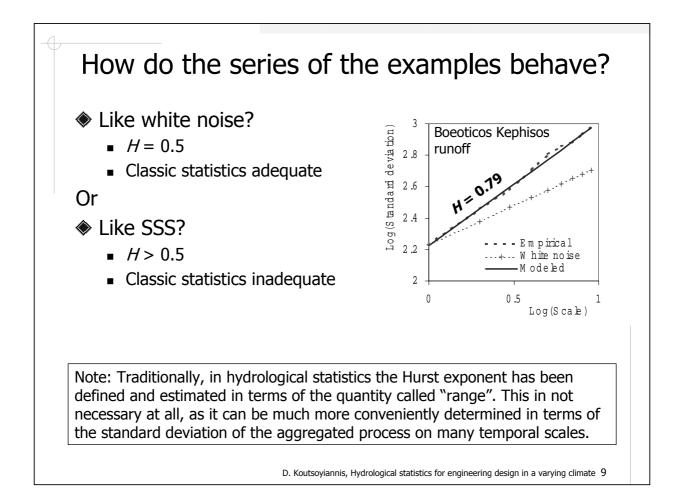
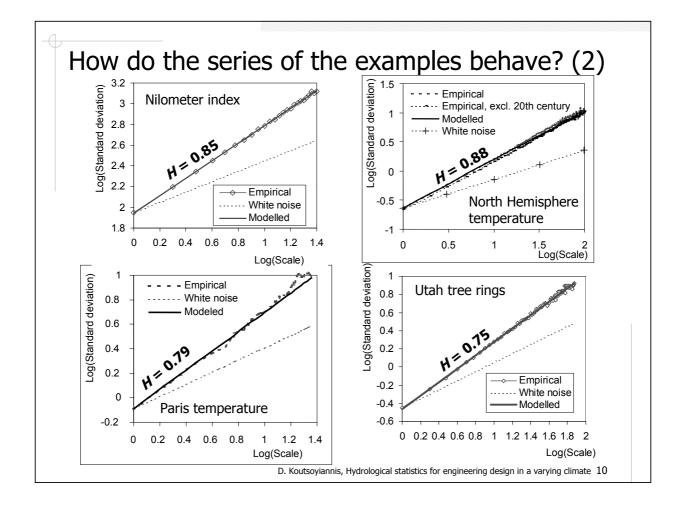


D. Koutsoyiannis, Hydrological statistics for engineering design in a varying climate $\ 7$

A stochastic process at the annual scale	X_i
The mean of X_i	$\mu := \mathrm{E}[X_i]$
The standard deviation of X_i	$\sigma := \sqrt{\operatorname{Var}[X_i]}$
The lag- <i>j</i> autocorrelation of X_i	$\rho_j := \operatorname{Corr}[X_i, X_{i-j}]$
The aggregated stochastic process at scale $k \ge 1$	$Z_i^{(k)} := \sum_{l=(i-1)}^{ik} X_l$
The mean of $Z_i^{(k)}$	$E[Z_{i}^{(k)}] = k \mu$
The standard deviation of $Z_i^{(k)}$	$\sigma^{(k)} := \sqrt{\operatorname{Var}\left[Z_i^{(k)}\right]}$
Definition of a simple scaling stochastic process or a simple scaling signal (SSS; also known as (a) stationary increments of self-similar process (b) Fractional Gaussian noise – FGN)	$(Z_{i}^{(k)} - k\mu) \stackrel{d}{=} \left(\frac{k}{l}\right)^{H} (Z_{j}^{(l)} - l\mu)$ for any scales k and l and for a specified H (0 < H < 1) known as the Hurst coefficient
The standard deviation of an SSS $Z_i^{(k)}$ (a power law of scale k)	$\sigma^{(k)} = k^H \sigma$
The lag- <i>j</i> autocorrelation of an SSS $Z_i^{(k)}$ (a power law of lag <i>j</i> ; independent of scale <i>k</i>)	$\rho_j^{(k)} = \rho_j \approx H(2H - 1)j^{2H-2}$ for $j > 0$





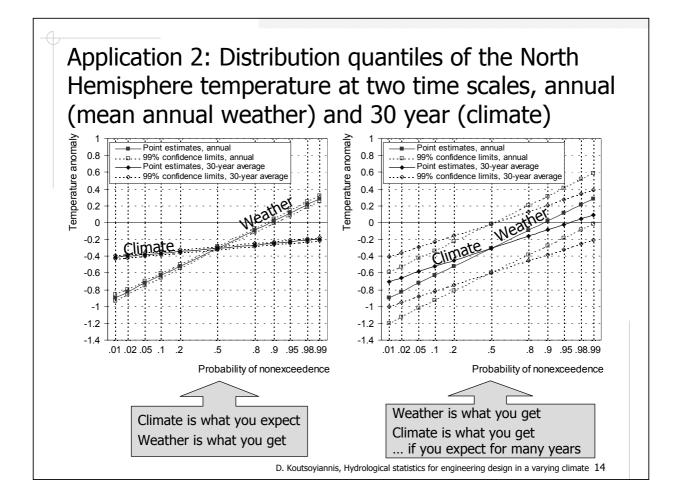
Do classic	al statistics ap	ply to SSS	processes?
Statistic	Classical formula	Effect in SSS processes	SSS formula
Sample average	$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$	Unbiased	$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$
Variance of sample average	$\operatorname{var}[\overline{X}] = \frac{\sigma^2}{n}$	Dramatic underestimation	$\operatorname{var}[\overline{X}] = \frac{\sigma^2}{n^{2-2H}}$
Sample standard deviation	$S := \sqrt{\frac{1}{(n-1)}} \times \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}$	Underestimation	$\widetilde{\widetilde{S}} := \sqrt{\frac{n - 1/2}{(n - 1)(n - n^{2H-1})}} \times \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}$
Variance of sample standard deviation	$\operatorname{var}[S] \approx \frac{\sigma^2}{2(n-c)}$	Underestimation	$\operatorname{var}[\widetilde{S}] \approx \frac{(0.1n + 0.8)^{\lambda(H)} \sigma^2}{2(n-1)} \\ [\lambda(H) := 0.088(4H^2 - 1)^2]$
Hurst coefficient	Based on $S^{(k)} = k^H S$ and using regression [The algorithm based on the <i>range</i> concept is inappropriate]	Underestimation	Based on $\tilde{S}^{(k)} = k^H \tilde{S}$ and using regression and iteration [Note: \tilde{S} depends on H]
		, Hydrological statistics for en	gineering design in a varying climate 11

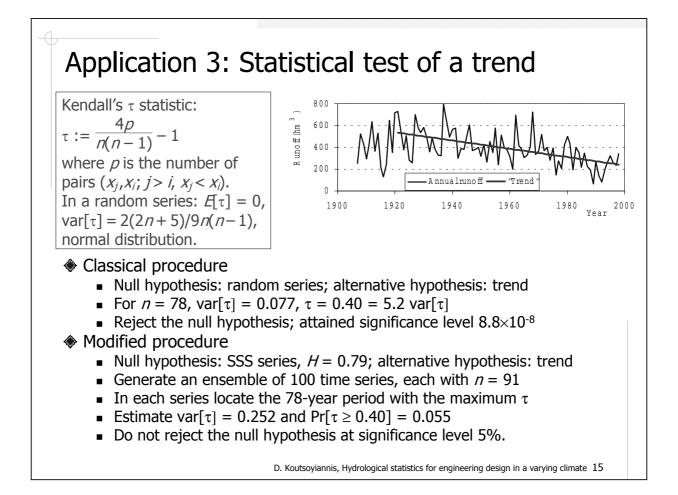
Statistic	Classical formula	Effect in SSS processes	SSS formula
Confidence intervals of distribution quantiles (for normal distribution)	$\hat{x}_{u_{1,2}} = \hat{x}_u \pm \zeta_{(1+\gamma/2)}\varepsilon_u$ with $\varepsilon_u = \frac{s}{\sqrt{n}} \sqrt{1 + \frac{\zeta_u^2}{2}}$	Dramatic underestimation of interval length	$\hat{z}_{u_{1,2}}^{(k)} = \hat{z}_{u}^{(k)} \pm \zeta_{(1+\gamma/2)} \hat{\varepsilon}_{u}^{(k)}$ with $\hat{\varepsilon}_{u}^{(k)} = k \frac{\tilde{s}}{n^{1-H}} \times \sqrt{1 + \frac{\zeta_{u}^{2} (0.1n + 0.8)^{\lambda(H)}}{2(k/n)^{2-2H} (n-1)}}$
Cross-correlation	$R_{XY} := \frac{S_{XY}}{S_X S_Y}$ with $S_{XY} :=$ $\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})$	Approximately unbiased	$R_{XY} := \frac{S_{XY}}{S_X S_Y}$
Auto-correlation	$R_l := \frac{n}{n-1} \frac{G_l}{S^2}$	Dramatic underestimation	$\widetilde{R}_{l} := R_{l} \left(1 - \frac{1}{n^{2-2H}} \right) + \frac{1}{n^{2-2H}}$

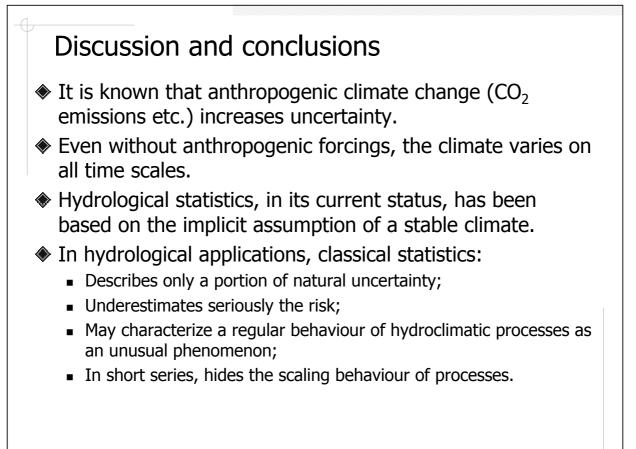
Application 1: A simple calculation to demonstrate the difference between classical and SSS statistics

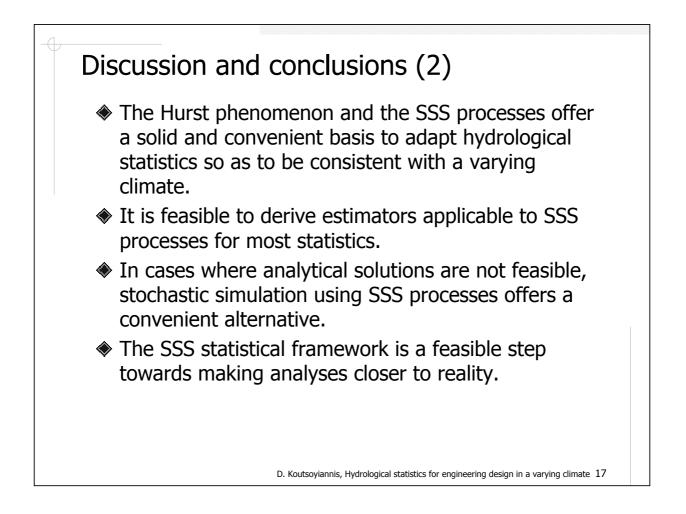
- From the Boeoticos Kephisos runoff series for n = 91 (years), the sample mean is $\overline{x} = 392.8$ hm³ and the classical sample standard deviation s = 157.3 hm³.
- For the same series, the SSS estimate of H = 0.79 and thus the sample standard deviation becomes $\tilde{s} = 170.2 \text{ hm}^3$ (8% greater than s).
- The classical 95% confidence limits of the mean μ are 425.1 hm³ and 360.5 mm (confidence interval = 64.7 hm³).
- The SSS 95% confidence limits of the mean μ for H = 0.79 are 522.1 and 263.4 hm³ (confidence interval = 258.8 = 3.0×64.7 hm³).
- To obtain a confidence interval as small as that given by the classical statistics, the required number of years of observations is n = 67 175. That is, we must ... wait 67 084 years (!) most probably seeing our experiment interrupted much earlier by a new glacial period.

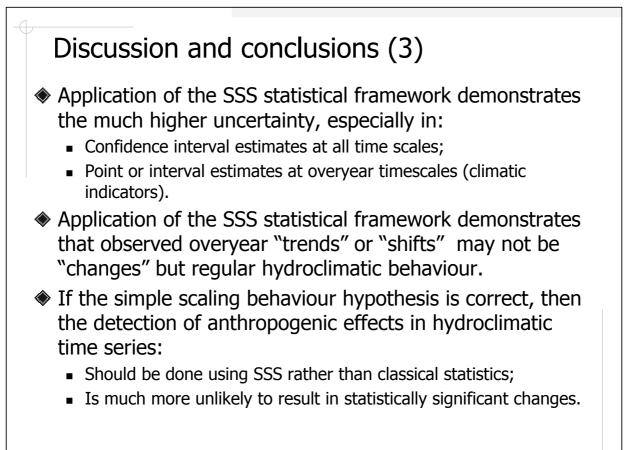
D. Koutsoyiannis, Hydrological statistics for engineering design in a varying climate $\ 13$











This presentation is available on line at http://www.itia.ntua.gr/e/docinfo/565/

References

Beran, J. (1994) *Statistics for Long-Memory Processes*, vol. 61 of Monographs on Statistics and Applied Probability. Chapman & Hall, New York, USA.

Hurst, H. E. (1951) Long term storage capacities of reservoirs. *Trans. ASCE* **116**, 776–808.

Jones, P. D., Briffa, K. R., Barnett, T. P. & Tett, S. F. B. (1998) High-resolution paleoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. *Holocene* **8**(4), 455–471.

Koutsoyiannis, D. (2002) The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47(4), 573-595.

Koutsoyiannis, D. (2003) Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48(1), 3-24.

Mesa, O. J. & Poveda, G. (1993) The Hurst effect: the scale of fluctuation approach. *Wat. Resour. Res.* **29**(12), 3995–4002.

National Research Council (1991) *Opportunities in the Hydrologic Sciences*, 21. National Academy Press, Washington DC, USA.

D. Koutsoyiannis, Hydrological statistics for engineering design in a varying climate $\ 19$