, the program gives the fully calculated statistics of the hourly time series, as 

well as the simulated time series obtained. Statistics are calculated for wet and dry 

periods as well as the whole time period. 
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The stochastic rainfall model used in Hyetos : BARTLETT-LEWIS Rectangular 

Pulse Model  
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The general assumptions of the Bartlett-Lewis Rectangular Pulse model (Rodriguez-

Iturbe Et Al., 1987, 1988; Onof and Wheater, 1993)are (see figure):  

1. Storm origins ti occur following a Poisson process (rate λ) 

2. Cell origins tij arrive following a Poisson process (rate β) 

3. Cell arrivals terminate after a time vi exponentially distributed (parameter γ) 

4. Each cell has a duration wij exponentially distributed (parameter η) 

5. Each cell has a uniform intensity Xij with a specified distribution 

In the original version of the model, all model parameters are assumed constant. In the 

modified version, the parameter η is randomly varied from storm to storm with a 

gamma distribution with shape parameter α and scale parameter ν. Subsequently, 

parameters β and γ also vary in a manner that the ratios κ := β / η  and φ := γ / η be 

constant.  

The distribution of the uniform intensity Xij is typically assumed exponential with 

parameter 1 / μX. Alternatively, it can be assumed two-parameter gamma with mean μX 

and standard deviation σX.  

Thus, in its most simplified version the model uses five parameters, namely λ, β, γ, η, 

and μX (or equivalently, λ, κ, φ, η, and μX) and its most enriched version seven 

parameters, namely λ, κ, φ, α, ν, μX and σX. 
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Hyetos supports both the original and the modified model version with exponential or 

gamma intensities. The current software version does not support estimation of the 

Bartlett-Lewis model parameters, which should be estimated using other software.  

 
The Adjusting Procedure used by Hyetos 

After generating the synthetic rainfall series according to the BLRPM, Hyetos 

uses the proportional adjusting procedure to modify the generated series so 

as to be consistent with the given daily totals. 

The proportional adjusting procedure is given by: 
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Where ~X s   are  the initially generated values ,Xs the adjusted values, Z is the higher-

level variable and k is the number of lower-level variables within one higher-level 

period. 

This procedure is exact given two conditions: the lower-level series must be gamma 

distributed with common scale factor as the higher-level variables. Therefore, Hyetos 

implicitly assumes that the rainfall is distributed according to a gamma distribution 

and under the condition of a stationary process within each month. 

The proportional adjusting procedure was chosen due to its simplicity on application 

and also because it does not return negative values. 

 

The Repetition Scheme  

 In order to handle the problems that arise in coupling the Bartlett-Lewis with 

the adjusting procedure Hyetos operates according to a scheme which incorporates 

four levels of repetitions. Repetition is used in the program to improve the statistics 

that are not explicitly reproduced by adjustment. In the process of repetition, a further 

refinement is made by considering a term that represents the difference between the 

generated higher level values and the actual higher level values, and is calculated for 

every repetition of the time series. Once this term reaches a minimum threshold the 

repetition stops and the adjusting procedure is applied. This results in preservation of 

the higher order statistics. The number of repetitions must be defined by the user, and 

if the limit of repetitions has been met, the model will try to use other methods to 

model the rainstorm. If an especially long storm is encountered, the model will 
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randomly divide the storm in several portions, using a separate model to represent 

each portion. Hyetos then enters into a higher level of repetitions. 

  The repetition and disaggregation scheme, with reference to the disaggregation of 

daily rainfall depths of a cluster of L wet days (preceded and followed by at least one 

dry day) is depicted in the following figure: 

 

Does number of 
repetitions for the 
same sequence 

exceed a specified 
value?   

Does total number 
of repetitions 

exceed a specified 
value?   

Obtain a sequence of storms and cells that form  
a cluster of wet days of a given length (L)

For that sequence obtain a sequence of cell 
intensities and the resulting daily rain depths

Do synthetic 
daily depths 

resemble real 
ones (distance 
lower than a 

specified limit)?

Split the wet day cluster in 
two (with smaller lengths L)

End

Y
Y Y

NN

N

Le
ve

l 1

Le
ve

l 2

Run the BL model for time t > L + 1
and form the sequence of wet/dry 
days

Does  
this sequence 

contain L wet days 
followed by one or 

more dry days?

End

Level 0

Adjust the sequence

Was the wet day 
cluster split in two

(or more) sub-
clusters?

Join the wet day clusters

Le
ve

l 3

Y

N

N

Y



Chapter II : Rainfall Disaggregation Using Adjusting Procedures on a Poisson cluster 

model 

35  

. Initially (Level 0), the Bartlett-Lewis model runs several times until a sequence of 

exactly L wet days is generated. Then (Level 1), the intensities of all cells and storms 

are generated and the resulting daily depths are calculated. These are compared to the 

original ones by means of the logarithmic distance 
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where iZ  and iZ~  are the original and generated, respectively, daily depths of day i of 

the wet day sequence and c a small constant (= 0.1 mm). The logarithmic 

transformation is selected to avoid domination by the very high values and the 

constant c was inserted to avoid domination by the very low values. If the distance d 

is greater than an accepted limit da, then we re-generate the intensities of cells (Level 

1 repetitions) without modifying the time locations of storms and their cells. If, 

however, after a large number of Level 1 repetitions, the distance remains higher than 

the accepted limit, this may mean that the arrangement of storms and cells is not 

consistent with the original (and unknown) one. In this case we discard this 

arrangement and generate a new one, thus entering Level 2 repetitions. Furthermore, 

in the case of a very long sequence of wet days it is practically impossible to get a 

sequence of wet days with a departure of the daily sum from the given daily rainfall 

smaller than the specified limit. In these cases the sequence is subdivided into sub-

sequences (in a random manner), each treated independently from the others (Level 3 

repetitions). The algorithm allows nested subdivisions. Eventually, the sequence with 

distance smaller than the accepted limit is chosen and further processed by 

determining the lower-level (e.g., hourly) rainfall depths through the application of 

the proportional adjusting procedure. 
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Modes of operation 

Hyetos can perform in each of the following modes depending on the user selections: 

1. Disaggregation test mode (without input; default mode). An initial sequence of 

storms is generated using the Bartlett-Lewis model with the given parameters and 

then aggregated into hourly and daily scale. The daily sequence serves then as an 

“original” series, which is disaggregated, thus producing another synthetic hourly 

series. This mode is appropriate for testing the disaggregation model itself (e.g. by 

comparing original and disaggregated statistics 

2. Full test mode (with hourly input).In this mode, an input file with the appropriate 

format containing hourly historical data must be available. The difference from the 

Disaggregation test mode is that the daily sequence is read from the file rather than 

generated. This mode is appropriate for testing (e.g. by comparing original and 

disaggregated statistics) the entire model performance including the appropriateness 

of the Bartlett-Lewis model and its parameters and the disaggregation model. 

3. Operational mode (with daily input). This is similar to Full test mode the 

difference being that the input file contains no hourly data but only daily. This is the 

usual case for the model application. It cannot provide any means for testing. 

4. Rainfall model test mode (with hourly input). This is similar to the Full test mode 

but with synthetic data not disaggregated but generated from the Bartlett-Lewis model 

with the given parameters. This mode is appropriate for testing whether the Bartlett-

Lewis model fits the historical data (in terms of several statistics). 

5. Simple rainfall generation mode (without input and without disaggregation). This 

is similar to the Rainfall model test mode but with no input provided (and 

consequently, no input file defined). This mode is appropriate for generation of 

rainfall series using the Bartlett-Lewis model with the given parameters without 

performing any disaggregation.  

In all modes the Bartlett-Lewis model can be implemented either in its original or 

modified version with a number of parameters from 5 to 7.  

The output of the program can be in both text and graphical form. Graphs showing 

comparisons between the historical and simulated statistics are drawn up, detailing the 
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skewness and the proportion of wet periods, as well as the autocorrelation for lag n 

period.
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CHAPTER III 
 

MULTIVARIATE RAINFALL DISAGGREGATION AT A FINE 

SCALE 
 

The disaggregation models proposed by Koutsoyiannis et al. and  described in 

the previous sections, as well as most of the studies conducted by other authors on the 

problem of disaggregation, have the common characteristic of  being univariate, i.e. 

they perform single-site temporal disaggregation. As discussed earlier, in all these 

approaches, the actual rainfall series is not known but its stochastic structure can be 

hypothesized according to a specific rainfall model . So, they are able to generate 

synthetic hourly series, fully consistent with the known daily series and 

simultaneously, statistically consistent with the actual hourly rainfall depths. In other 

words, the synthetic hourly series generated adds up to the given daily totals and 

agrees with the stochastic structure implied by the model. However, these synthetic 

series resemble the actual ones only in a stochastic sense, i.e. they represent a likely 

realization of the process and obviously do not coincide with the actual one. 

 In this section we describe a different approach to rainfall disaggregation. We 

investigate the possibility of generating spatially and temporally consistent hourly 

rainfall series at a raingage by using the available, at a neighbouring raingage, hourly 

information in the case that the cross-correlation between the two raingages is 

significant. This can be considered as a particular case of a general multivariate 

spatial-temporal rainfall disaggregation problem, i.e. the simultaneous rainfall 

disaggregation at several sites. Although there is substantial experience in multi-site 

disaggregation of rainfall from annual to monthly time scales and in single-site 

disaggregation of rainfall at finer scales, this multivariate fine-time-scale rainfall 

disaggregation problem has not been studied so far in the rainfall modeling literature. 

Multiple sites imply mathematical complexity and in contrast with the single-site 

problems another parameter is considered, the cross-correlation, that must be 

maintained. The problem involves the combination of several univariate and 

multivariate rainfall models operating at different time scales, in a framework that was 

studied by Koutsoyiannis [2001]. 
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The Problem of spatial and temporal  rainfall disaggregation at several 

sites 
Before describing the methodology for facing the problem, we first need to 

standardize the problem itself. The description that follows is a more accurate and 

particularized formulation of the question arisen, that is whether we could utilize the 

available single-site fine scale information, in conjunction with the daily data, to 

generate spatially consistent rainfall series. We can consider two apparently different 

cases, the second being however the generalization of the first.     

CASE 1 

We assume that we are given: 

1. an hourly point rainfall series at point 1, as a result of either: 

!"measurement by an autographic device (pluviograph) or digital sensor, 

!" simulation with a fine time scale point rainfall model such as a point 

process model (Bartlett-Lewis Rectangular Pulse model) 

!" simulation with a temporal point rainfall disaggregation model applied 

to a series of known daily rainfall; (coupling of BLRPM with adjusting 

procedures) 

2. several daily point rainfall series at neighbouring points 2, 3, 4, 5, … as a 

result of either: 

!"  measurement by conventional raingages (pluviometers with daily 

observations), or 

!"  simulation with a multivariate daily rainfall model. 

We wish to produce series of hourly rainfall at points 2, 3, 4, 5, …, so that: 

1. their daily totals equal the given daily values; and 

2. their stochastic structure resembles that implied by the available historical 

data.  

 We emphasize that in this problem formulation we always have an hourly 

rainfall series at one location, which guides the generation of hourly rainfall series at 

other locations. If this hourly series is not available from measurements, it can be 

generated using appropriate univariate simulation models. 

The essential statistics that we wish to preserve in the generated hourly series are:  

1. the means, variances and coefficients of skewness;  

2. the temporal correlation structure (autocorrelations); 
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3. the spatial correlation structure (lag zero cross-correlations); and 

4. the proportions of dry intervals.  

 If the hourly data set at location 1 is available from measurement, then all 

these statistics apart from the cross-correlation coefficients can be estimated at the 

hourly time scale using this hourly record. To transfer these parameters to other 

locations, spatial stationarity of the process can be assumed.  

The stationarity hypothesis may seem an oversimplification at first glance. However, 

it is not a problem in practice since possible spatial nonstationarities manifest 

themselves in the available daily series; thus the final hourly series, which are forced 

to respect the observed daily totals, will reflect these nonstationarities.  

 

CASE 2 

If hourly rainfall is available at several (more than one) locations, the same modeling 

strategy described above can be used without any difficulty with some generalizations 

of the computational algorithm. In fact, having more than one point with known 

hourly information would be advantageous for two reasons. First, it allows a more 

accurate estimation of the spatial correlation of hourly rainfall depths (see discussion 

below) or their transformations. Second, it might reduce the residual variance of the 

rainfall process at each site, thus allowing for generated hyetographs closer to the real 

ones. If more than one rainfall series are available at the hourly level, at least one 

cross-correlation coefficient of hourly rainfall can be estimated directly from these 

series. Then, by making plausible assumptions about the spatial dependence of the 

rainfall field an expression of the relationship between cross-correlation could be 

established.  

 

Modeling Approach  
The methodology proposed involves three categories of models : 

1. models for the generation of multivariate fine-scale outputs 

2. models associated with inputs 

3. models associated with spatial-temporal parameters 
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models for the generation of multivariate fine-scale outputs 

This category includes two models that are used in the generation phase in order to 

provide the required output, the hourly series. 

The first model is a simplified multivariate model of hourly rainfall that is able to 

preserve the essential statistics of the multivariate rainfall process and, 

simultaneously, incorporate the available hourly information without any reference to 

the known daily totals at the other sites of interest. The essential statistics considered 

here are the means, variances and coefficients of skewness, the lag one 

autocorrelation coefficients and the lag zero cross correlation coefficients. 

The second model used in the generation phase is the transformation model that is 

applied to the synthetic series generated by the simplified model modifying them so as 

to be consistent to the daily rainfall series, i.e. so that the daily totals are equal to the 

given ones.  

Therefore the models are applied separately and more specifically, assuming that the 

sites in which we need to generate the hourly series are close to the site where hourly 

information is available and highly spatially correlated, then the given hourly series 

known can be used, with the simplified multivariate model, to: 

• guide the generation of the hourly series at the sites with daily data, and act 

indirectly to preserve properties not modelled explicitly; 

• properly locate the rainfall events in time 

• produce initial hourly rainfall series at the daily sites, whose departures from 

the actual hourly depths at those sites are not large (even though daily totals 

are not considered at all at this stage). 

The transformation model is then applied to adjust the synthetic series, this being 

possible because at this stage another source of information is additionally 

incorporated, that is the multi-site information. The modification of the generated 

series is essential for the preservation of the properties of the rainfall process which 

are not captured by the statistics considered in assuming a simplified rainfall model, 

i.e. nonstationarities of the rainfall field in space and time.    

 

models associated with inputs 

This second category contains models which may optionally be used to provide the 

required input, should no observed series be available. These may include 
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!" a multivariate daily rainfall model for providing daily rainfall depths, such as 

the general linear model (GLM) [Chandler and Wheater, 1998a, b];  

!" a single-site model for providing hourly depths at one location such as the 

Bartlett-Lewis rectangular pulses model [Rodriguez-Iturbe et al., 1987, 1988; 

Onof and Wheater, 1993, 1994]; 

!" a single-site disaggregation model to disaggregate daily depths of one location 

into hourly depths [e.g. Koutsoyiannis and Onof, 2000, 2001]. 

 Such models may be appropriate to operate the proposed disaggregation 

approach for future climate scenarios. 

 

models associated with Spatial-temporal parameters 

The third category includes models which play an auxiliary role in the disaggregation 

framework by providing some of the required parameters of the spatial-temporal 

rainfall process given the statistical properties of the available data. 

In the case where the available hourly information concerns only one site some of the 

statistics at the hourly level (such as cross-correlation coefficients between raingages) 

required for the disaggregation cannot be estimated directly and must be inferred 

using a spatial-temporal rainfall model.   

 The estimation of the statistics  of hourly level is made in the following manner: 

1. The temporal and spatial correlations at the daily level are estimated using the 

daily data sets; in addition, if an hourly series is available, its marginal statistics are 

estimated. 

2. The parameters of the spatial-temporal rainfall model are estimated by fitting the 

spatial-temporal rainfall model using the historical statistics estimated at point 1. 

3. The remaining statistics that are required for disaggregation (e.g. spatial 

correlations at the hourly level) are inferred from the spatial-temporal rainfall 

model. 

An example of a spatial-temporal model which may be used to provide the stochastic 

structure of the hourly rainfall is the GDSTM [Gaussian Displacement Spatial-

Temporal rainfall Model, Northrop, 1996, 1998]. This model is a spatial analogue of 

the Bartlett-Lewis rectangular pulses model which is the point process model assumed 

in the single-site problems. According to the GDSTM, rainfall is realized as a 

sequence of storms that arrive following a Poisson process in space and time and each 

storm consists of a number of cells. Both storms and cells are characterized by their 



Chapter III :                                Multivariate Rainfall Disaggregation At A fine Scale 

43  

centers, durations and areal extents, and in addition cells have uniform rainfall 

intensity. The independent parameters necessary for the definition of the model are 11 

and all the statistics to be estimated must be expressed in terms of these parameters. 

But, in practice the computational costs involved are relatively high and in addition 

the performance of the GDSTM was proven not to be so accurate. Therefore the use 

of another model would be more than justified. 

 If hourly rainfall is available at several (more than one) locations, the 

estimation of the spatial correlation of hourly rainfall depths can be more accurate. If 

more than one rainfall series are available at the hourly level, at least one cross-

correlation coefficient of hourly rainfall can be estimated directly from these series. 

Then, by making plausible assumptions about the spatial dependence of the rainfall 

field an expression of the relationship between cross-correlation could be established.  

An example of such an empirical expression is : ( )md
ij

h
ij rr =  

Where: 
h

ijr  is the cross-correlation coefficient between raingages i and j at the hourly time 

scale 
d

ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m  is an exponent that can be estimated by regression using the known cross-

correlation coefficients at the hourly and daily time scale or, in case no hourly data is 

available, its value can be assumed approximately in  the range 2 to 3.  

 

Generation Phase 
 As already mentioned in this phase two separate models are used, the 

simplified multivariate model which generates the synthetic hourly series and the 

transformation model which modifies these synthetic series in order to be fully 

consistent with the given daily series. The choice of a simplified multivariate rainfall 

model for producing the required outputs is justified by the following reasons: 

1. A spatial-temporal rainfall model (such as GDSTM) would describe the 

rainfall process in continuous space and time but has not the appropriate 

structure to utilize the given hourly information. 

2. assuming the simplified model means assuming a more parameter 

parsimonious approach which provides an efficient model that can be 
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indirectly corrected (by applying the transformation model which incorporates 

the multi-site daily information). 

3. the implications given by assuming such a simplified model for the 

multivariate rainfall process are counterbalanced due to the additional source 

of information incorporated as model input (the hourly information). 

 

The Simplified Multivariate model  

 This model preserves the statistics of the multivariate rainfall process and, 

simultaneously, incorporates the available hourly information at site 1, without any 

reference to the known daily totals at the other sites. The statistics considered here are 

the means, variances and coefficients of skewness, the lag-one autocorrelation 

coefficients and the lag-zero cross-correlation coefficients. All these represent 

statistical moments of the multivariate process. The proportion of dry intervals, 

although considered as one of the parameters to be preserved, is difficult to 

incorporate explicitly. However, it can be treated by an indirect manner. 

For n locations,we may assume that the simplified multivariate rainfall model is an 

AR(1) process, expressed by  

Xs = a Xs – 1 + b Vs                                      (1) 

where Xs := [Xs 
 1, Xs 

 2, …, Xs 
 n]T represents the hourly rainfall at time (hour) s at n 

locations, a and b are (n × n) matrices of parameters and Vs (s = …, 0, 1, 2, …) is an 

independent identically distributed (iid) sequence of size n vectors of innovation 

random variables (so that the innovations are both spatially and temporally 

independent). The time index s can take any integer value. Xs are not necessarily 

standardized to have zero mean and unit standard deviation, and obviously they are 

not normally distributed. On the contrary, their distributions are very skewed. The 

distributions of Vs are assumed three-parameter Gamma. 

Alternatively, the model can be expressed in terms of some nonlinear transformations 
∗
sX  of the hourly depths Xs, in which case (1) is replaced by 

sss bVaXX += ∗
−

∗
1                                             (2) 
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Equations to estimate the model parameters a and b and the moments of Vs are given 

for instance by Koutsoyiannis [1999] for the most general case. For convenience, the 

parameter matrix a is assumed diagonal, which suffices to preserve the statistics The 

parameter matrix b is assumed lower triangular, which facilitates handling of the 

known hourly rainfall at site 1. The first row b will have only one nonzero item, call it 

b1, so that from (1) 

 111
1

11
sss VbXaX += −                                          (3) 

which can be utilized to determine (rather than to generate) 1
sV , given the series of. 

1
sX . This can be directly expanded to the case where several gages of hourly 

information are available provided that b is lower triangular. 

 

The Transformation model  

This is the model that modifies the series generated by the simplified multivariate 

model, so that the daily totals are equal to the given ones. 

In the previous sections we have examined in detail transformation techniques 

that are able to modify a series generated by any stochastic process to satisfy some 

additive property (i.e. the sum of the values of a number of consecutive variables be 

equal to a given amount), without affecting the first and second order properties of the 

process, in the case of univariate problems. These techniques commonly known as 

adjusting procedures, are specialized, as already discussed, for the single-site 

disaggregation and have been studied previously by Koutsoyiannis [1994] and 

Koutsoyiannis and Manetas [1996] Nevertheless, they can be applied for multivariate 

problems, but in a repetition framework. 

More recently, Koutsoyiannis [2001] has studied a true multivariate transformation of 

this type and also proposed a generalized framework for coupling stochastic models at 

different time scales. 

This framework, specialized for the problem examined here, is depicted in the 

following schematic representation where Xs and Zp represent the “actual” hourly- 

and daily-level processes, related by  

 ∑
+−=

=
pk

kps
ps ZX

1)1(
                                                     (4) 
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where k is the number of fine-scale time steps within each coarse-scale time step (24 

for the current application), and sX~ and pZ~   denote some auxiliary processes, 

represented by the simplified rainfall model in our case, which also satisfy a 

relationship identical to (4) 

 

The problem is: 

Given a time series zp of the actual process Zp, generate a series xs  of the 

actual process Xs . To this aim, we first generate another (auxiliary) time series sx~  

using the simplified rainfall process sX~ . The latter time series is generated 

independently of zp and, therefore, sx~  do not add up to the corresponding zp, as 

required by the additive property (4), but to some other quantities, denoted as pz~ . 

Thus, in a subsequent step, we modify the series sx~   thus producing the series xs 

consistent with zp (in the sense that xs and zp obey (4) without affecting the stochastic 

structure of sx~ . For this modification we use a so-called coupling transformation, i.e., 

a linear transformation, f( sX~  , pZ~ , Zp )whose outcome is a process identical to Xs 

and consistent to Zp 

Let X be the vector containing the hourly values of the 24 hours of any day p for all 

examined locations (i.e., the 24 vectors Xs for s = (p – 1)k + 1 to s = p k; for 5 

locations, X contains 24 × 5 = 120 variables). Let also Y be a vector containing  

(a) the daily values Zp for all examined locations,  

(b) the daily values Zp+1 of the next day for all locations, and  

(c) the hourly values X(p-1)k of the last hour of the previous day   

p – 1 for all locations. 

This means that for 5 locations Y contains 3 × 5 = 15 variables in total. Items (b) and 

(c) of the vector Y were included to assure that the transformation will preserve not 

only the covariance properties among the hourly values of each day, but the 

covariances with the previous and next days as well. Note that at the stage of the 

generation at day p the hourly values of day p – 1 are known (therefore, in Y we enter 

hourly values of the previous day) but the hourly values of day p + 1 are not known 

(therefore, in Y we enter daily values of the next day, which are known). In an 

identical manner, we construct the vectors X~  and Y~  from variables sX~  and Z
~

p.  
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 Koutsoyiannis [2001] showed that the coupling transformation sought is given 

by  

                                                           ( )YYhXX ~~ −+=                                                   (5)                               

  

where 

                                        h = Cov[X, Y] {Cov[Y, Y]}–1                            (6) 
 

The quantity in ( )YYh ~−  (5) represents the correction applied to X~  to obtain X . 

Whatever the value of this correction is, the coupling transformation will ensure 

preservation of first and second order properties of variables (means and variance-

covariance matrix) and linear relationships among them (in our case the additive 

property (4) . However, it is desirable to have this correction as small as possible in 

order for the transformation not to affect seriously other properties of the simulated 

processes (e.g., the skewness). It is possible to make the correction small enough, if 

we keep repeating the generation process for the variables of each period (rather than 

performing a single generation only) until a measure of the correction becomes lower 

that an accepted limit. This measure can be defined as 

 ( ) ( )xmYYh σ/~−=∆                                                         (7) 

where m is the common size of X and X~ , σX is standard deviation of hourly depth 

(common for all locations due to stationarity assumption) and ||.|| denotes the 

Euclidian norm..  

 

Given the daily process Zp and the matrix h, which determines completely the 

transformation, the steps followed to generate the hourly process Xs are the following: 

1. Use the simplified rainfall model (1) or (2) to produce a series sX~  for all hours of 

the current day p and the next day p + 1, without reference to Zp. 

2. At day p evaluate the vectors Y and Y~  using the values of Zp and sX~  of the 

current and next day, and Xs of the previous day. 

3. Determine the quantity ( )YYh ~−  and the measure of correction Δ. If Δ is greater 

than an accepted limit Δm, repeat steps 1-3 (provided that the number of repetitions 

up to the current repetition has not exceeded a maximum allowed number rm, 

which is set to avoid unending loops).  
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4. Apply the coupling transformation to derive X of the current period. 

5. Repeat steps 1 and 4 for all periods. 
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figure 1 : Schematic representation of actual and auxiliary processes, their links, and 

the steps followed to construct the actual hourly-level process from the actual daily-

level process. 
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procedures for handling the specific difficulties of the methodology 

A number of peculiarities of the rainfall process at fine time scale cause some 

specific difficulties which are listed below: 

 

Negative values: 

 Linear stochastic models such as those used in the methodology proposed may 

generally generate negative values, which, of course, do not have any physical 

meaning. In practice, the probability of generating negative values depends on the 

coefficient of variation of the variables and it is negligible when these models operate 

at large time scales, where this coefficient is small. The probability becomes 

significant in the case of hourly rainfall where the coefficient of variation is very high. 

This problem can be resolved by setting to zero the negative values generated. This 

may have a beneficial effect in preserving the proportion of dry intervals but is also a 

potential source of bias to all statistical properties that are to be preserved. 

Specifically, it is anticipated to result in overprediction of cross-correlations as it is 

very probable that negative values are contemporary.  

 

Dry intervals: 

 The proportion of dry intervals is an important characteristic of the rainfall process 

that must be preserved. This proportion cannot be preserved by the linear stochastic 

models in an explicit and theoretically consistent manner. However, after rounding the 

generated values a significant number of zero values emerge because of the high 

coefficient of skewness of the rainfall process. Additional zero values result from the 

truncation of negative values. The total percentage of zero values resulting this way 

can be comparable to (usually somewhat smaller than) the historical probability dry. 

We can match exactly the historical probability dry  by using the following technique 

which was found effective: A proportion π0 of the very small positive values, chosen 

at random among the generated values that are smaller than a threshold l0 (e.g., 0.1-

0.3 mm), are set to zero. The numbers π0 and l0 can be found by performing 

repetitions starting with different trial values until the proportion of dry intervals in 

the synthetic series matches that in the historical record. 
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Preservation of skewness: 

 Although the coupling transformation preserves the first and second order statistics of 

the processes, it does not ensure the preservation of third order statistics. Thus, it is 

anticipated that it will result in underprediction of skewness. However, the repetition 

technique described earlier can result in good approximation of skewness. 

  

Homoschedasticity of innovations:  

By definition, the innovations Vs in the simplified multivariate rainfall model are 

homoscedastic, in the sense that their variances are constant, independent of the 

values of rainfall depths Xs. Therefore, if, for instance, we estimate (or generate) the 

value at location 2, given that at location 1, we assume that the conditional variance is 

constant and independent of the value at location 1. This, however, does not comply 

with reality: by examining simultaneous hyetographs at two locations we can observe 

that the variance is larger during the periods of high rainfall (peaks) and smaller in 

periods of low rainfall (heteroscedasticity). As a result of this inconsistency, 

synthesized hyetographs will tend to have unrealistically similar peaks. To mitigate 

this problem we can apply a nonlinear transformation to rainfall depths.  

 The first candidate nonlinear transformation is the logarithmic one,  

 ( )ζ+=∗
ss XX ln                      (8)  

with constants ζ > 0, where the logarithmic transformation should be read as an item 

to item one. The stationarity assumption allows considering all items of vector ζ equal 

to a constant ζ. This transformation would be an appropriate selection if ζ was 

estimated so that the transformed series of known hourly depths have zero skewness, 

in which case the transformed variables could be assumed to be normally distributed. 

Then, preservation of first and second order properties of the untransformed variables 

is equivalent to preservation of first- and second-order statistics of the transformed 

variables [Koutsoyiannis, 2001]. However, evidence from the examined data sets 

shows that the skewness of the transformed variables increases with increasing ζ and 

it still remains positive even if very small ζ are chosen. This means that the lognormal 

assumption is not appropriate for hourly rainfall.  
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A second candidate is the power transformation  

( )m
ss XX =∗  (9) 

where the symbol (m) means that all items of the vector Xs are raised to the power m 

(item to item) where 0 < m < 1. The stationarity assumption complies with the 

assumption that m is the same for all items. The preservation of the statistics of the 

untransformed variables does not necessarily lead to the preservation of the 

corresponding statistics of the transformed variables. However, the discrepancies are 

expected to be low if m is not too low (e.g., for m≥0.5).  
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The implementation of the Methodology : MuDRain  

A computer program for multivariate rainfall disaggregation at a 

fine time scale  

  
The methodology described in detail in the previous chapter was implemented in a 

computer program with the name MuDRain. 

Therefore, Mudrain operates according to the following modeling scheme: 
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 In order to perform the rainfall disaggregation from daily to hourly scale, a file with the 

appropriate format must be defined .The program operates using three different files: 

1. a file named input.dat (text file) containing the cross-correlation coefficients 

between raingages at the hourly time scale, the number of gages with daily 

information, the number of gages with hourly information, the number of days 

to disaggregate and finally the name of two text files with the hourly and daily 

information available. 

2. a file named daily.inp with the daily information available 

3. a file named hourly.inp with the hourly information available. 

The user must define only the file input.dat, MuDRain will automatically use the other 

two files with the information necessary for the disaggregation. 

The program automates most tasks of parameter estimation, performs the 

disaggregation and provides tabulated and graphical comparisons of historical and 

simulated statistics of hourly rainfall.  

In the parameter estimation phase, the program estimates all statistics to be preserved 

apart from hourly cross-correlation coefficients (to be incorporated in the input file) 

whose estimation, requires other methods: 

1. By using a spatial-temporal rainfall model 

2. By using the empirical expression ( )md
ij

h
ij rr =  

Where: 
h

ijr  is the cross-correlation coefficient between raingages i and j at the hourly time 

scale 
d

ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m  is an exponent that can be estimated by regression using the known cross-

correlation coefficients at the hourly and daily time scale or, in case no hourly data 

is available, its value can be assumed approximately in  the range 2 to 3.  

If not specified, MuDRain operates with the simplified model in its linear form: 

Xs = a Xs – 1 + b Vs                             

Otherwise the user must define the use of one of the non linear transformations to be 

adopted: 
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for the logarithmic transformation ( )ζ+=∗
ss XX ln , by specifying the value of the 

constant ζ 

for the power transformation ( )m
ss XX =∗ , by specifying the value of exponent m 

Then the expression of the simplified model will be: sss bVaXX += ∗
−

∗
1  

The program offers other two categories of options, apart from the use or not of one of 

the transformations, and more specifically: 

(a)  the use or not of repetition in the generation phase, 

whose adoption requires that the user must specify the maximum allowed distance Δm 

and the maximum allowed number of repetitions rm and 

(b)  the use or not of the two-state representation of hourly rainfall, in which case the 

user must specify the probability φ0, to stimulate dry state in each of the locations. 

Two additional parameters are used, which are related to the rounding off rule of 

generated hourly depths, i.e. the proportion π0 and the threshold l0.  

 In the current program configuration, the options and the additional parameters 

are specified by the user in a trial-and-error manner, i.e., starting with different trial 

values until the resulting statistics in the synthetic series match the actual ones. This 

can be seen as a fine-tuning of the model, which is manual.  

For more details on the use of MuDRain see the help file of the program in the 

Appendix . 
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CASE STUDY 
The methodology proposed by Koutsoyiannis in his computer program (MuDRain) 

has been applied to the Basin of Tiber River and more specifically to the catchment of 

its primary tributary the Aniene River located in Central Italy. 

The catchment is equipped with several raingages of which only 8 were used in this 

case study and specifically those of Tivoli, Lunghezza, Frascati, Ponte Salario, Roma 

Flaminio, Roma Macao, Pantano Borghese and Roma Acqua Acetosa. The data set 

available was 6 years of hourly-recorded series coming from 6 of the 8 raingages and 

daily-recorded series from all raingages mentioned, covering the period from January 

1994 to December 1999. 

The disaggregation was performed using hourly data of three raingages only (raingage 

1: Tivoli, raingage 2: Lunghezza, raingage 3: Frascati) and daily data from all 

raingages, as shown in figure 1. 
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figure 1 

 
The historical hourly data of raingages at Ponte Salario (4), Roma Flaminio (5) and 

Roma Macao (6) was used for tests and comparisons with the simulated series 

obtained in this disaggregation framework to allow the effectiveness of the 

methodology to be evaluated. 
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Simulations were performed for each month separately to generate hourly synthetic 

series for gages 4,5,6,7,8 for all months of the year. 

The first step was to determine the statistics of gages 1,2,3 at hourly and daily level 

among with the cross-correlation coefficients at hourly and daily time scale. We were 

able to estimate directly the cross-correlation coefficients between the raingages 1,2,3 

at the hourly time scale and those between 1,2,…,8 at the daily time scale. The 

unknown cross-correlation coefficients at hourly level were estimated indirectly using 

the empirical relationship: 

: ( )md
ij

h
ij rr =  

Where: 
h

ijr  is the cross-correlation coefficient between raingages i and j at the hourly time 

scale 
d

ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m  is an exponent that was estimated by regression, using the known cross-correlation 

coefficients at the hourly and daily time scale, for each month.  

In all simulations the single state approach was adopted, so the option of stimulating 

of dry condition and the related φ were deactivated. 

The other options used as well as the results of the disaggregation framework for each 

month are illustrated as it follows. 
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Month of January 
For January, the simplified multivariate model was used in terms of linear 

transformation Xs = a Xs – 1 + b Vs  

Repetitions was necessary, ∆m was set 0.1 % and rm was set 6000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π were set to 0.3 mm and 0.1 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series were 

produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 1 where it can be observed a good 

agreement. Graphical comparisons show that the probability distribution functions of 

historical and simulated hourly rainfall depth during wet days for gage 6 are also in 

good agreement with each other (see figures 2 and 3). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 2. It is shown 

that acceptable approximations of these statistics have been attained. The synthetic 

values tend to agree much better with the values used in disaggregation especially 

given the fact that the historical values have not been entered in the calculations and 

their preservation could not be assured. Nevertheless these discrepancies can be 

tolerated. 

A further comparison is given in figure 4 in terms of the autocorrelation function for 

higher lags, up to 10. It can be observed that even though in theory the synthetic 

autocorrelations should agree with those of the AR(1) model, they practically agree 

much better with the historical ones. In fact what forced the synthetic values to agree 

with the historical ones were the given hourly rainfall series at gages 1, 2, 3. 

Hyetographs of the synthetic series given in figures 5-9 show that the disaggregation 

model predicted the actual hyetographs very well. 
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Table 1 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.93 0.92 0.93 0.92 0.92 0.93 - - 
value used on disaggregation 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 
synthetic 0.93 0.92 0.93 0.93 0.92 0.93 0.93 0.86 
Mean 
historical  0.09 0.09 0.09 0.08 0.08 0.08 - - 
value used on disaggregation 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
synthetic 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.09 
Maximum value 
historical  7 8.6 10 9 9.4 8.8 - - 
value used on disaggregation 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 
synthetic 7 8.6 10 8.4 7.8 9.6 7.8 7.8 
Standard deviation 
historical  0.485 0.502 0.506 0.467 0.441 0.459 - - 
value used on disaggregation 0.497 0.497 0.497 0.497 0.497 0.497 0.497 0.497 
synthetic 0.484 0.502 0.506 0.458 0.413 0.447 0.415 0.407 
Skewness 
historical  7.66 9.57 9.37 8.56 9.37 8.83 - - 
value used on disaggregation 8.87 8.87 8.87 8.87 8.87 8.87 8.87 8.87 
synthetic 7.67 9.58 9.38 8.63 8.53 9.13 9.28 8.37 
Lag1 autocorrelation 
historical  0.58 0.54 0.50 0.53 0.54 0.58 - - 
value used on disaggregation 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 
synthetic 0.58 0.55 0.50 0.56 0.60 0.57 0.52 0.59 

Statistics of hourly rainfall depths at each gage for the month of JANUARY 
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Table 2 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.73 0.47 0.52 0.49 0.53 - - 
value used on 1.00 0.73 0.47 0.71 0.66 0.61 0.54 0.49 
synthetic 1.00 0.74 0.47 0.73 0.75 0.67 0.63 0.59 

2 
historical  0.73 1.00 0.52 0.72 0.60 0.71 - - 
value used on 0.73 1.00 0.52 0.84 0.72 0.77 0.71 0.68 
synthetic 0.74 1.00 0.52 0.88 0.82 0.85 0.85 0.83 

3 
historical  0.47 0.52 1.00 0.43 0.40 0.46 - - 
value used on 0.47 0.52 1.00 0.46 0.45 0.48 0.44 0.39 
synthetic 0.47 0.52 1.00 0.51 0.56 0.58 0.50 0.50 

4 
historical  0.52 0.72 0.43 1.00 0.82 0.87 - - 
value used on 0.71 0.84 0.46 1.00 0.90 0.90 0.65 0.78 
synthetic 0.73 0.88 0.51 1.00 0.93 0.93 0.78 0.86 

5 
historical  0.49 0.60 0.40 0.82 1.00 0.75 - - 
value used on 0.66 0.72 0.45 0.90 1.00 0.80 0.56 0.69 
synthetic 0.75 0.82 0.56 0.93 1.00 0.89 0.74 0.82 

6 
historical  0.53 0.71 0.46 0.87 0.75 1.00 - - 
value used on 0.61 0.77 0.48 0.90 0.80 1.00 0.63 0.75 
synthetic 0.67 0.85 0.58 0.93 0.89 1.00 0.76 0.85 

7 
historical  - - - - - - - - 
value used on 0.54 0.71 0.44 0.65 0.56 0.63 1.00 0.82 
synthetic 0.63 0.85 0.50 0.78 0.74 0.76 1.00 0.89 

8 
historical  - - - - - - - - 
value used on 0.49 0.68 0.39 0.78 0.69 0.75 0.82 1.00 
synthetic 0.59 0.83 0.50 0.86 0.82 0.85 0.89 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of January 
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Figure 2: Comparison of historical and simulated probability distribution functions of 

hourly rainfall depth during wet days at gage 6 for the month of January 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of historical and simulated probability distribution functions of 

of the length of dry intervals at gage 6 for the month of January 
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Figure 4: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of January. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 6: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 8: Simulated hyetograph for raingage 7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Simulated hyetograph for raingage 8 
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Month of February 
 

For February, the simplified multivariate model was used in terms of linear 

transformation Xs = a Xs – 1 + b Vs  

Repetitions was necessary, ∆m was set 0.1 % and rm was set 3000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π0 were set to 0.1 mm and 0.1 respectively. 

The statistics of the synthetic series are compared to the historical and to the values 

used in the disaggregation in table 3 where it can be observed a good agreement. 

Graphical comparisons show that the probability distribution functions of historical 

and simulated hourly rainfall depth during wet days for gage 5 are also in good 

agreement with each other (see figures 10 and 11). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 4. It is shown 

that acceptable approximations of these statistics have been attained. The synthetic 

values tend to agree much better with the values used in disaggregation especially 

given the fact that the historical values have not been entered in the calculations and 

their preservation could not be assured. Nevertheless these discrepancies can be 

tolerated. 

A further comparison is given in figure 12 in terms of the autocorrelation function for 

higher lags, up to 10. It can be observed that even though in theory the synthetic 

autocorrelations should agree with those of the AR(1) model, they practically agree 

much better with the historical ones. In fact what forced the synthetic values to agree 

with the historical ones were the given hourly rainfall series at gages 1, 2, 3. 

Hyetographs of the synthetic series given in figure 13-17 show that the disaggregation 

model predicted the actual hyetographs well. 
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Table 4 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.91 0.90 0.93 0.91 0.92 0.92 - - 
value used on disaggregation 0.914 0.914 0.914 0.914 0.914 0.914 0.914 0.914 
synthetic 0.91 0.90 0.93 0.88 0.85 0.88 0.89 0.86 
Mean 
historical  0.11 0.10 0.08 0.10 0.10 0.10 - - 
value used on disaggregation 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
synthetic 0.11 0.10 0.08 0.10 0.10 0.10 0.10 0.11 
Maximum value 
historical  11.2 20.8 14.8 14.6 13.8 13.2 - - 
value used on disaggregation 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 
synthetic 11.2 20.7 14.8 11 14 10.4 12.4 12.8 
Standard deviation 
historical  0.56 0.60 0.50 0.57 0.52 0.54 - - 
value used on disaggregation 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 
synthetic 0.56 0.60 0.50 0.50 0.48 0.46 0.53 0.54 
Skewness 
historical  9.05 15.22 12.54 11.15 9.96 10.55 - - 
value used on disaggregation 12.273 12.309 12.309 12.309 12.309 12.309 12.309 12.309 
synthetic 9.05 15.15 12.55 9.18 12.17 8.71 10.38 9.77 
Lag1 autocorrelation 
historical  0.52 0.43 0.50 0.51 0.50 0.48 - - 
value used on disaggregation 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 
synthetic 0.53 0.43 0.50 0.51 0.58 0.53 0.61 0.56 

Statistics of hourly rainfall depths at each gage for the month of FEBRUARY 
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Table 5 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.68 0.31 0.58 0.33 0.53 - - 
value used on disaggregation 1.00 0.68 0.31 0.67 0.45 0.69 0.63 0.58 
synthetic 1.00 0.68 0.31 0.66 0.47 0.72 0.71 0.61 

2 
historical  0.68 1.00 0.33 0.69 0.37 0.68 - - 
value used on disaggregation 0.68 1.00 0.33 0.73 0.54 0.74 0.57 0.67 
synthetic 0.68 1.00 0.34 0.75 0.54 0.82 0.60 0.70 

3 
historical  0.31 0.33 1.00 0.27 0.27 0.30 - - 
value used on disaggregation 0.31 0.33 1.00 0.15 0.22 0.19 0.41 0.16 
synthetic 0.31 0.34 1.00 0.25 0.40 0.31 0.45 0.26 

4 
historical  0.58 0.69 0.27 1.00 0.59 0.83 - - 
value used on disaggregation 0.67 0.73 0.15 1.00 0.65 0.91 0.41 0.85 
synthetic 0.66 0.75 0.25 1.00 0.66 0.97 0.54 0.88 

5 
historical  0.33 0.37 0.27 0.59 1.00 0.52 - - 
value used on disaggregation 0.45 0.54 0.22 0.65 1.00 0.65 0.31 0.61 
synthetic 0.47 0.54 0.40 0.66 1.00 0.70 0.43 0.64 

6 
historical  0.53 0.68 0.30 0.83 0.52 1.00 - - 
value used on disaggregation 0.69 0.74 0.19 0.91 0.65 1.00 0.45 0.78 
synthetic 0.72 0.82 0.31 0.97 0.70 1.00 0.60 0.86 

7 
historical  - - - - - - - - 
value used on disaggregation 0.63 0.57 0.41 0.41 0.31 0.45 1.00 0.42 
synthetic 0.71 0.60 0.45 0.54 0.43 0.60 1.00 0.54 

8 
historical  - - - - - - - - 
value used on disaggregation 0.58 0.67 0.16 0.85 0.61 0.78 0.42 1.00 
synthetic 0.61 0.70 0.26 0.88 0.64 0.86 0.54 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of February 
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Figure 10: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 5 for the month of February 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 5 for the month of February 
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Figure 12: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of February. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 14: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 16: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Simulated hyetographs for raingage 8 
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Month of March 
For March, the simplified multivariate model was used in terms of linear 

transformation Xs = a Xs – 1 + b Vs  

Repetitions was necessary, ∆m was set 0.1 % and rm was set 1000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π were set to 0.3 mm and 0.1 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 5 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 4 

are also in good agreement with each other (see figures 18 and 19). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 6. It is shown 

that acceptable approximations of these statistics have been attained. The synthetic 

values tend to agree much better with the values used in disaggregation especially 

given the fact that the historical values have not been entered in the calculations and 

their preservation could not be assured. Nevertheless these discrepancies can be 

tolerated. 

A further comparison is given in figure 20 in terms of the autocorrelation function for 

higher lags, up to 10. It can be observed that even though in theory the synthetic 

autocorrelations should agree with those of the AR(1) model, they practically agree 

much better with the historical ones. In fact what forced the synthetic values to agree 

with the historical ones were the given hourly rainfall series at gages 1, 2, 3. 

Hyetographs of the synthetic series given in figures 21-25 show that the 

disaggregation model predicted the actual hyetographs very well.
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Table 5 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.95 0.94 0.95 0.94 0.94 0.95 - - 
value used on disaggregation 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 
synthetic 0.95 0.94 0.95 0.93 0.92 0.94 0.94 0.90 
Mean 
historical  0.07 0.06 0.06 0.07 0.07 0.07 - - 
value used on disaggregation 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
synthetic 0.07 0.06 0.06 0.07 0.07 0.07 0.07 0.08 
Maximum value 
historical  14.40 10.20 10.00 10.60 10.20 14.40 - - 
value used on disaggregation 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 
synthetic 14.40 10.20 10.00 11.20 11.00 10.30 8.90 10.50 
Standard deviation 
historical  0.54 0.37 0.43 0.48 0.45 0.45 - - 
value used on disaggregation 0.448 0.446 0.446 0.446 0.446 0.446 0.446 0.446 
synthetic 0.53 0.37 0.43 0.50 0.43 0.43 0.44 0.47 
Skewness 
historical  13.57 11.83 13.08 10.91 11.20 13.27 - - 
value used on disaggregation 12.82 12.86 12.86 12.86 12.86 12.86 12.86 12.86 
synthetic 13.62 11.82 13.10 12.06 11.60 11.25 11.64 11.01 
Lag1 autocorrelation 
historical  0.52 0.41 0.49 0.48 0.53 0.47 - - 
value used on disaggregation 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 
synthetic 0.52 0.41 0.49 0.55 0.55 0.58 0.55 0.62 

Statistics of hourly rainfall depths at each gage for the month of MARCH 
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Table 6 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.72 0.48 0.59 0.49 0.59 - - 
value used on disaggregation 1.00 0.72 0.48 0.73 0.74 0.76 0.74 0.73 
synthetic 1.00 0.71 0.48 0.73 0.78 0.77 0.78 0.75 

2 
historical  0.72 1.00 0.57 0.70 0.59 0.74 - - 
value used on disaggregation 0.72 1.00 0.57 0.75 0.85 0.82 0.65 0.77 
synthetic 0.71 1.00 0.57 0.76 0.88 0.83 0.68 0.79 

3 
historical  0.48 0.57 1.00 0.46 0.41 0.59 - - 
value used on disaggregation 0.48 0.57 1.00 0.52 0.48 0.59 0.52 0.55 
synthetic 0.48 0.57 1.00 0.53 0.55 0.59 0.55 0.57 

4 
historical  0.59 0.70 0.46 1.00 0.69 0.83 - - 
value used on disaggregation 0.73 0.75 0.52 1.00 0.89 0.93 0.51 0.96 
synthetic 0.73 0.76 0.53 1.00 0.93 0.96 0.60 0.97 

5 
historical  0.49 0.59 0.41 0.69 1.00 0.69 - - 
value used on disaggregation 0.74 0.85 0.48 0.89 1.00 0.87 0.50 0.88 
synthetic 0.78 0.88 0.55 0.93 1.00 0.95 0.68 0.94 

6 
historical  0.59 0.74 0.59 0.83 0.69 1.00 - - 
value used on disaggregation 0.76 0.82 0.59 0.93 0.87 1.00 0.57 0.94 
synthetic 0.77 0.83 0.59 0.96 0.95 1.00 0.67 0.97 

7 
historical  - - - - - - - - 
value used on disaggregation 0.74 0.65 0.52 0.51 0.50 0.57 1.00 0.52 
synthetic 0.78 0.68 0.55 0.60 0.68 0.67 1.00 0.64 

8 
historical  - - - - - - - - 
value used on disaggregation 0.73 0.77 0.55 0.96 0.88 0.94 0.52 1.00 
synthetic 0.75 0.79 0.57 0.97 0.94 0.97 0.64 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of March 
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Figure 18: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 4 for the month of March 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 4 for the month of March 
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Figure 20: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of March. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 1 2 3 4 5 6 7 8 9 10
Lag

A
ut

oc
or

re
la

tio
n

H1 H2
H3 H4
H5 S4
H6 S5
S6 Markov
S3

0

1

2

3

4

5

6

7

1/3/1995 0:00 1/3/1995 12:00 2/3/1995 0:00 2/3/1995 12:00 3/3/1995 0:00 3/3/1995 12:00

ho
ur

ly
 ra

in
fa

ll 
de

pt
hs

 [m
m

]

H1
H2
H3
H4
S4



ChapterIV  Case Study 

76  

 

Figure 21: Comparison of historical and simulated hyetographs for raingage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 24: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Simulated hyetographs for raingage 8 
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Month of April 
 

For April, the simplified multivariate model was used in terms of linear 

transformation Xs = a Xs – 1 + b Vs  

Repetitions was necessary, ∆m was set 0.1 % and rm was set 5000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π were set to 0.3 mm and 0.2 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 7 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 4 

are also in good agreement with each other (see figures 26 and 27). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 8. It is shown 

that acceptable approximations of these statistics have been attained. The synthetic 

values tend to agree much better with the values used in disaggregation especially 

given the fact that the historical values have not been entered in the calculations and 

their preservation could not be assured. Nevertheless these discrepancies can be 

tolerated. 

A further comparison is given in figure 28 in terms of the autocorrelation function for 

higher lags, up to 10. It can be observed that even though in theory the synthetic 

autocorrelations should agree with those of the AR(1) model, they practically agree 

much better with the historical ones. In fact what forced the synthetic values to agree 

with the historical ones were the given hourly rainfall series at gages 1, 2, 3. 

Hyetographs of the synthetic series given in figures 29-33 show that the 

disaggregation model predicted the actual hyetographs very well. 
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Table 7 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.88 0.90 0.90 0.90 0.90 0.91 - - 
value used on disaggregation 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 
synthetic 0.88 0.89 0.90 0.91 0.90 0.91 0.89 0.85 
Mean 
historical  0.17 0.13 0.12 0.11 0.11 0.12 - - 
value used on disaggregation 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
synthetic 0.17 0.13 0.13 0.12 0.11 0.12 0.11 0.12 
Maximum value 
historical  24.40 19.40 16.20 14.40 13.40 16.20 - - 
value used on disaggregation 20.00 20.0 20.0 20.0 20.0 20.0 20.0 20.0 
synthetic 24.40 19.40 16.20 15 13.3 16.2 11.2 13.7 
Standard deviation 
historical  0.85 0.68 0.65 0.63 0.63 0.73 - - 
value used on disaggregation 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 
synthetic 0.86 0.69 0.65 0.60 0.58 0.67 0.54 0.55 
Skewness 
historical  11.18 11.61 10.29 10.63 11.55 10.77 - - 
value used on disaggregation 11.027 11.027 11.027 11.027 11.027 11.027 11.027 11.027 
synthetic 11.16 11.60 10.27 10.21 10.64 10.83 8.84 9.28 
Lag1 autocorrelation 
historical  0.44 0.40 0.38 0.58 0.53 0.51 - - 
value used on disaggregation 0.407 0.407 0.407 0.407 0.407 0.407 0.407 0.407 
synthetic 0.44 0.40 0.38 0.42 0.44 0.43 0.46 0.51 

Statistics of hourly rainfall depths at each gage for the month of APRIL 
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Table 8 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.41 0.43 0.31 0.25 0.28 - - 
value used on disaggregation 1.00 0.41 0.43 0.47 0.26 0.37 0.32 0.44 
synthetic 1.00 0.46 0.48 0.50 0.38 0.41 0.44 0.52 

2 
historical  0.41 1.00 0.48 0.68 0.47 0.62 - - 
value used on disaggregation 0.41 1.00 0.48 0.85 0.52 0.77 0.53 0.77 
synthetic 0.46 1.00 0.48 0.91 0.62 0.82 0.53 0.84 

3 
historical  0.43 0.48 1.00 0.41 0.30 0.39 - - 
value used on disaggregation 0.43 0.48 1.00 0.47 0.33 0.41 0.51 0.45 
synthetic 0.48 0.48 1.00 0.48 0.40 0.46 0.59 0.51 

4 
historical  0.31 0.68 0.41 1.00 0.68 0.83 - - 
value used on disaggregation 0.47 0.85 0.47 1.00 0.52 0.81 0.40 0.90 
synthetic 0.50 0.91 0.48 1.00 0.61 0.83 0.49 0.92 

5 
historical  0.25 0.47 0.30 0.68 1.00 0.53 - - 
value used on disaggregation 0.26 0.52 0.33 0.52 1.00 0.39 0.32 0.45 
synthetic 0.38 0.62 0.40 0.61 1.00 0.52 0.41 0.55 

6 
historical  0.28 0.62 0.39 0.83 0.53 1.00 - - 
value used on disaggregation 0.37 0.77 0.41 0.81 0.39 1.00 0.33 0.77 
synthetic 0.41 0.82 0.46 0.83 0.52 1.00 0.46 0.82 

7 
historical  - - - - - - - - 
value used on disaggregation 0.32 0.53 0.51 0.40 0.32 0.33 1.00 0.47 
synthetic 0.44 0.53 0.59 0.49 0.41 0.46 1.00 0.59 

8 
historical  - - - - - - - - 
value used on disaggregation 0.44 0.77 0.45 0.90 0.45 0.77 0.47 1.00 
synthetic 0.52 0.84 0.51 0.92 0.55 0.82 0.59 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of April 
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Figure 26: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 6 for the month of April 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 6 for the month of April 
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Figure 28: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of April. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 30: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 32: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Simulated hyetographs for raingage 8 
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Month of May 
 

For May, the simplified multivariate model was used in terms of linear transformation 

Xs = a Xs – 1 + b Vs  

Repetitions was necessary, ∆m was set 0.1 % and rm was set 5000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π were set to 0.4 mm and 0.3 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 7 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 4 

are also in good agreement with each other (see figures 34 and 35). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 8. It is shown 

that acceptable approximations of these statistics have been attained. The synthetic 

values tend to agree much better with the values used in disaggregation especially 

given the fact that the historical values have not been entered in the calculations and 

their preservation could not be assured. Nevertheless these discrepancies can be 

tolerated. 

A further comparison is given in figure 36 in terms of the autocorrelation function for 

higher lags, up to 10. It can be observed that even though in theory the synthetic 

autocorrelations should agree with those of the AR(1) model, they practically agree 

much better with the historical ones. In fact what forced the synthetic values to agree 

with the historical ones were the given hourly rainfall series at gages 1, 2, 3. 

Hyetographs of the synthetic series given in figures 37-41 show that the 

disaggregation model predicted the actual hyetographs very well. 
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Table 9 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.94 0.94 0.95 0.94 0.94 0.95 - - 
value used on disaggregation 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 
synthetic 0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.88 
Mean 
historical  0.10 0.08 0.08 0.09 0.07 0.07 - - 
value used on disaggregation 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 
synthetic 0.10 0.08 0.08 0.09 0.07 0.08 0.09 0.10 
Maximum value 
historical  33.8 19.8 15.8 31.6 19.8 20.8 - - 
value used on disaggregation 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 
synthetic 33.8 19.8 15.8 23.1 15.1 20.6 14.7 17.3 
Standard deviation 
historical  0.84 0.66 0.60 0.80 0.58 0.67 - - 
value used on disaggregation 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0.703 
synthetic 0.84 0.66 0.60 0.68 0.50 0.60 0.59 0.62 
Skewness 
historical  20.67 16.04 14.57 21.94 17.64 18.44 - - 
value used on disaggregation 17.095 17.09 17.09 17.09 17.09 17.09 17.09 17.09 
synthetic 20.63 15.93 14.54 17.09 13.47 17.32 12.12 13.01 
Lag1 autocorrelation 
historical  0.25 0.38 0.38 0.29 0.30 0.32 - - 
value used on disaggregation 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 
synthetic 0.25 0.38 0.39 0.39 0.38 0.37 0.42 0.45 

Statistics of hourly rainfall depths at each gage for the month of MAY 
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Table 10 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.29 0.28 0.19 0.19 0.20 - - 
value used on disaggregation 1.00 0.29 0.28 0.29 0.27 0.21 0.48 0.23 
synthetic 1.00 0.29 0.28 0.38 0.35 0.29 0.60 0.31 

2 
historical  0.29 1.00 0.31 0.44 0.41 0.48 - - 
value used on disaggregation 0.29 1.00 0.31 0.49 0.47 0.46 0.41 0.38 
synthetic 0.29 1.00 0.31 0.62 0.63 0.62 0.51 0.52 

3 
historical  0.28 0.31 1.00 0.27 0.23 0.32 - - 
value used on disaggregation 0.28 0.31 1.00 0.36 0.32 0.36 0.46 0.38 
synthetic 0.28 0.31 1.00 0.33 0.31 0.35 0.53 0.37 

4 
historical  0.19 0.44 0.27 1.00 0.79 0.91 - - 
value used on disaggregation 0.29 0.49 0.36 1.00 0.65 0.87 0.52 0.85 
synthetic 0.38 0.62 0.33 1.00 0.80 0.96 0.61 0.88 

5 
historical  0.19 0.41 0.23 0.79 1.00 0.68 
value used on disaggregation 0.27 0.47 0.32 0.65 1.00 0.57 0.40 0.53 
synthetic 0.35 0.63 0.31 0.80 1.00 0.78 0.54 0.70 

6 
historical  0.20 0.48 0.32 0.91 0.68 1.00 - - 
value used on disaggregation 0.21 0.46 0.36 0.87 0.57 1.00 0.49 0.85 
synthetic 0.29 0.62 0.35 0.96 0.78 1.00 0.58 0.87 

7 
historical  - - - - - - - - 
value used on disaggregation 0.48 0.41 0.46 0.52 0.40 0.49 1.00 0.60 
synthetic 0.60 0.51 0.53 0.61 0.54 0.58 1.00 0.64 

8 
historical  - - - - - - - - 
value used on disaggregation 0.23 0.38 0.38 0.85 0.53 0.85 0.60 1.00 
synthetic 0.31 0.52 0.37 0.88 0.70 0.87 0.64 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of May 
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Figure 34: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 6 for the month of May 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Comparison of historical and simulated probability distribution functions of 

of the length of dry intervals at gage 6 for the month of May 
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Figure 36: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of May. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 38: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 40: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Simulated hyetographs for raingage 8 
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Month of June 
 

For June, the simplified multivariate model was used in terms of power 

transformation sss bVaXX += ∗
−

∗
1  where: ( )m

ss XX =∗  and m=0.5 

Repetitions was necessary, ∆m was set 0.1 % and rm was set 3000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π0 were set to 0.3 mm and 0.5 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 11 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 5 

are also in good agreement with each other (see figures 42 and 43). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 12 It is shown 

that the synthetic values tend to agree much better with the values used in 

disaggregation especially given the fact that the historical values have not been 

entered in the calculations and their preservation could not be assured. Another fact 

worth mentioning is that the historical values of the cross correlations were extremely 

low and the essential hypothesis holding the entire framework, i.e. the significant 

spatial correlation between raingages, was not preserved. This fact could be 

encountered to the quality of the data , or to the particularities of the rainfall process 

during the month of June. A further comparison is given in figure 44 in terms of the 

autocorrelation function for higher lags, up to 10. Hyetographs of the synthetic series 

given in figures 45-49 show that the disaggregation model gives a good 

approximation of the actual hyetographs. 
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Gage 1 2 3 4 5 6 7 8
Proportion dry
historical 0.97 0.95 0.97 0.97 0.98 0.97 - -
value used on disaggregation 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
synthetic 0.97 0.95 0.97 0.97 0.98 0.97 0.97 0.94
Mean
historical 0.05 0.05 0.05 0.05 0.04 0.04 - -
value used on disaggregation 0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050
synthetic 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Maximum value
historical 10.4 19 34.2 39.4 22 26.8 - -
value used on disaggregation 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2
synthetic 10.2 19 34.2 25 24.6 19.3 13.9 18.5
Standard deviation
historical 0.47 0.52 0.74 0.74 0.59 0.56 - -
value used on disaggregation 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
synthetic 0.47 0.52 0.74 0.54 0.65 0.45 0.36 0.43
Skewness
historical 15.348 23.903 30.672 39.735 23.450 32.329 - -
value used on disaggregation 23.308 23.308 23.308 23.308 23.308 23.308 23.308 23.308
synthetic 15.28 23.86 30.59 29.00 25.99 25.26 22.76 24.99
Lag1 autocorrelation
historical 0.24 0.43 0.26 0.07 0.15 0.16 - -
value used on disaggregation 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
synthetic 0.24 0.43 0.26 0.31 0.28 0.31 0.38 0.33

Statistics of hourly rainfall depths at each gage for the month of JUNE
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Table 12 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.26 0.26 0.04 0.07 0.07 - - 
value used on disaggregation 1.00 0.26 0.26 0.20 0.37 0.27 0.29 0.30 
synthetic 1.00 0.26 0.26 0.11 0.15 0.17 0.20 0.17 

2 
historical  0.26 1.00 0.59 0.22 0.12 0.24 - - 
value used on disaggregation 0.26 1.00 0.59 0.54 0.34 0.46 0.18 0.52 
synthetic 0.26 1.00 0.59 0.30 0.07 0.30 0.10 0.31 

3 
historical  0.26 0.59 1.00 0.16 0.02 0.16 - - 
value used on disaggregation 0.26 0.59 1.00 0.34 0.13 0.33 0.19 0.37 
synthetic 0.26 0.59 1.00 0.15 0.02 0.18 0.07 0.19 

4 
historical  0.04 0.22 0.16 1.00 0.17 0.91 - - 
value used on disaggregation 0.20 0.54 0.34 1.00 0.23 0.89 0.53 0.92 
synthetic 0.11 0.30 0.15 1.00 0.04 0.97 0.50 0.97 

5 
historical  0.07 0.12 0.02 0.17 1.00 0.14 - - 
value used on disaggregation 0.37 0.34 0.13 0.23 1.00 0.15 0.21 0.30 
synthetic 0.15 0.07 0.02 0.04 1.00 0.03 0.09 0.08 

6 
historical  0.07 0.24 0.16 0.91 0.14 1.00 - - 
value used on disaggregation 0.27 0.46 0.33 0.89 0.15 1.00 0.53 0.89 
synthetic 0.17 0.30 0.18 0.97 0.03 1.00 0.50 0.97 

7 
historical  - - - - - - - - 
value used on disaggregation 0.29 0.18 0.19 0.53 0.21 0.53 1.00 0.51 
synthetic 0.20 0.10 0.07 0.50 0.09 0.50 1.00 0.51 

8 
historical  - - - - - - - - 
value used on disaggregation 0.30 0.52 0.37 0.92 0.30 0.89 0.51 1.00 
synthetic 0.17 0.31 0.19 0.97 0.08 0.97 0.51 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of June 
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Figure 42: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 5 for the month of June 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 5 for the month of June 
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Figure 44: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of June. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 46: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 48: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: Simulated hyetographs for raingage 8 
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Month of July 
 

For July, the simplified multivariate model was used in terms of power transformation 

sss bVaXX += ∗
−

∗
1  where: ( )m

ss XX =∗  and m=0.6 

Repetitions was necessary, ∆m was set 0.1 % and rm was set 3000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π0 were set to 0.3 mm and 0.5 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 13 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 4 

are also in good agreement with each other (see figures 50 and 51). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 14 It is shown 

that the synthetic values tend to agree much better with the values used in 

disaggregation especially given the fact that the historical values have not been 

entered in the calculations and their preservation could not be assured. Another fact 

worth mentioning is that the historical values of the cross correlations were extremely 

low and the essential hypothesis holding the entire framework, i.e. the significant 

spatial correlation between raingages, was not preserved. This fact could be 

encountered to the quality of the data , or to the particularities of the rainfall process 

during the month of July. The rainfall process in summer is characterized by intense 

storms of relatively small duration and extremely localized. 

 A further comparison is given in figure 52 in terms of the autocorrelation function for 

higher lags, up to 10. Hyetographs of the synthetic series given in figures 53-57 show 

that the disaggregation model gives a good approximation of the actual hyetographs. 
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Table 13 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.99 0.98 0.99 0.99 0.99 0.99 - - 
value used on disaggregation 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 
synthetic 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.97 
Mean 
historical  0.05 0.04 0.04 0.03 0.02 0.01 - - 
value used on disaggregation 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 
synthetic 0.05 0.04 0.04 0.03 0.02 0.01 0.04 0.03 
Maximum value 
historical  38.2 32 37.4 67.8 23 12.2 - - 
value used on disaggregation 35.9 35.9 35.9 35.9 35.9 35.9 35.9 35.9 
synthetic 38.2 32 37.4 68.4 23.4 15.6 46.5 67.7 
Standard deviation 
historical  0.87 0.66 0.88 1.13 0.46 0.30 - - 
value used on disaggregation 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 
synthetic 0.87 0.66 0.88 1.10 0.46 0.30 0.91 1.09 
Skewness 
historical  30.43 34.59 32.20 52.87 36.95 34.32 - - 
value used on disaggregation 32.176 32.176 32.176 32.176 32.176 32.176 32.176 32.176 
synthetic 30.43 34.62 32.20 56.09 38.69 39.24 39.00 56.44 
Lag1 autocorrelation 
historical  0.11 0.13 0.30 0.39 0.10 0.18 - - 
value used on disaggregation 0.181 0.181 0.181 0.181 0.181 0.181 0.181 0.181 
synthetic 0.11 0.13 0.30 0.33 0.16 0.06 0.36 0.34 

Statistics of hourly rainfall depths at each gage for the month of JULY 
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Table 14 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.24 0.17 0.02 0.04 0.04 - - 
value used on disaggregation 1.00 0.24 0.17 0.08 0.05 0.09 0.08 0.05 
synthetic 1.00 0.25 0.17 0.05 0.02 0.07 0.07 0.03 

2 
historical  0.24 1.00 0.33 0.70 0.58 0.20 - - 
value used on disaggregation 0.24 1.00 0.33 0.50 0.40 0.31 0.54 0.49 
synthetic 0.25 1.00 0.34 0.72 0.60 0.61 0.66 0.72 

3 
historical  0.17 0.34 1.00 0.49 0.31 0.44 - - 
value used on disaggregation 0.17 0.33 1.00 0.52 0.37 0.24 0.62 0.52 
synthetic 0.17 0.34 1.00 0.46 0.31 0.2027 0.56 0.46 

4 
historical  0.02 0.70 0.49 1.00 0.74 0.48 - - 
value used on disaggregation 0.08 0.50 0.52 1.00 0.62 0.57 0.79 0.99 
synthetic 0.05 0.72 0.46 1.00 0.76 0.76 0.85 1.00 

5 
historical  0.04 0.58 0.31 0.74 1.00 0.22 - - 
value used on disaggregation 0.05 0.40 0.37 0.62 1.00 0.33 0.52 0.63 
synthetic 0.02 0.60 0.31 0.76 1.00 0.60 0.65 0.76 

6 
historical  0.04 0.20 0.44 0.48 0.22 1.00 - - 
value used on disaggregation 0.09 0.31 0.24 0.57 0.33 1.00 0.39 0.57 
synthetic 0.07 0.61 0.2027 0.76 0.60 1.00 0.60 0.75 

7 
historical  - - - - - - - - 
value used on disaggregation 0.08 0.54 0.62 0.79 0.52 0.39 1.00 0.80 
synthetic 0.07 0.66 0.56 0.85 0.65 0.60 1.00 0.85 

8 
historical  - - - - - - - - 
value used on disaggregation 0.05 0.49 0.52 0.99 0.63 0.57 0.80 1.00 
synthetic 0.03 0.72 0.46 1.00 0.76 0.75 0.85 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of July 
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Figure 50: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 4 for the month of July 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 4 for the month of July 
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Figure 52: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of July. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 54: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 56: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Simulated hyetographs for raingage 8 
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Month of August 
 

For August, the simplified multivariate model was used in terms of power 

transformation sss bVaXX += ∗
−

∗
1  where: ( )m

ss XX =∗  and m=0.6 

Repetitions was necessary, ∆m was set 0.1 % and rm was set 3000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π0 were set to 0.3 mm and 0.5 respectively. 

Applying the disaggregation modeling framework synthetic hourly rainfall series 

were produced for the eight raingages, those of gages 1, 2 and 3 being identical to the 

historical series. The statistics of the synthetic series are compared to the historical 

and to the values used in the disaggregation in table 15 where it can be observed a 

good agreement. Graphical comparisons show that the probability distribution 

functions of historical and simulated hourly rainfall depth during wet days for gage 5 

are also in good agreement with each other (see figures 58 and 59). 

Lag-one cross correlation coefficients of the synthetic series are compared with those 

used in disaggregation and with those of the historical series in Table 16 It is shown 

that the synthetic values tend to agree much better with the values used in 

disaggregation especially given the fact that the historical values have not been 

entered in the calculations and their preservation could not be assured. Another fact 

worth mentioning is that the historical values of the cross correlations were extremely 

low and the essential hypothesis holding the entire framework, i.e. the significant 

spatial correlation between raingages, was not preserved. This fact could be 

encountered to the quality of the data , or to the particularities of the rainfall process 

during the month of August. The rainfall process in summer is characterized by 

intense storms of relatively small duration and extremely localized. 

 A further comparison is given in figure 60 in terms of the autocorrelation function for 

higher lags, up to 10. Hyetographs of the synthetic series given in figures 61-65 show 

that the maximum depths are predicted well but “with a temporal translation. 
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Table 15 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.98 0.97 0.98 0.98 0.98 0.98 - - 
value used on disaggregation 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 
synthetic 0.97 0.97 0.98 0.97 0.96 0.97 0.97 0.92 
Mean 
historical  0.06 0.08 0.08 0.05 0.05 0.06 - - 
value used on disaggregation 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 
synthetic 0.06 0.08 0.08 0.05 0.05 0.06 0.06 0.05 
Maximum value 
historical  23.2 36 34.8 24.8 24 19.8 - - 
value used on disaggregation 31.3 31.3 31.3 31.3 31.3 31.3 31.3 31.3 
synthetic 23.2 36 34.8 20.2 24.7 20.9 32.7 10.8 
Standard deviation 
historical  0.77 1.04 1.02 0.69 0.68 0.76 - - 
value used on disaggregation 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 
synthetic 0.77 1.05 1.02 0.56 0.63 0.67 0.78 0.34 
Skewness 
historical  18.18 22.65 19.56 24.32 20.58 19.12 - - 
value used on disaggregation 20.128 20.13 20.13 20.13 20.13 20.13 20.13 20.13 
synthetic 18.15 22.59 19.48 25.26 26.98 21.58 24.90 17.44 
Lag1 autocorrelation 
historical  0.29 0.32 0.20 0.19 0.22 0.26 - - 
value used on disaggregation 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 
synthetic 0.29 0.32 0.20 0.25 0.21 0.22 0.24 0.35 

Statistics of hourly rainfall depths at each gage for the month of AUGUST 
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Table 16 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.08 0.09 0.01 0.03 0.06 - - 
value used on disaggregation 1.00 0.08 0.09 0.11 0.07 0.45 0.36 0.25 
synthetic 1.00 0.08 0.09 0.06 0.03 0.36 0.34 0.28 

2 
historical  0.08 1.00 0.31 0.34 0.17 0.37 - - 
value used on disaggregation 0.08 1.00 0.31 0.17 0.18 0.35 0.13 0.38 
synthetic 0.08 1.00 0.31 0.17 0.10 0.24 0.15 0.57 

3 
historical  0.09 0.31 1.00 0.40 0.22 0.25 - - 
value used on disaggregation 0.09 0.31 1.00 0.19 0.14 0.18 0.17 0.24 
synthetic 0.09 0.31 1.00 0.12 0.07 0.12 0.18 0.32 

4 
historical  0.01 0.34 0.40 1.00 0.37 0.53 - - 
value used on disaggregation 0.11 0.17 0.19 1.00 0.39 0.27 0.09 0.45 
synthetic 0.06 0.17 0.12 1.00 0.25 0.11 0.08 0.40 

5 
historical  0.03 0.17 0.22 0.37 1.00 0.34 - - 
value used on disaggregation 0.07 0.18 0.14 0.39 1.00 0.15 0.04 0.35 
synthetic 0.03 0.10 0.07 0.25 1.00 0.05 0.03 0.46 

6 
historical  0.06 0.37 0.25 0.53 0.34 1.00 - - 
value used on disaggregation 0.45 0.35 0.18 0.27 0.15 1.00 0.31 0.39 
synthetic 0.36 0.24 0.12 0.11 0.05 1.00 0.22 0.33 

7 
historical  - - - - - - - - 
value used on disaggregation 0.36 0.13 0.17 0.09 0.04 0.31 1.00 0.25 
synthetic 0.34 0.15 0.18 0.08 0.03 0.22 1.00 0.30 

8 
historical  - - - - - - - - 
value used on disaggregation 0.25 0.38 0.24 0.45 0.35 0.39 0.25 1.00 
synthetic 0.28 0.57 0.32 0.40 0.46 0.33 0.30 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of August 
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Figure 58: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 5 for the month of August 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: Comparison of historical and simulated probability distribution functions 

of of the length of dry intervals at gage 5 for the month of August 
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Figure 60: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of August. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61: Comparison of historical and simulated hyetographs for raingage 4 
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Figure 62: Comparison of historical and simulated hyetographs for raingage 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63: Comparison of historical and simulated hyetographs for raingage 6 
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Figure 64: Simulated hyetographs for raingage 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65: Simulated hyetographs for raingage 8 
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Month of September 
 

For September, the simplified multivariate model was used in terms of power 

transformation sss bVaXX += ∗
−

∗
1  where: ( )m

ss XX =∗  and m=0.5 

Repetitions was necessary, ∆m was set 0.1 % and rm was set 3000.For the preservation 

and control of the proportion of dry intervals the options zero threshold l0 and 

probability of applying zero adjustment π0 were set to 0.3 mm and 0.5 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 4 for the month of September 
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Figure 67: Comparison of historical and simulated probability distribution functions 

of the length of dry intervals at gage 4 for the month of September 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of September. 
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Figure 69: Comparison of historical and simulated hyetographs for raingage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70: Comparison of historical and simulated hyetographs for raingage 5 
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Figure 71: Comparison of historical and simulated hyetographs for raingage 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72:Simulated hyetographs for raingage 7 
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Figure 73:Simulated hyetographs for raingage 8 
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Table 17 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.95 0.94 0.95 0.93 0.95 0.96 
value used on disaggregation 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 
synthetic 0.95 0.94 0.95 0.94 0.94 0.93 0.92 0.82 
Mean 
historical  0.12 0.11 0.11 0.10 0.13 0.09 
value used on disaggregation 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
synthetic 0.12 0.11 0.11 0.10 0.13 0.09 0.12 0.12 
Maximum value 
historical  22.6 23.4 19.2 29.4 39.2 25 - - 
value used on disaggregation 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 
synthetic 22.6 23.4 19.2 22.5 27 13.9 16.8 22.3 
Standard deviation 
historical  0.92 0.88 0.85 0.93 1.29 0.80 - - 
value used on disaggregation 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 
synthetic 0.92 0.87 0.85 0.82 1.00 0.59 0.73 0.74 
Skewness 
historical  13.74 14.65 11.90 20.03 18.91 17.08 - - 
value used on disaggregation 13.429 13.429 13.429 13.429 13.429 13.429 13.429 13.429 
synthetic 13.74 14.65 11.90 16.41 15.22 12.89 11.64 15.28 
Lag1 autocorrelation 
historical  0.33 0.37 0.30 0.16 0.27 0.27 - - 
value used on disaggregation 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 
synthetic 0.33 0.36 0.29 0.30 0.33 0.42 0.39 0.38 

Statistics of hourly rainfall depths at each gage for the month of SEPTEMBER 
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Table 18 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.43 0.23 0.15 0.16 0.29 - - 
value used on disaggregation 1.00 0.43 0.23 0.22 0.33 0.42 0.30 0.20 
synthetic 1.00 0.44 0.23 0.18 0.22 0.38 0.37 0.20 

2 
historical  0.43 1.00 0.51 0.45 0.44 0.59 - - 
value used on disaggregation 0.43 1.00 0.51 0.51 0.49 0.60 0.59 0.51 
synthetic 0.44 1.00 0.51 0.47 0.35 0.68 0.67 0.51 

3 
historical  0.23 0.51 1.00 0.40 0.32 0.50 - - 
value used on disaggregation 0.23 0.51 1.00 0.45 0.35 0.46 0.64 0.49 
synthetic 0.23 0.51 1.00 0.41 0.33 0.55 0.68 0.48 

4 
historical  0.15 0.45 0.40 1.00 0.46 0.74 - - 
value used on disaggregation 0.22 0.51 0.45 1.00 0.51 0.69 0.61 0.79 
synthetic 0.18 0.47 0.41 1.00 0.32 0.74 0.56 0.76 

5 
historical  0.16 0.44 0.32 0.46 1.00 0.52 - - 
value used on disaggregation 0.33 0.49 0.35 0.51 1.00 0.58 0.54 0.55 
synthetic 0.22 0.35 0.33 0.32 1.00 0.47 0.45 0.37 

6 
historical  0.29 0.59 0.50 0.74 0.52 1.00 - - 
value used on disaggregation 0.42 0.60 0.46 0.69 0.58 1.00 0.64 0.59 
synthetic 0.38 0.68 0.55 0.74 0.47 1.00 0.73 0.69 

7 
historical  - - - - - - - - 
value used on disaggregation 0.30 0.59 0.64 0.61 0.54 0.64 1.00 0.72 
synthetic 0.37 0.67 0.68 0.56 0.45 0.73 1.00 0.64 

8 
historical  - - - - - - - - 
value used on disaggregation 0.20 0.51 0.49 0.79 0.55 0.59 0.72 1.00 
synthetic 0.20 0.51 0.48 0.76 0.37 0.69 0.64 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of September 
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Month of October 
 

For October, the simplified multivariate model was used in terms of linear 

transformation sss bVaXX += −1  Repetitions was necessary, ∆m was set 0.1 % and rm 

was set 6000.For the preservation and control of the proportion of dry intervals the 

options zero threshold l0 and probability of applying zero adjustment π0 were set to 

0.3 mm and 0.1 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 5 for the month of October 
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Figure 75: Comparison of historical and simulated probability distribution functions 

of the length of dry intervals at gage 5 for the month of October 

 

Figure 76: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of October. 
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Figure 77: Comparison of historical and simulated hyetographs for raingage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78: Comparison of historical and simulated hyetographs for raingage 5 
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Figure 79: Comparison of historical and simulated hyetographs for raingage 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80: Simulated hyetographs for raingage 7 
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Figure 81: Simulated hyetographs for raingage 8 
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Table 19 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.94 0.93 0.94 0.92 0.94 0.95 - - 
value used on disaggregation 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 
synthetic 0.94 0.93 0.94 0.92 0.91 0.92 0.92 0.89 
Mean 
historical  0.14 0.13 0.15 0.13 0.15 0.12 - - 
value used on disaggregation 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
synthetic 0.14 0.13 0.15 0.13 0.15 0.12 0.15 0.15 
Maximum value 
historical  19.2 23.6 23.8 21.8 25.2 29.8 - - 
value used on disaggregation 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 
synthetic 19.2 23.6 23.8 17.1 26 15.8 26.2 15.8 
Standard deviation 
historical  0.98 0.91 1.14 0.95 1.09 1.01 - - 
value used on disaggregation 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
synthetic 0.98 0.91 1.15 0.82 0.91 0.73 0.97 0.83 
Skewness 
historical  10.79 11.82 12.24 11.78 12.26 14.75 - - 
value used on disaggregation 11.617 11.617 11.617 11.617 11.617 11.617 11.617 11.617 
synthetic 10.78 11.79 12.19 10.42 12.26 10.87 12.63 10.15 
Lag1 autocorrelation 
historical  0.43 0.39 0.34 0.39 0.37 0.35 - - 
value used on disaggregation 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.386 
synthetic 0.43 0.39 0.34 0.44 0.43 0.49 0.42 0.48 

Statistics of hourly rainfall depths at each gage for the month of OCTOBER 
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Table 20 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.43 0.23 0.27 0.28 0.22 - - 
value used on disaggregation 1.00 0.43 0.23 0.52 0.52 0.42 0.56 0.52 
synthetic 1.00 0.44 0.23 0.52 0.53 0.42 0.48 0.54 

2 
historical  0.43 1.00 0.34 0.72 0.52 0.72 - - 
value used on disaggregation 0.43 1.00 0.34 0.79 0.69 0.64 0.52 0.76 
synthetic 0.44 1.00 0.34 0.82 0.73 0.69 0.45 0.81 

3 
historical  0.23 0.34 1.00 0.36 0.32 0.30 - - 
value used on disaggregation 0.23 0.34 1.00 0.23 0.23 0.13 0.24 0.24 
synthetic 0.23 0.34 1.00 0.31 0.32 0.19 0.22 0.33 

4 
historical  0.27 0.72 0.36 1.00 0.72 0.84 - - 
value used on disaggregation 0.52 0.79 0.23 1.00 0.81 0.75 0.40 0.94 
synthetic 0.52 0.82 0.31 1.00 0.83 0.81 0.45 0.97 

5 
historical  0.28 0.52 0.32 0.72 1.00 0.60 - - 
value used on disaggregation 0.52 0.69 0.23 0.81 1.00 0.53 0.36 0.86 
synthetic 0.53 0.73 0.32 0.83 1.00 0.64 0.41 0.91 

6 
historical  0.22 0.72 0.30 0.84 0.60 1.00 - - 
value used on disaggregation 0.42 0.64 0.13 0.75 0.53 1.00 0.40 0.70 
synthetic 0.42 0.69 0.19 0.81 0.64 1.00 0.42 0.80 

7 
historical  - - - - - - - - 
value used on disaggregation 0.56 0.52 0.24 0.40 0.36 0.40 1.00 0.40 
synthetic 0.48 0.45 0.22 0.45 0.41 0.42 1.00 0.46 

8 
historical  - - - - - - - - 
value used on disaggregation 0.52 0.76 0.24 0.94 0.86 0.70 0.40 1.00 
synthetic 0.54 0.81 0.33 0.97 0.91 0.80 0.46 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of October 
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Month of November 
 

For November, the simplified multivariate model was used in terms of linear 

transformation sss bVaXX += −1  Repetitions was necessary, ∆m was set 0.1 % and rm 

was set 1000.For the preservation and control of the proportion of dry intervals the 

options zero threshold l0 and probability of applying zero adjustment π0 were set to 

0.2 mm and 0.1 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 82: Comparison of historical and simulated probability distribution functions 

of hourly rainfall depth during wet days at gage 6 for the month of November 
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Figure 83: Comparison of historical and simulated probability distribution functions 

of the length of dry intervals at gage 6 for the month of November 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 84: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of November. 
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Figure 85: Comparison of historical and simulated hyetographs for raingage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 86: Comparison of historical and simulated hyetographs for raingage 5 
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Figure 87: Comparison of historical and simulated hyetographs for raingage 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88: Simulated hyetographs for raingage 7 
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Figure 89: Simulated hyetographs for raingage 8 
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Table 21 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.90 0.89 0.91 0.88 0.89 0.91 - - 
value used on disaggregation 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 
synthetic 0.90 0.89 0.90 0.85 0.84 0.86 0.87 0.84 
Mean 
historical  0.15 0.14 0.14 0.15 0.15 0.14 - - 
value used on disaggregation 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 
synthetic 0.16 0.14 0.15 0.15 0.16 0.14 0.14 0.13 
Maximum value 
historical  21.6 21 24.6 20.6 19.2 16.4 - - 
value used on disaggregation 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 
synthetic 21.6 21 24.6 20.2 18.6 18.3 16.9 13.4 
Standard deviation 
historical  0.92 0.81 0.88 0.81 0.78 0.80 - - 
value used on disaggregation 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 
synthetic 0.93 0.81 0.89 0.81 0.77 0.76 0.75 0.67 
Skewness 
historical  12.06 11.71 13.90 12.04 9.81 10.18 - - 
value used on disaggregation 12.56 12.56 12.56 12.56 12.56 12.56 12.56 12.56 
synthetic 12.05 11.71 13.88 11.59 10.36 11.44 10.11 10.14 
Lag1 autocorrelation 
historical  0.39 0.44 0.39 0.49 0.50 0.53 - - 
value used on disaggregation 0.408 0.408 0.408 0.408 0.408 0.408 0.408 0.408 
synthetic 0.38 0.45 0.39 0.46 0.50 0.45 0.50 0.50 

Statistics of hourly rainfall depths at each gage for the month of NOVEMBER 
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Table 22 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.52 0.30 0.31 0.28 0.31 - - 
value used on disaggregation 1.00 0.52 0.30 0.37 0.36 0.32 0.43 0.29 
synthetic 1.00 0.52 0.29 0.43 0.42 0.37 0.47 0.36 

2 
historical  0.52 1.00 0.56 0.60 0.48 0.56 - - 
value used on disaggregation 0.52 1.00 0.56 0.82 0.70 0.75 0.77 0.71 
synthetic 0.52 1.00 0.57 0.86 0.79 0.80 0.83 0.80 

3 
historical  0.30 0.56 1.00 0.42 0.38 0.35 - - 
value used on disaggregation 0.30 0.56 1.00 0.50 0.49 0.42 0.75 0.44 
synthetic 0.29 0.57 1.00 0.50 0.52 0.42 0.78 0.49 

4 
historical  0.31 0.60 0.42 1.00 0.77 0.85 - - 
value used on disaggregation 0.37 0.82 0.50 1.00 0.91 0.86 0.68 0.70 
synthetic 0.43 0.86 0.50 1.00 0.96 0.90 0.75 0.80 

5 
historical  0.28 0.48 0.38 0.77 1.00 0.67 - - 
value used on disaggregation 0.36 0.70 0.49 0.91 1.00 0.74 0.66 0.53 
synthetic 0.42 0.79 0.52 0.96 1.00 0.86 0.74 0.74 

6 
historical  0.31 0.56 0.35 0.85 0.67 1.00 - - 
value used on disaggregation 0.32 0.75 0.42 0.86 0.74 1.00 0.53 0.62 
synthetic 0.37 0.80 0.42 0.90 0.86 1.00 0.66 0.72 

7 
historical  - - - - - - - - 
value used on disaggregation 0.43 0.77 0.75 0.68 0.66 0.53 1.00 0.57 
synthetic 0.47 0.83 0.78 0.75 0.74 0.66 1.00 0.70 

8 
historical  - - - - - - - - 
value used on disaggregation 0.29 0.71 0.44 0.70 0.53 0.62 0.57 1.00 
synthetic 0.36 0.80 0.49 0.80 0.74 0.72 0.70 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of November 
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Month of December 
 

For December, the simplified multivariate model was used in terms of linear 

transformation sss bVaXX += −1  Repetitions was necessary, ∆m was set 0.1 % and rm 

was set 1000.For the preservation and control of the proportion of dry intervals the 

options zero threshold l0 and probability of applying zero adjustment π0 were set to 

0.3 mm and 0.2 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure90: Comparison of historical and simulated probability distribution functions of 

hourly rainfall depth during wet days at gage 4 for the month of December 
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Figure 91: Comparison of historical and simulated probability distribution functions 

of the length of dry intervals at gage 4 for the month of December 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92: Comparison of autocorrelation functions of hourly rainfall as determined 

from historical (H1-H6) series or simulated (S3-S6) or predicted from the AR(1) for 

the month of December. 
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Figure 93: Comparison of historical and simulated hyetographs for raingage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 94 Comparison of historical and simulated hyetographs for raingage 5 
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Figure 95: Comparison of historical and simulated hyetographs for raingage 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 96: Simulated hyetographs for raingage 7 
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Figure 98: Simulated hyetographs for raingage 8 
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Table 23 

Gage 1 2 3 4 5 6 7 8 
Proportion dry 
historical  0.90 0.88 0.91 0.88 0.89 0.90 - - 
value used on disaggregation 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 
synthetic 0.90 0.88 0.91 0.89 0.90 0.89 0.88 0.82 
Mean 
historical  0.13 0.13 0.13 0.14 0.13 0.14 - - 
value used on disaggregation 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
synthetic 0.13 0.13 0.13 0.14 0.13 0.14 0.15 0.15 
Maximum value 
historical  13.2 9.4 11.8 16.8 9.2 14.4 - - 
value used on disaggregation 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 
synthetic 13.20 9.40 11.90 19.50 16.30 13.10 10 15 
Standard deviation 
historical  0.66 0.64 0.70 0.74 0.64 0.69 - - 
value used on disaggregation 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 
synthetic 0.66 0.64 0.70 0.74 0.67 0.66 0.66 0.64 
Skewness 
historical  8.76 8.18 8.43 10.22 7.56 8.39 - - 
value used on disaggregation 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 
synthetic 8.83 8.17 8.45 11.71 10.20 8.58 6.82 9.61 
Lag1 autocorrelation 
historical  0.50 0.54 0.61 0.58 0.66 0.58 - - 
value used on disaggregation 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 
synthetic 0.50 0.54 0.62 0.59 0.60 0.58 0.62 0.63 

Statistics of hourly rainfall depths at each gage for the month of DECEMBER 
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Table 24 

Gage 1 2 3 4 5 6 7 8 
1 

historical  1.00 0.35 0.24 0.26 0.26 0.30 - - 
value used on disaggregation 1.00 0.35 0.24 0.25 0.20 0.23 0.27 0.20 
synthetic 1.00 0.35 0.24 0.25 0.23 0.29 0.29 0.26 

2 
historical  0.35 1.00 0.60 0.66 0.61 0.66 - - 
value used on disaggregation 0.35 1.00 0.60 0.81 0.79 0.85 0.77 0.78 
synthetic 0.35 1.00 0.60 0.75 0.77 0.85 0.74 0.76 

3 
historical  0.24 0.60 1.00 0.50 0.54 0.55 - - 
value used on disaggregation 0.24 0.60 1.00 0.62 0.67 0.64 0.66 0.60 
synthetic 0.24 0.60 1.00 0.54 0.62 0.62 0.64 0.58 

4 
historical  0.26 0.66 0.50 1.00 0.77 0.79 - - 
value used on disaggregation 0.25 0.81 0.62 1.00 0.92 0.90 0.61 0.88 
synthetic 0.25 0.75 0.54 1.00 0.95 0.93 0.58 0.94 

5 
historical  0.26 0.61 0.54 0.77 1.00 0.83 - - 
value used on disaggregation 0.20 0.79 0.67 0.92 1.00 0.93 0.67 0.92 
synthetic 0.23 0.77 0.62 0.95 1.00 0.94 0.63 0.95 

6 
historical  0.30 0.66 0.55 0.79 0.83 1.00 - - 
value used on disaggregation 0.23 0.85 0.64 0.90 0.93 1.00 0.72 0.92 
synthetic 0.29 0.85 0.62 0.93 0.94 1.00 0.68 0.94 

7 
historical  - - - - - - - - 
value used on disaggregation 0.27 0.77 0.66 0.61 0.67 0.72 1.00 0.71 
synthetic 0.29 0.74 0.64 0.58 0.63 0.68 1.00 0.67 

8 
historical  - - - - - - - - 
value used on disaggregation 0.20 0.78 0.60 0.88 0.92 0.92 0.71 1.00 
synthetic 0.26 0.76 0.58 0.94 0.95 0.94 0.67 1.00 

Lag-zero cross correlation coefficients for the eight gages at hourly level for the month of December 
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Hyetos within MuDRain  

 
Hyetos was used in this case study for generating a synthetic series to use within 

MuDRain. Hyetos performed in full test mode with a file containing the daily and 

hourly rainfall depths of raingage at Tivoli and the Bartlett-Lewis Rectangular Pulse 

Model Parameters estimated with the method of moments. 

 

Estimation of the BLRPM parameters for Hyetos 

Hyetos does not support the estimation of these parameters. The method used for 

fitting the BLRPM to the historical statistics of Tivoli is the method of moments. The 

set of parameters to be fitted is given by the set Θ, where Θ={λ, µx, κ, φ, α, ν}. Let k 

be the number of parameters to be fitted, p statistics are chosen from the historical 

data to fit the parameters, and these are denoted by the set T, where T={t1, t2, …, tp). 

These can include the mean, variances, etc. of various time scales. The functions from 

which the various statistics can be calculated from the parameter values in the 

BLRPM are denoted by the set S={s1(Θ), s2(Θ), …, sp(Θ)} and the equations for the 

modeled parameters are: 

φ
κµ

α
νµµλ +=
−

= 1
1 ccx Tmean  

 

( )( ) ( )( ) ( ) ( ) 





+−+

−−
+





−

−−
−





−

−
= −−

−−
αα

αα

νφ
φ

ν
ααϕαα

ν
φα

ν 3
2
23

12
2

1

3
2

1

2

32
2

32
2

2
2var TkTkkkkkiance  

 







−





−

+=
11

2 2

2
2

1 α
ν

φ
φµλµ

µλµ
α

xc
xck  

 







−





−

=
112

2

2 α
ν

φ
κµλµ α

xck  

 

( )321exp)Pr( fffTrainzero ++−−=− λ  

 



ChapterIV  Case Study 

142  

( ) ( )( ) ( )( )







 ++++++−




 ++

−
=

72
362742

4
1

2
1

1

22

1
φκφκφκφφκφκφφκφ

αφ
λνf  

 

( )( ) 





+++−−

−+
=

22
31

1

2
2

2
κφφκφκ

αφκ
λνf  

( )( ) ( ) 





++−−





++−+

=
−

22
31

1

2
2

1

3
κφκφφκ

φ
κ

φκν
ν

αφκ
λι

α

T
f  

 

( )( ) ( ) ( )[ ] ( ){ }

( )( ) ( ) ( )[ ] ( )[ ]{ }ααα

ααα

νφνφνφ
ααφ

ννν
αα

−−−

−−−

++−+−−+
−−

+

++−++++−
−−

+

333
2

2

3331

112
32

21)1
32

)(cov

sTsTTs
k

TssTsT
k

lagsarianceAuto
 

 

If k=p the method of moments requires:           S=T        ∀ p 

The equations were then formulated in an error-residual form, with an objective 

function such as: 

( )( )∑
=

−
p

i
iii tsw

1

2min θ  where wi is the weight attributed to that particular statistic. The 

objective function is minimized in order to reduce the error between the calculated 

form of the statistics si(Θ) and the actual historical value ti. 

The BLRPM parameters for the month of march were found to be: 

λ=0.1393352 

µx=10.96869641 

κ=1.2585539 

φ= 0.105826 

α= 95.13143094 

ν = 8.411329581 

With the synthetic series obtained by Hyetos, multivariate rainfall disaggregation 

from daily to hourly level was performed with MuDRain  

Given: 

1. an hourly point rainfall series at point 1, Tivoli, as a result of simulation with a 

fine time scale point rainfall model such as the BLRPM 
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2. several daily point rainfall series at neighbouring points 2, 3, 4, 5, namely  

Lunghezza, Frascati, Ponte Salario, Roma Flaminio, as a result of 

measurement by conventional raingages (pluviometers with daily 

observations). 

We will produce series of hourly rainfall at points 2, 3, 4, 5, so that : 

1. their daily totals equal the given daily values; 

2. and their stochastic structure resembles that implied by the available historical 

data. 

 Estimation of the cross-correlation coefficients at the hourly level for MuDRain 

 

We were able to estimate the cross-correlation coefficients between the all raingages 1 

at the daily time scale, for the cross-correlation coefficients between the raingages at 

the hourly time scale we used the empirical expression: 

( )md
ij

h
ij rr =  

Where: 
h

ijr  is the cross-correlation coefficient between raingages i and j at the hourly time 

scale 
d

ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m   was set equal to 3. 

Graphical comparisons between disaggregated and theoretical values show that the 

methodology results in good preservation of the essential statistics of the rainfall 

process. 
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 Figure 99: Proportion dry  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 100:Standard deviation  
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Figure 101:Coefficients of skewness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 102: Lag one autocorrelation coefficients  

 

 

Disaggregated
Theoretical

Coefficients of skew ness

Gauge number
54321

Sk
ew

ne
ss

10

9

8

7

6

5

4

3

2

1

0

8.335 8.07

8.871
8.158

7.419

8.348 8.348 8.348 8.348 8.348

Disaggregated
Theoretical

Lag 1 autocorrelation

Gauge number
54321

A
ut

oc
or

re
la

tio
n

0.7
0.65
0.6

0.55
0.5

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

0.603

0.544
0.578 0.596

0.639

0.604 0.604 0.604 0.604 0.604



ChapterIV  Case Study 

146  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 103 :Cross-correlation coefficients for raingage 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 104:Cross-correlation coefficients for raingage 2 
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Figure 105: Cross-correlation coefficients for raingage 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 106: Cross-correlation coefficients for raingage 4 
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Figure 107: Cross-correlation coefficients for raingage 5 
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CONCLUSIONS 
 

A common problem in hydrological studies is the limited availability of data at 

appropriately fine temporal and/or spatial resolution. In addition, in hydrological 

simulation studies a model may provide as output a synthetic series of a process (such 

as rainfall and runoff) at a coarse scale while another model may require as input a 

series of the same process at a finer scale. Disaggregation techniques therefore have 

considerable appeal due to their ability to increase the time or spatial resolution of 

hydrological processes while simultaneously providing a multiple scale preservation 

of the stochastic structure of the hydrological process. 

The problem studied in this thesis is a particular case of a general multivariate spatial 

temporal rainfall disaggregation , the simultaneous rainfall disaggregation at several 

sites, in other words the problem is whether we are able to utilize the available single 

site information at the hourly scale to generate spatial and temporal consistent hourly 

rainfall series in other neighboring sites where only daily information is available. 

The methodology proposed to this aim, involves the combination of several univariate 

and multivariate rainfall models operating at different time scales, and was tested via 

a case study dealing with the disaggregation of daily historical data of eight raingages 

into hourly series. The data set available was six years of hourly-recorded series 

coming from six of the eight raingages and daily-recorded series from all raingages, 

covering the period from January 1994 to December 1999. 

 The disaggregation was performed using hourly data of three raingages only and the 

other three were used to allow the effectiveness of the methodology to be evaluated. 

Simulations were performed for each month separately to generate hourly synthetic 

series for gages 4,5,6,7,8 for all months of the year. 

Graphical and tabulated comparisons showed that the methodology results in good 

preservation of important properties of the rainfall process such as marginal moments, 

temporal and spatial correlations and proportions and lengths of dry intervals, and in 

addition, in a good reproduction of the actual hyetographs.  

Specifically the methodology seems to perform much better for the months 

characterized by a wet regime where the rainfall occurs frequently and it is more or 

less equally distributed over an area, i.e. rainfall events caused by stratiform 



Chapter V  Conclusions 

150  

precipitation. Under these conditions the spatial cross-correlations between the 

raingages are high which is one of the essential hypothesis of the methodology. 

For those months, characterized by a dry regime where also the cross correlations are 

extremely low the methodology gave good approximations of the essential statistics to 

be preserved. The actual hyetographs were predicted well considering the 

particularities of the rainfall process during the driest months. The simulated 

hyetographs have a realistic shape but they may depart from historical ones in their 

time distribution. Such departures are unavoidable as already mentioned, because of 

the relatively low cross-correlation coefficients. 

Another variable that has not modeled explicitly in the approach followed is the 

length of dry intervals. Nevertheless the comparisons between historical and 

simulated probability distribution functions of this variable during wet days 

performed for each month, indicate an encouraging performance of the model. 

There is considerable flexibility in the proposed scheme and hence potential for 

further refinement and remediation of these weaknesses.  

The results attained by the methodology in combination with the empirical expression 

proposed and used instead of the GDSTM, for estimating the cross-correlation 

coefficients at hourly time scale between the gages, are extremely encouraging   

Another advantage worth mentioning is the fact that the implementation of the 

methodology using MuDRain is extremely simple and immediate. The program  

automates most tasks of parameter estimation and provides tabulated and graphical 

comparisons of the essential statistics between theoretical and simulated values. There 

are also three categories of options for handling the specific difficulties and for 

optimizing the procedure. 

 Therefore the proposed methodology could be considered as useful, 

convenient and efficient in all hydrological applications and for all civil engineering 

designs where rainfall simulation is required. 

Furthermore, the characterization of rainfall processes, both in space and in time, has 

become in the last few years of great importance for being able to solve all managing 

water related problems, like water catchments, water quality or ecological studies and  

flood alleviation schemes. 

To this aim, the disaggregation model presented here has very encouraging results, 

and much more can be achieved in order to improve and refine statistical schemes 

used and spatial variability depiction. 
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What is MuDRain (Multivariate disaggregation of rainfall)?# $ K 
MuDRain is a methodology for spatial-temporal disaggregation of rainfall. It involves the 

combination of several univariate and multivariate rainfall models operating at different time 

scales in a disaggregation framework that can appropriately modify outputs of finer time scale 

models so as to become consistent with given coarser time scale series. 

Potential hydrologic applications include enhancement of historical data series and 

generation of simulated data series. Specifically, the methodology can be applied to derive 

spatially consistent hourly rainfall series in raingages where only daily data are available. In 

addition, in a simulation framework, the methodology provides a way to take simulations of 

multivariate daily rainfall (incorporating spatial and temporal non-stationarity) and generate 

multivariate fields at fine temporal resolution. 

                                                      
# What_is 
$ What is MuDRain (Multivariate disaggregation of rainfall)? 
K What is MuDRain (Multivariate disaggregation of rainfall)? 
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Why disaggregation? #  $ K 
A common problem in hydrological studies is the limited availability of data at 

appropriately fine temporal and/or spatial resolution. In addition, in hydrologic simulation 

studies a model may provide as output a synthetic series of a process (such as rainfall and 

runoff) at a coarse scale while another model may require as input a series of the same 

process at a finer scale. Disaggregation techniques therefore have considerable appeal due 

to their ability to increase the time or space resolution of hydrologic processes while 

simultaneously providing a multiple scale preservation of the stochastic structure of 

hydrologic processes. 

                                                      
# Why_disaggregation 
$ Why disaggregation? 
K Disaggregation, usefulness 
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Why multivariate disaggregation? #  $ K 

The multivariate approach to rainfall disaggregation is of significant practical interest even in 

problems that are traditionally regarded as univariate. Let us consider, for instance, the 

disaggregation of historical daily raingage data into hourly rainfall. This is a common situation 

since detailed hydrological models often require inputs at the hourly time scale. However, 

historical hourly records are not as widely available as daily records. An appropriate 

univariate disaggregation model would generate a synthetic hourly series, fully consistent with 

the known daily series and, simultaneously, statistically consistent with the actual hourly 

rainfall series. Obviously, however, a synthetic series obtained by such a disaggregation 

model could not coincide with the actual one, but would be a likely realization. Now, let us 

assume that there exist hourly rainfall data at a neighboring raingage. If this is the case and, 

in addition, the cross-correlation among the two raingages is significant (a case met very 

frequently in practice), then we could utilize the available hourly rainfall information at the 

neighboring station to generate spatially and temporally consistent hourly rainfall series at 

the raingage of interest. In other words, the spatial correlation is turned to advantage since, in 

combination with the available single-site hourly rainfall information, it enables more realistic 

generation of the synthesized hyetographs. Thus, for example, the location of a rainfall event 

within a day and the maximum intensity would not be arbitrary, as in the case of univariate 

disaggregation, but resemble their actual values. 

                                                      
# Why_multivariate_disaggregation 
$ Why multivariate disaggregation? 
K Disaggregation;multivariate, usefulness 
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Problem formulation #  $ K 
 
CASE 1 
We assume that we are given: 

1. an hourly point rainfall series at point 1, as a result of either: 

!"measurement by an autographic device (pluviograph) or digital sensor, 

!" simulation with a fine time scale point rainfall model such as a point process 

model, using Hyetos (computer program for temporal rainfall disaggregation 

using adjusting procedures)  

!" simulation with a temporal point rainfall disaggregation model applied to a 

series of known daily rainfall;(Hyetos)  

 

2. several daily point rainfall series at neighboring points 2, 3, 4, 5, … as a result of 

either: 

!"measurement by conventional raingages (pluviometers with daily 

observations), or 

!" simulation with a multivariate daily rainfall model. 

We wish to produce series of hourly rainfall at points 2, 3, 4, 5, …, so that: 

1. their daily totals equal the given daily values; and 

2. their stochastic structure resembles that implied by the available historical data.  

 We emphasize that in this problem formulation we always have an hourly rainfall 

series at one location, which guides the generation of hourly rainfall series at other locations. 

If this hourly series is not available from measurements, it can be generated using appropriate 

univariate simulation models  

 The essential statistics that we wish to preserve in the generated hourly series are:  

 

1. the means, variances and coefficients of skewness;  

2. the temporal correlation structure (autocorrelations); 

3. the spatial correlation structure (lag zero cross-correlations); and 

4. the proportions of dry intervals.  

 

 If the hourly data set at location 1 is available from measurement, then all these 

statistics apart from the cross-correlation coefficients can be estimated at the hourly time 

scale using this hourly record. To transfer these parameters to other locations, spatial 

stationarity of the process can be assumed. The stationarity hypothesis may seem an 

oversimplification at first glance. However, it is not a problem in practice since possible spatial 

                                                      
# Problem_formulation 
$ Problem formulation 
K Problem formulation 
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nonstationarities manifest themselves in the available daily series; thus the final hourly series, 

which are forced to respect the observed daily totals, will reflect these nonstationarities.  

 

CASE 2 
If hourly rainfall is available at several (more than one) locations, the same modeling 

strategy described below can be used without any difficulty with some generalizations of the 

computational algorithm. In fact, having more than one point with known hourly information 

would be advantageous for two reasons. First, it allows a more accurate estimation of the 

spatial correlation of hourly rainfall depths (see discussion below) or their transformations. 

Second, it might reduce the residual variance of the rainfall process at each site, thus allowing 

for generated hyetographs closer to the real ones. 

If more than one rainfall series are available at the hourly level, at least one cross-

correlation coefficient of hourly rainfall can be estimated directly from these series. Then, by 

making plausible assumptions about the spatial dependence of the rainfall field an expression 

of the relationship between cross-correlation could be established (see Estimation of 
crosscorrelation coefficients.) 
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Modeling approach #  $ K 
Models involved 
a. Models for the generation of multivariate fine-scale outputs. The first category includes 

two models that provide the required output (the hourly series). 

The first model is a the simplified multivariate rainfall modelof hourly rainfall that can 

preserve the statistics of the multivariate rainfall process and, simultaneously, incorporate the 

available hourly information at site 1, without any reference to the known daily totals at the 

other sites. The statistics considered here are the means, variances and coefficients of 

skewness, the lag-one autocorrelation coefficients and the lag-zero cross-correlation 

coefficients. All these represent statistical moments of the multivariate process. The 
proportion of dry intervals, although considered as one of the parameters to be preserved, 

is difficult to incorporate explicitly. However, it can be treated by an indirect manner . 

The second model is a  transformation model that modifies the series generated by the first 

model, so that the daily totals are equal to the given ones. This uses a (multivariate) 

transformation, which does not affect the stochastic properties of the series. 

  

b. Models associated with inputs to a. above. The second category contains models which 

may optionally be used to provide the required input, should no observed series be available. 

These may include 

!" a multivariate daily rainfall model for providing daily rainfall depths, such as the 

general linear model (GLM) [Chandler and Wheater, 1998a, b References];  

!" a single-site model for providing hourly depths at one location such as the Bartlett-

Lewis rectangular pulses model [Rodriguez-Iturbe et al., 1987, 1988; Onof and 

Wheater, 1993, 1994 References]; 

!" a single-site disaggregation model to disaggregate daily depths of one location into 

hourly depths [e.g. Koutsoyiannis and Onof, 2000, 2001 References]. 

 Such models may be appropriate to operate the proposed disaggregation approach 

for future climate scenarios. 

                                                      
# Modeling_approach 
$ Modeling approach 
K Modeling approach  
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Estimation of cross-correlation coefficients #  $ K 
We assume that we are given: 

1. several hourly point rainfall series at points 1,2,3 as a result of measurement by 

an autographic device (pluviograph) or digital sensor, 

2. several daily point rainfall series at neighboring points 4, 5, 6, 7,8 … as a result of 

measurement by conventional raingages (pluviometers with daily observations) 

We are able to estimate the cross-correlation coefficients between the raingages 1,2,3 at the 

hourly time scale and those between 1,2,…,8 at the daily time scale. 

We need to estimate the cross-correlation coefficients between all raingages at the hourly 

time scale. 

For this purpose we use the empirical relationship: ( )md
ij

h
ij rr =  

where: 
h
ijr  is the cross-correlation coefficient between raingages i and j at the hourly time scale 

d
ijr  is the cross-correlation coefficient between raingages i and j at the daily time scale  

m  is an exponent that can be estimated by regression using the known cross-correlation 

coefficients at the hourly and daily time scale or, in case no hourly data is available, its value 

can be assumed approximately in  the range 2 to 3.(Fytilas P. 2002 References) 

                                                      
# Estimation_of_crosscorrelation_coefficients 
$ Estimation of cross-correlation coefficients 
K Estimation of cross-correlation coefficients 
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The simplified multivariate rainfall model #  $ K 

For n locations, we may assume that the simplified multivariate rainfall model is an AR(1) 

process, expressed by  

Xs = a Xs – 1 + b Vs (1) 

where Xs := [ ]Tn
s

2
s

1
s X,...,X,X represents the hourly rainfall at time (hour) s at n locations, a and 

b are (n × n) matrices of parameters and Vs (s = …, 0, 1, 2, …) is an independent identically 

distributed (iid) sequence of size n vectors of innovation random variables (so that the 

innovations are both spatially and temporally independent). The time index s can take any 

integer value. Xs are not necessarily standardized to have zero mean and unit standard 

deviation, and obviously they are not normally distributed. On the contrary, their distributions 

are very skewed. The distributions of Vs are assumed three-parameter Gamma. 

Equations to estimate the model parameters a and b and the moments of Vs directly from the 

statistics to be preserved are given for instance by Koutsoyiannis [1999] for the most general 

case. In the special case examined here, for convenience, the parameter matrix a is assumed 

diagonal, which suffices to preserve the essential statistics, and is given by: 

 [ ] [ ]( ) nlXVarXXCovdiaga l
s

l
s

l
s ,....,1,/, 11 == −−   (2) 

The parameter matrix b is determined from 

 [ ] [ ] ssssss
T aXXCovaXXCovbb 11,, −−⋅−=⋅  (3) 

 If b is assumed lower triangular, which facilitates handling of the known hourly rainfall at site 

1, then it can be determined from b bT using Cholesky decomposition.  

Another group of model parameters are the moments of the auxiliary variables Vs. The first 

moments (means) are obtained by  

 [ ] ( ) [ ]ss XEaIbVE ⋅−= −1  (4) 

where I is the identity matrix. The variances are by definition 1, i.e., Var[Vs] = [1, …, 1]T and 

the third moments are obtained in terms of μ3[Xs], the third moments of Xs, by  

 [ ] ( ) ( ) [ ]ss XaIbV 3
)3(1)3(

3 µµ ⋅−=
−

 (5) 

where a(3) and b(3) denote the matrices whose elements are the cubes of a and b, respectively 

At the generation phase, Vs 
 1
, the first component of Vs, is calculated from the series of 1

sX  

rather than generated. Given that b is lower triangular, its first row will have only one nonzero 

item, call it b1, so that from (1) 

                                                      
# The_simplified_multivariate_rainfall_model 
$ The simplified multivariate rainfall model 
K The simplified multivariate rainfall model 



Appendix                                                                                              Help Mode for MuDRain 

 159 

1
s

11
1s

11
s VbXaX += −   (6) 

which can be utilized to determine 1
sV  This can be directly expanded to the case where 

several gages of hourly information are available provided that b is lower triangular. 

Alternatively, the model can be expressed in terms of some nonlinear transformations ∗
sX of 

the hourly depths Xs (see Specific difficulties), in which case (1) is replaced by 

sbVaXX 1ss += ∗
−

∗   (7) 
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The transformation model #  $ K 

Transformations that can modify a series generated by any stochastic process to satisfy 

some additive property (i.e. the sum of the values of a number of consecutive variables be 

equal to a given amount), without affecting the first and second order properties of the 

process, have been studied previously by Koutsoyiannis [1994] and Koutsoyiannis and 

Manetas [1996]. These transformations, more commonly known as adjusting procedures, 

are appropriate for univariate problems, although they can be applied to multivariate problems 

as well, but in a repetition framework. More recently, Koutsoyiannis [2001](References) has 

studied a true multivariate transformation of this type and also proposed a generalized 

framework for coupling stochastic models at different time scales.  

This framework, specialized for the problem examined here, is depicted in the following 

schematic representation where Xs and Zp represent the “actual” hourly- and daily-level 

processes, related by  

 ∑ −=
=

pk

1)k(ps ps ZX                                                                    (8) 
 
 
where k is the number of fine-scale time steps within each coarse-scale time step (24 for the 

current application), sX~  and pZ~  denote some auxiliary processes, represented by the 

simplified rainfall model in our case, which also satisfy a relationship identical to (8). 
 
 

Coupling 
transformation 

f(X
~

s, Z
~

p, Zp) 

X~ s X s  

Z p Z~p 

C
on

si
st

en
t 

C
on

si
st

en
t 

Step 3: 
Constructed by 
aggregating X

~
s 

Step 1 (Input): 
Measured or generated by 
the higher-level model 

Step 4 (Output)  

Step 2:  
Generated by the 
simplified rainfall model 

Auxiliary 
processes 

“Actual”  
processes 

Hourly level 

Daily level 

 
 

                                                      
# The_transformation_model 
$ The transformation model 
K Coupling transformation ;adjusting procedures 
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The problem is: Given a time series zp of the actual process Zp, generate a series xs of the 

actual process Xs. To this aim, we first generate another (auxiliary) time series sx~  using the 

simplified rainfall process sX~ . The latter time series is generated independently of zp and, 

therefore, sx~  do not add up to the corresponding zp, as required by the additive property (8), 

but to some other quantities, denoted as pz~ . Thus, in a subsequent step, we modify the 

series sx~  thus producing the series xs consistent with zp (in the sense that xs and zp obey 

∑ −= =pk
1)k(ps ps ZX  (8)) without affecting the stochastic structure of sx~ . For this modification 

we use a so-called coupling transformation, i.e., a linear transformation, f( sX~  , pZ~ , Zp ) 

whose outcome is a process identical to Xs and consistent to Zp. 

Let ( )[ ]TT
pk

T
kpp XXX ,...,11

*
+−=  be the vector containing the hourly values of the 24 hours of any 

day p for all examined locations (i.e., the 24 vectors Xs for s = (p – 1)k + 1 to s = pk; for 5 

locations, *
pX contains 24 × 5 = 120 variables). Let also [ ]TT

kp
T
p

T
pp XZZZ )1(1

* ,, −+=  be a vector 

containing  

(a) the daily values Zp for all examined locations,  

(b) the daily values Zp + 1 of the next day for all locations, and  

(c) the hourly values X(p – 1)k of the last hour of the previous day p – 1 for 

all locations. 

This means that for 5 locations *
pZ  contains 3 × 5 = 15 variables in total. Items (b) and (c) of 

the vector *
pZ  were included to assure that the transformation will preserve not only the 

covariance properties among the hourly values of each day, but the covariances with the 

previous and next days as well. Note that at the stage of the generation at day p the hourly 

values of day p – 1 are known (therefore, in *
pZ we enter hourly values of the previous day) 

but the hourly values of day p + 1 are not known (therefore, in *
pZ we enter daily values of the 

next day, which are known). In an identical manner, we construct the vectors *
pX~  and *

pZ~  

from variables sX~  and pZ~  . 

 Koutsoyiannis [2001] showed that the coupling transformation sought is given by  

        ( )**** ~hX~X pppp ZZ −+=                                                            (9)  

where 

                [ ] [ ]{ } 1**** ,,X
−

= pppp ZZCovZCovh                                                   (10) 

The quantity ( )** ~h pp ZZ −   in  (9) represents the correction applied to X~  to obtain X. Whatever 

the value of this correction is, the coupling transformation will ensure preservation of first and 

second order properties of variables (means and variance-covariance matrix) and linear 
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relationships among them (in our case the additive property∑ −= =pk
1)k(ps ps ZX ). However, it is 

desirable to have this correction as small as possible in order for the transformation not to 

affect seriously other properties of the simulated processes (e.g., the skewness). It is possible 

to make the correction small enough, if we keep repeating the generation process for the 

variables of each period (rather than performing a single generation only) until a measure of 

the correction becomes lower that an accepted limit. This measure can be defined as 

 ( ) ( )x
*
p

*
p mσ/Z~ZhΔ −=                                 (11) 

where m is the common size of *
pX  and *

pX~ , σX is standard deviation of hourly depth 

(common for all locations due to stationarity assumption) and ||.|| denotes the Euclidian norm..  

Given the daily process Zp and the matrix h, which determines completely the 

transformation, the steps followed to generate the hourly process Xs are the following: 

1. Use the simplified rainfall model (1) or (8) to produce a series sX~ for all hours of the current 

day p and the next day p + 1, without reference to Zp.  

2. At day p evaluate the vectors *
pZ  and *

pZ~ using the values of Zp and sX~ of the current and 

next day, and Xs of the previous day. 

3. Determine the quantity ( )** ~h pp ZZ −  and the measure of correction Δ. If Δ is greater than an 

accepted limit Δm, repeat steps 1-3 (provided that the number of repetitions up to the current 

repetition has not exceeded a maximum allowed number rm, which is set to avoid unending 

loops). 

4.Apply the coupling transformation to derive *
pX of the current period. 

5.Repeat steps 1 and 4 for all periods. 
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Specific difficulties #  $ K 

 Here we describe how to handle the peculiarities of the rainfall process at a fine time scale in 

the multivariate modeling scheme.  

Negative values. The negative values, unavoidably generated by any linear stochastic model 

when the coefficient of variation is high (possibly in a high proportion but with low values), are 

not a major problem in our case. They are simply truncated to zero, thus having a beneficial 

effect in preserving the proportion of dry intervals (as also shown in next paragraph). A 

negative effect is the fact that truncation may be a potential source of bias to statistical 

properties that are to be preserved. Specifically, it is anticipated to result in overprediction of 

cross-correlations, as it is very probable that negative values are contemporary.  

Dry intervals. As already mentioned, the proportion of dry intervals cannot be preserved by 

linear stochastic models in an explicit manner. However, after rounding off the generated 

values, a significant number of zero values emerges, which is added to the significant number 

of zero values resulting from the truncation of negative values. The total percentage of zero 

values resulting this way can be comparable to (usually somewhat smaller than) the historical 

probability dry. It was demonstrated that we can match exactly the historical probability dry by 

slightly modifying the rounding-off rule. For the multivariate case, the following technique was 

found effective: A proportion π0 of the very small positive values, chosen at random among 

the generated values that are smaller than a threshold l0 (e.g., 0.1-0.3 mm), are set to zero. 

 An alternative technique, based on a two-state (wet-dry) representation of hourly rainfall 

within a rainy day, can be also used. According to this technique, at periods when the known 

hourly time series indicates dry condition (zero depth) the unknown hourly time series are 

stimulated, with a specified probability φ0, to take zero depth as well.  

Preservation of skewness. Although the coupling transformation preserves the first and 

second order statistics of the processes, it does not ensure the preservation of third order 

statistics. Thus, it is anticipated that it will result in underprediction of skewness. However, the 

repetition technique (see transformation model) can result in good approximation of 

skewness.  

Homoscedasticity of innovations. By definition, the innovations Vs in the simplified 

multivariate rainfall model (see the simplified multivariate rainfall model) are 

homoscedastic, in the sense that their variances are constant, independent of the values of 

rainfall depths Xs. Therefore, if, for instance, we estimate (or generate) the value at location 2, 

given that at location 1, we assume that the conditional variance is constant and independent 

of the value at location 1. This, however, does not comply with reality: by examining 

simultaneous hyetographs at two locations we can observe that the variance is larger during 

the periods of high rainfall (peaks) and smaller in periods of low rainfall (heteroscedasticity). 
                                                      
# Specific_difficulties 
$ Specific difficulties 
K dry intervals; negative values; homoscedasticity; skewness  
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As a result of this inconsistency, synthesized hyetographs will tend to have unrealistically 

similar peaks. To mitigate this problem we can apply a nonlinear transformation to rainfall 

depths 

  

The first candidate nonlinear transformation is the logarithmic one,  

( )ζXlnX ss +=∗   (12) 

with constants ζ > 0, where the logarithmic transformation should be read as an item to item 

one. The stationarity assumption allows considering all items of vector ζ equal to a constant ζ. 

This transformation would be an appropriate selection if ζ was estimated so that the 

transformed series of known hourly depths have zero skewness, in which case the 

transformed variables could be assumed to be normally distributed. Then, preservation of first 

and second order properties of the untransformed variables is equivalent to preservation of 

first- and second-order statistics of the transformed variables [Koutsoyiannis, 2001] 

(References). However, evidence from the examined data sets shows that the skewness of 

the transformed variables increases with increasing ζ and it still remains positive even if very 

small ζ are chosen. This means that the lognormal assumption is not appropriate for hourly 

rainfall.  

  

A second candidate is the power transformation  

( )m
ss XX =∗  (13) 

where the symbol (m) means that all items of the vector Xs are raised to the power m (item to 

item) where 0 < m < 1. The stationarity assumption complies with the assumption that m is 

the same for all items. The preservation of the statistics of the untransformed variables does 

not necessarily lead to the preservation of the corresponding statistics of the transformed 

variables. However, the discrepancies are expected to be low if m is not too low (e.g., for 

m≥0.5).  
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Main Form #  $ K 

This is the main form of MuDRain. Use the on-screen hints of toolbar buttons displayed by 
placing and pausing the mouse pointer on them. 
Here is a summary of toolbar buttons description: 

The other forms of the software application Options form, the Graphs form and the Help 
About form appear by clicking the appropriate buttons of this form, whereas the Visual 
output form appears after opening an information file; see Input files format 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Open an information file 

Change options 

Save daily time series 

Save hourly time series 

Disaggregate daily to hourly 

Aggregate hourly to daily 

Print daily statistics 

Print hourly statistics 

Show graphics form 

Print statistics by 
subperiods 

Print hourly to daily statistics 
 

                                                      
# Main_Form 
$ Main Form 
K file, open, save; statistics, print 



Appendix                                                                                              Help Mode for MuDRain 

 167 

Options form#  $ K 

Activate this form by pressing the appropriate button in the Main form. 
The program offers three categories of options that must be specified by the user (for 
justification of these options see specific difficulties:  
(a) the use or not of repetition in the generation phase,  
(b) the use or not of one of the transformations and  
(c) the use or not of the two-state representation of hourly rainfall.  
 
In case of the adoption of each of these options, the user must specify some additional 
parameters for the generation, which are:  
for (a), the maximum allowed distance Δm and the maximum allowed number of 
repetitions rm (see transformation model); 
 for (b) the transformation constant ζ or m (as defined in equation (12) or (13), respectively 
see specific difficulties ); and  
for (c) the probability φ0, to stimulate dry state in each of the locations. Two additional 
parameters are used, which are related to the rounding off rule of generated hourly depths, 
i.e. the proportion π0 and the threshold l0.  
 
In the current program configuration, the options and the additional parameters must be 
specified by the user in a trial-and-error manner, i.e., starting with different trial values until 
the resulting statistics in the synthetic series match the actual ones. This can be seen as a 
fine-tuning of the model, which is manual. An automatic fine-tuning procedure, based on 
stochastic optimization, seems to be possible but has not been studied so far.  
 

 

                                                      
# Options_Form 
$ Options Form 
K Options Form; options, repetitions; allowed distance; two state representation  
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Graphs form#$K 
Activate this form by pressing the appropriate button in the Main form. 

Use this form, after performing the disaggregation, to visualize the graphical comparisons of 
historical and simulated statistics of hourly rainfall 

To zoom in any of the graphs, drag on the region of interest downwards. To zoom out, drag 
on any region within the graph upwards. To move along the graph drag to the desired 
direction with the right mouse button pressed. 

Using the Copy button, a graph is copied into the clipboard and can then be pasted to 
anywhere else (e.g. word processing programs etc.). 
 
 
 
 

 
 
 

                                                      
# Graphs_form 
$ Graphs form 
K Graphs form; Form, graphs 
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Visual output form#$K 
This form appears automatically when opening an information file (see Input files format The 
content of the form, results of the disaggregation framework and printed hourly 
statistics can be saved in a text file (use the file menu) or copied to the clipboard (press Ctrl-
C). 

 
 
 

                                                      
# Visual_output_form 
$ Visual output form 
K Visual output form; Form, Visual output 
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Input files format#$K 
File input.dat : 
 
This is a text file that must be defined using the program Main form in order for the program 
to perform the disaggregation. The contents of the file are described below: 
 
 
 

1.00 0.72 0.48 0.73 0.74 0.76 0.74 0.73 
0.72 1.00 0.57 0.75 0.85 0.82 0.65 0.77 
0.48 0.57 1.00 0.52 0.48 0.59 0.52 0.55 
0.73 0.75 0.52 1.00 0.89 0.93 0.51 0.96 
0.74 0.85 0.48 0.89 1.00 0.87 0.50 0.88 
0.76 0.82 0.59 0.93 0.87 1.00 0.57 0.94 
0.74 0.65 0.52 0.51 0.50 0.57 1.00 0.52 
0.73 0.77 0.55 0.96 0.88 0.94 0.52 1.00 

8 3 185 

daily.inp 
hourly.inp 

First header line stating respectively the number of 
daily and hourly rainfall time series and the number 
of days to be disaggregated. 

Cross correlation coefficient 
matrix at hourly time scale 

Name of files containing daily 
and hourly information 

 
For the estimation of the unknown hourly crosscorrelation coefficients see related 

topic: 

(Estimation of crosscorrelation coefficients .) 
 
 
 
 
 
 
 

                                                      
# Input_files_format 
$ Input files format 
K input; rainfall depths; crosscorrelation coefficients matrix 
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File daily.inp: This is a text file containing the historical daily rainfall depths.In the current 

example we are considering 8 gages; historical hourly rainfall depths are available at gages 

1,2,3 and historical daily rainfall depths are available for all gages.(The available hourly 

rainfall depths must be consistent with the daily rainfall depths of the same period). 

 

0       0       0       0       0       0       0       0 
0       0       0       0       0       0       0       0 
0       0       0       0     0.2       0       0       0 
0       0       0       0       0       0       0       0 
0       0       0       0       0       0       0       0 
0     0.2       0       0       0       0       0       0 
0     0.2       0       0     0.2       0       0       0 
0     0.2       0       0     0.4       0       0       0 
0       0       0       0       0       0       0       0 
0     0.2       0       0     0.2       0       0     0.2 
0     0.2       0     0.2     0.2       0       0       0 
0       0       0       0       0       0       0       0 

Historical daily rainfall depths for raingages i ,
j, k, (in which historical hourly rainfall depths
are also available from measurements) 

Historical daily rainfall depths for raingages 
n, m…,    

 
 
File hourly.inp: : This is a text file containing the historical hourly rainfall depths available (3 
in this example) 
 

       0       0       0 
       0       0       0 
       0       0       0 
       0       0       0 
     7.4     5.8       0 
     4.2     1.8       0 
     3.8     2.4       0 
       2     1.4       0 
     0.4     0.8       0 
     0.2       0       0 
       0       0       0 
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Output file format#$K 
 
Press the appropriate button on the toolbar of the Main form to save the hourly (in case of 

disaggregation of daily to hourly) or daily time series .(in case of aggregation of hourly to 

daily). 

The output file is a text file  

 
  0         0         0         0       0.1         0         0       0.1  
  0         0         0         0       0.1         0         0       0.1  
  0         0         0         0         0         0         0       0.1  
  0         0         0       1.4       0.8       0.8       3.3       1.1  
  0         0         0       0.7       0.4       0.4       1.5       0.6  
  0         0         0       0.4       0.2         0       0.7       0.3  
  0         0         0       0.3         0       0.1       0.3       0.2  
  0         0         0         0         0         0       0.1       0.1  
  0         0         0       0.2         0         0       0.6       0.1  
7.4       5.8         0       7.1       6.9       5.6       4.9       5.1  
4.2       1.8         0       2.5       2.4       2.3       2.7       2.3  
3.8       2.4         0       2.6       2.7       2.4       2.5       2.5  
  2       1.4         0       1.5       1.6       1.3       1.3       1.4  
0.4       0.8         0       0.6       0.7       0.5       0.3       0.6  
0.2         0         0         0         0         0         0       0.1  

 

                                                      
# Output_file_format 
$ Output file format 
K Output file format 
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