
EGS - AGU - EUG Joint Assembly 
Nice, France, 6-11 April 2003

Session HS19/ Climate change impacts on the hydrological cycle,
extremes, forecasting and implications on engineering design 

Hydrological statistics 
for engineering design 
in a varying climate

Demetris Koutsoyiannis 
Department of Water Resources, School of Civil Engineering, 
National Technical University, Athens, Greece



D. Koutsoyiannis, Hydrological statistics for engineering design in a varying climate 2

The role of hydrological statistics
Objective: Quantification of uncertainty and risk 
in hydrologic processes
Utility: Engineering design and management of 
hydrosystems
Mathematical basis: Concepts of probability, 
statistics and stochastic processes
Empirical basis: Records of hydrological 
measurements 
Typical problems:
� Analysis and enhancement of data sets 
� Testing of hypotheses
� Estimation of distribution quantiles and confidence 

intervals
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Empirical basis in hydrological statistics
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A typical “short” time series:  
Annual runoff (expressed as 
equivalent depth) of the
Boeoticos Kephisos River 
basin, Greece
Stable behaviour, annual 
random fluctuation 
around a constant mean

0

200

400

600

800

1900 1920 1940 1960 1980 2000
Year

R
un

of
f (

hm
3 

)

Annual runoff ''Trend''

The same time series for a 
longer period 
Appearance of overyear 
“trends”

Typical processing of a time series with a “trend”
� Assume that “trend” is deterministic and fit an equation
� Detrend the series (e.g. σinit = 153 hm3, σdetr = 127 hm3)
� Consequence: “Trends” decrease uncertainty

Dangerous
in
engineering 
design
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Behaviour of 
long series
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The full Boeoticos Kephisos
runoff time series

Part of the annual 
minimum water level of the 
Nile river (Nilometer)
A similar “trend”
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(663 years; Beran, 1994)
Upward and downward 
irregular fluctuations at 
all time scales
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More long series
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Annual 5-year average 25-year averageNorthern Hemisphere 
temperature anomalies in 
°C vs 1961–1990 mean 
(992 years, reconstructed 
from multi-proxy data by 
Jones et al., 1998)
Irregular fluctuations at 
all time scales
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A nnual 5-year average 25-year averageMean annual temperature 
at Paris/Le Bourget
(instrumental 
meteorological 
observations extending 
through 1764–1995; from 
ftp.cru.uea.ac.uk). 
Irregular fluctuations at 
all time scales
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Yet another long series vs. a random series
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A synthetic series of 
independent random 
variates (white noise) with 
marginal statistics equal to 
those of the tree ring series 
(1990 values)
Random fluctuations at 
the annual scale; tend 
to smooth out as time 
scales become larger
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Mammoth Creek, Utah, for 
the years 0-1989 (1990 
years; from ftp:// 
ftp.ngdc.noaa.gov/ paleo/)
Irregular fluctuations at 
all time scales
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Climatic fluctuations and the Hurst 
phenomenon

“Climate changes irregularly, for unknown reasons, on all 
timescales” (National Research Council, 1991, p. 21).
All examined long time series confirm this motto.
Irregular changes in time series are better modelled as 
stochastic fluctuations on many time scales rather than 
deterministic components. 
Equivalently, these fluctuations can be regarded as a 
manifestation of the Hurst phenomenon quantified through 
the Hurst exponent, H (Hurst, 1951).
The relationship of climatic fluctuations on many scales
and the Hurst phenomenon has been conjectured by Mesa 
& Poveda (1993) and studied by Koutsoyiannis (2002). 
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A basis for fluctuating climate: The SSS process
A stochastic process at the annual scale Xi 
The mean of Xi µ := E[Xi] 
The standard deviation of Xi σ := Var[Xi] 
The lag-j autocorrelation of Xi ρj := Corr[Xi, Xi – j] 

The aggregated stochastic process at scale k ≥ 1 Z (k)
i  := ∑

l = (i – 1) k + 1

i k
 Xl 

The mean of Z (k)
i  E[Z (k)

i ] = k µ 

The standard deviation of Z (k)
i  σ(k) := Var [Z (k)

i ] 

Definition of a simple scaling stochastic process or 
a simple scaling signal (SSS; also known as (a) 
stationary increments of self-similar process (b) 
Fractional Gaussian noise – FGN) 

(Z (k)
i  – kµ) =

d
 








k

 l 
H

 (Z (l)
j  – lµ) 

for any scales k and l and for a 
specified H (0 < H <1) known 
as the Hurst coefficient 

The standard deviation of an SSS Z (k)
i  (a power law 

of scale k) 
σ(k) = kH σ 

The lag-j autocorrelation of an SSS Z (k)
i  (a power 

law of lag j; independent of scale k) 
ρ

 (k)
j  = ρj ≈ H(2H – 1)j2H–2 

for j > 0 
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How do the series of the examples behave?

Like white noise?
� H = 0.5
� Classic statistics adequate

Or
Like SSS?
� H > 0.5
� Classic statistics inadequate 2

2.2

2.4

2.6

2.8

3

0 0.5 1
Log(S cale)

Lo
g
(S

ta
nd

ar
d 
de

vi
a
tio

n)

E m pirical
W hite noise
M odeled

Boeoticos Kephisos 
runoff

H = 0.79

Note: Traditionally, in hydrological statistics the Hurst exponent has been 
defined and estimated in terms of the quantity called “range”. This in not 
necessary at all, as it can be much more conveniently determined in terms of 
the standard deviation of the aggregated process on many temporal scales. 
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How do the series of the examples behave? (2)
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Do classical statistics apply to SSS processes?
Statistic Classical formula Effect in SSS 

processes SSS formula 

Sample average X– := 
1
n∑i=1

n
 Xi Unbiased X– := 

1
n∑i=1

n
 Xi 

Variance of 
sample average var[X–] = 

σ2

n  Dramatic 
underestimation var[X–] = 

σ2

n2–2H 

Sample standard 
deviation 

S  := 
1

(n – 1) × 

  
  

                           ∑
i=1

n
  (Xi – X–)2  

Underestimation 

S≈ := n – 1/2
(n – 1)(n – n2H–1)

 × 

  
  

                           ∑
i=1

n
  (Xi – X–)2  

Variance of 
sample standard 
deviation 

var[S] ≈ 
σ2

2(n – c) Underestimation var[S≈] ≈ 
(0.1n + 0.8)λ(H)σ2

 2(n – 1)  

[λ(H) := 0.088(4H2 – 1)2] 

Hurst coefficient 

Based on S(k) = kH S and 
using regression  
[The algorithm based 
on the range concept is 
inappropriate] 

Underestimation 

Based on S≈k) = kH  S≈ and 
using regression and 
iteration 

[Note: S≈ depends on H] 
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Do classical statistics apply to SSS processes? (2)
Statistic Classical formula Effect in SSS 

processes SSS formula 

Confidence 
intervals of 
distribution 
quantiles (for 
normal 
distribution) 

x̂u1,2 = x̂u ± ζ(1+γ/2)εu  

with 

εu = 
s
n 1 + 

ζ2
u

2   

Dramatic 
underestimation 
of interval 
length 

ẑ
(k)
u1,2  = ẑ

(k)
u  ± ζ(1+γ/2)ε

(k)
u  

with ε
(k)
u  = k s≈

n1–H × 

1 + 
ζ2

u (0.1n + 0.8)λ(H)

2(k/n)2–2H (n – 1)  

Cross-correlation  

RXY := 
S XY

S X S Y
 

with SXY := 
1

n – 1 ∑
i = 1

n
 (Xi

 – X–)(Yi
 – Y–) 

Approximately 
unbiased RXY := 

S XY

S X S Y
  

Auto-correlation Rl := 
n

n – 1 
Gl
S2 Dramatic 

underestimation R~l := Rl










1 – 
1

n2–2H  + 
1

n2–2H 
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Application 1: A simple calculation to 
demonstrate the difference between 
classical and SSS statistics 
� From the Boeoticos Kephisos runoff series for n = 91 (years), the 

sample mean is x– = 392.8 hm3 and the classical sample standard 
deviation s = 157.3 hm3. 
� For the same series, the SSS estimate of H = 0.79 and thus the sample 

standard  deviation becomes  s≈ = 170.2 hm3 (8% greater than s). 
� The classical 95% confidence limits of the mean µ are 425.1 hm3 and 

360.5 hm3 (confidence interval = 64.7 hm3). 
� The SSS 95% confidence limits of the mean µ for H = 0.79 are 522.1 

 and 263.4 hm3 (confidence interval = 258.8 = 3.0 × 64.7 hm3). 
� To obtain a confidence interval as small as that given by the classical 

statistics, the required number of years of observations is n = 67 175. 
That is, we must … wait 67 084 years (!) most probably seeing our 
experiment interrupted much earlier by a new glacial period. 
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Application 2: Distribution quantiles of the North 
Hemisphere temperature at two time scales, annual 
(mean annual weather) and 30 year (climate)
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Application 3: Statistical test of a trend
Kendall’s τ statistic: 

τ := 
4p

n(n – 1) – 1  

where p is the number of 
pairs (xj ,xi ; j > i, xj < xi).  
In a random series: E[τ] = 0, 
var[τ] = 2(2n + 5)/9n(n – 1), 
normal distribution. 
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Classical procedure
� Null hypothesis: random series; alternative hypothesis: trend 
� For n = 78, var[τ] = 0.077, τ = 0.40 = 5.2 var[τ]
� Reject the null hypothesis; attained significance level 8.8×10-8

Modified procedure
� Null hypothesis: SSS series, H = 0.79; alternative hypothesis: trend 
� Generate an ensemble of 100 time series, each with n = 91
� In each series locate the 78-year period with the maximum τ
� Estimate var[τ] = 0.252 and Pr[τ ≥ 0.40] = 0.055
� Do not reject the null hypothesis at significance level 5%.
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Discussion and conclusions

It is known that anthropogenic climate change (CO2
emissions etc.) increases uncertainty.
Even without anthropogenic forcings, the climate varies on 
all time scales.
Hydrological statistics, in its current status, has been 
based on the implicit assumption of a stable climate.
In hydrological applications, classical statistics: 
� Describes only a portion of natural uncertainty;
� Underestimates seriously the risk;
� May characterize a regular behaviour of hydroclimatic processes as 

an unusual phenomenon;
� In short series, hides the scaling behaviour of processes.
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Discussion and conclusions (2)

The Hurst phenomenon and the SSS processes offer 
a solid and convenient basis to adapt hydrological 
statistics so as to be consistent with a varying 
climate. 
It is feasible to derive estimators applicable to SSS 
processes for most statistics. 
In cases where analytical solutions are not feasible, 
stochastic simulation using SSS processes offers a 
convenient alternative. 
The SSS statistical framework is a feasible step 
towards making analyses closer to reality.
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Discussion and conclusions (3)

Application of the SSS statistical framework demonstrates 
the much higher uncertainty, especially in:
� Confidence interval estimates at all time scales;
� Point or interval estimates at overyear timescales (climatic 

indicators).

Application of the SSS statistical framework demonstrates 
that observed overyear “trends” or “shifts”  may not be 
“changes” but regular hydroclimatic behaviour. 
If the simple scaling behaviour hypothesis is correct, then 
the detection of anthropogenic effects in hydroclimatic 
time series:
� Should be done using SSS rather than classical statistics;
� Is much more unlikely to result in statistically significant changes.
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This presentation is available on line at
http://www.itia.ntua.gr/e/docinfo/565/
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