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Abstract In generating synthetic time series of hydrological processes at sub-annual scales it 

is important to preserve seasonal characteristics and short-term persistence. At the same time, 

it is equally important to preserve annual characteristics and overyear scaling behaviour. This 

scaling behaviour, which is equivalent to the Hurst phenomenon, has been detected in a large 

number of hydroclimatic series and affects seriously planning and design of hydrosystems. 

However, when seasonal models are used the preservation of annual characteristics and 

overyear scaling is a difficult task and is often ignored unless disaggregation techniques are 

applied, which, however, involve several difficulties (e.g. in parameter estimation) and 

inaccuracies. As an alternative, a new methodology is proposed that directly operates on 

seasonal time scale, avoiding disaggregation, and simultaneously preserves annual statistics 

and the scaling properties on overyear time scales. Two specific stochastic models are 

proposed, a simple widely used seasonal model with short memory to which long-term 

persistence is imposed using a linear filter, and a combination of two sub-models, a stationary 

one with long memory and a cyclostationary one with short memory. Both models are tested 

in a real world case and found to be accurate in reproducing all the desired statistical 

properties and virtually equivalent from an operational point of view. 
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1. Introduction 

Reliable planning and design of hydrosystems requires the generation of synthetic time series 

at sub-annual (e.g. monthly) time scales for more than one location simultaneously (e.g. 

simulation for design and control of reservoir systems). In this case, the statistical properties 

of hydrological data in sub-annual time scales are of interest. The preservation of the 

statistical properties at a sub-annual scale by no means implies automatic preservation of the 

same properties at the annual or multi-annual scale. It is now generally recognised that multi-

annual scales are characterised by the long term persistence (Hurst phenomenon; Hurst, 1951 

and more recently Haslett & Raftery, 1989; Bloomfield, 1992; Eltahir, 1996; Radziejewski & 

Kundzewicz, 1997; Montanari et al., 1997; Vogel et al., 1998), or, equivalently, a scaling 

behaviour of hydrological processes (Koutsoyiannis, 2002b; 2003). In contrast, typical sub-

annual stochastic models (e.g. Multivariate Periodic Autoregressive – MPAR – models; Bras 

et al., 1993) are short memory models that cannot preserve annual statistical properties and, 

moreover, cannot respect the multi-year scaling behaviour. This behaviour affects seriously 

planning and design of hydrosystems (Koutsoyiannis, 2004). It is evident now, that the 

preservation of overyear scaling behaviour of the process is equally, if not more, important to 

preservation of seasonal and annual statistical properties of the process.  

 At the same time, there exist multivariate stationary stochastic hydrological models (e.g. 

backward moving average – BMA – and symmetric moving average – SMA – models; 

Koutsoyiannis; 2000) that can reproduce both the annual marginal statistics (including 

skewness which may be important for hydrological processes) and long-term persistence of 

the process at many locations simultaneously. As long as these models are stationary, they 

cannot reproduce sub-annual statistical properties. 

 Till now, disaggregation techniques (Valencia & Schaake 1972, 1973; Mejia & Rousselle, 

1976; Tao & Delleur, 1976; Hoshi & Burges, 1979; Todini 1980; Stedinger & Vogel, 1984; 
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Koutsoyiannis & Xanthopoulos 1990; Koutsoyiannis, 1992, 2001; Koutsoyiannis & Manetas 

1996) are the only way to produce synthetic time series consistent with hydrological 

processes in more than one time scales simultaneously (i.e. from seasonal through annual to 

multi-annual time scale). These techniques involve two or more steps, where in the first step 

higher-level (annual) time series are generated, which are subsequently disaggregated to finer 

scales. However, these techniques involve several difficulties (e.g. in parameter estimation; 

Lane, 1982; Stedinger and Vogel, 1984), inaccuracies (e.g. in skewness preservation; Todini, 

1980) and are slow procedures.  

 As an alternative to the disaggregation approach, two novel multivariate stochastic 

hydrological models are proposed, which are cyclostationary, so that they can describe 

periodicity emerging at sub-annual scales, and simultaneously capable of reproducing the 

annual statistical properties and multi-year scaling behaviour of the process. The models have 

been designed as parsimonious in the number of parameters as possible. The first is a simple 

widely used seasonal model with short memory to which long-term persistence is imposed 

using a linear filter as described in section 2. The second is a combination of two sub-models, 

a stationary one with long memory and a cyclostationary one with short memory, which is 

discussed in section 3. Both models are tested in a real world case in section 4 and the 

conclusions are drawn in section 5. 

2. Multivariate periodic autoregressive model with symmetric moving average 

filter (MPAR-SMAF) 

2.1 Description  

 This model is a combination of two existing models. The first model, that forms the base of 

the MPAR-SMAF model, is the multivariate periodic autoregressive model of order 1 

(MPAR(1); Bras et al., 1985, p. 118), which is used in order to reproduce the statistical 
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properties and short-term memory of the process at sub-annual time scale (i.e. seasonal 

expected values, variances, skewness and lag one autocovariances among seasons). The 

second model used is the SMA model (Koutsoyiannis, 2000) which is applied as a filter on 

the synthetic time series produced by the MPAR(1) model to reproduce multi-year scaling 

behaviour (i.e. the Hurst phenomenon).  

2.2 Model equations 

Let us assume that Xi
l is the element of the cyclostationary vector stochastic process Xi := [Xi

1, 

Xi
2, …, Xi

ν]T where the superscript Τ denotes the transpose of a matrix or a vector. The 

subscript i (i = 1, 2, …) denotes time and the superscript l (l = 1, …, ν) denotes location (ν is 

the number of locations). The cyclostationary process has period k (i.e. k is the number of 

seasons of the year; if we assume that the seasons are the months then k = 12). For a specified 

s (s = 1, …, k) and location l, the stochastic process Xl
(i-1)k+s (i = 1, 2, …) is stationary. For 

convenience, the cyclostationary stochastic process Xi
l is assumed to have zero expected value 

(µl
i := E[Xi

l] = 0 for any i and l) whereas the variances, (σl
i)2 := Var[Xi

l], skewness and 

autocorrelations vary in season. 

 The aggregated process at the annual scale, 

   Ζl
i := ∑

j=(i-1)k+1

ik
 Xl

j = ∑
s=1

k
 Xl

(i-1)k+s  ,  l = 1, …, ν (1) 

is obviously a stationary stochastic process. This is assumed to have the second-order 

properties of a Fractional Gaussian Noise process (FGN; Mandelbrot, 1977). Thus, its 

autocorrelation function ρl
j := Corr[Ζl

i, Ζl
i-j] (j = 0, 1, …) is  

 ρl
j = (1 / 2) [(|j| + 1)2Hl + (|j| – 1)2Hl ] – |j|2Hl ,  l = 0, 1, …v;  j = 0, ±1, … (2) 

where Hl is the Hurst coefficient for location l. In order to preserve the Hurst phenomenon for 

each location l, we have to reproduce ρl
j. Although the autocorrelation function contains 
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infinite terms, a finite number of terms q+1 (i.e. ρl
0, …, ρl

q) suffices in practice, since terms ρl
j 

that are smaller than a small threshold value can be neglected. It is important to mention, that 

not only the FGN autocorrelogram but any other type of autocorrelogram may easily be 

reproduced following the same methodology presented in the following analysis.   

 It can be easily shown (Langousis & Koutsoyiannis, 2003) that the sum of two or more 

stationary stochastic processes with the same Hurst coefficient is a stationary stochastic 

process with Hurst coefficient equal to the initial one. Thus, to preserve the Hurst coefficient 

Hl of Ζl
i it suffices to generate sub-sequences Xl

(i-1)k+s each of those having Hurst coefficient 

Hl. 

 The cyclostationary process Xi
l will be generated in terms of an auxiliary cyclostationary 

process Wj := [Wj
1, Wj

2, …, Wj
ν]T with period k, zero expected values (E[Wj

l] = 0) and unit 

variances (Var[Wj
l] = 1). The process Wj is assumed to be an MPAR(1) process described by 

the equation, 

  Wj=aj Wj-1+ bj Vj  (3) 

where Vj = [Vj
1, Vj

2, …, Vj
ν]T is the vector of ν cyclostationary stochastic processes with 

period k, zero expected values (E[Vj
l] = 0), unit variances and zero correlation in time j and 

among locations l (Cov[Vi
l, Vj

k] = 0, l, k = 1, 2, …, ν) and aj, bj (j = 1, …, k) are ν × ν 

periodically changing parameter matrices. 

 For typical values of k (e.g. k = 4 for the seasonal scale, k = 12 for the monthly scale etc.) 

and for specified s and l, the sub-sequence Wl
(j-1)k+s (j = 1, 2, …) can be regarded as 

uncorrelated in time j. This is due to the fast decay of the MPAR(1) autocorrelogram which is 

the hallmark of a short memory model (see also Figure 1). Due to its short memory, the Hurst 

coefficient of the process Wj is obviously 0.5 for all locations l. However, as shown by 

Koutsoyiannis (2000) by filtering the generated process Wj with a linear Symmetric Moving 

Average (SMA) filter we can generate a process Xj that can have any desirable 
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autocorrelogram (in our case this is as in equation (2)). The SMA filter is described by the 

following equation adapted for the case examined, 

  Χl
(i-1)k+s = σl

s ∑
j=-q

q

  αl
│j│ Wl

(i+j-1)k+s  ,  s = 1, …, k;  l=1, 2, …, ν (4) 

where αl
j (j = 0, 1, …, q) are the SMA coefficients. These coefficients can be easily estimated 

using the inverse finite Fourier transform sl
ρ(ω) of the autocorrelation sequence ρl

j (j = 0, 1, 

…, q) of the stochastic process Ζl
i. sl

ρ(ω) is given by  

  sl
ρ(ω):= 2 + 4 ∑

j=1

q

 ρl
j  cos(2πjω)  ,  ω Є [0, ½];  l = 1, 2, …, ν (5) 

Koutsoyiannis (2000) has shown that the inverse finite Fourier transform sl
α(ω) of the 

coefficients αl
j is related to that of the coefficients ρl

j by, 

   sl
α(ω) = 2 sl

ρ(ω)   ,  l = 1, 2, …, ν  (6) 

So, the coefficients αl
j can be directly estimated by, 

 αl
j = ⌡⌠

0

1/2

 sl
α(ω) cos(2πjω)dω  ,  j = 0, 1, 2, …, q;  l = 1, 2, …, ν    (7) 

 The entire modeling procedure has two steps. In the first step, we generate the process Wj 

aiming to preserve the short memory properties of the process Xj whereas in the second step 

we focus on the long memory properties. The properties of Wj are related to both the SMA 

coefficients and the lag zero and lag one seasonal auto- and cross-covariances. We denote the 

lag zero variance-covariance matrices as cj := Cov[Χj, Χj] and dj := Cov[Wj, Wj], and the lag 

one covariance matrices as g j := Cov[Χj, Χj-1] and hj := Cov[Wj, Wj-1]. We also denote the 

elements of each of these matrices using two superscripts; for example the (l, f)th element of 

cj is denoted as c jl, f = Cov[Χ lj, Χ fj]. After algebraic manipulations the following formulas are 

obtained 
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  d jl, f =  
cj

l‚ f

∑
r=-q

q

  αl
│r│ αf

│r│

 ,  l, f = 1, …, ν;  j = 1, …, k      (8) 

  h jl, f = 
g jl‚ f

∑
r=-q

q

 αl
│r│ αf

│r│

 ,  l, f = 1, …, ν;  j = 1, …, k      (9) 

from which we can estimate analytically the elements of matrices dj and hj given the SMA 

coefficients and the elements of matrices cj and gj. The latter are estimated from historical 

data.  

 The preservation of seasonal skewness coefficients can be done very easily. The elements 

of the vector of skewness coefficients ξwj := [ξw
1

j, ξw
2

j, …, ξw
ν
j]T of Wj, can be estimated 

analytically from the skewness coefficients ξxj := [ξx
1

j, ξx
2

j, …, ξx
ν
j]T of Χj using the equation, 

  ξw
l
j = 

ξx
l
j

 ∑
r=-q

q

 ( )αl
│r│

3
 ,  l = 1, …, ν;  j = 1, …, k    (10) 

 Now, the statistical properties of the vector variable Vj, as well as the parameter matrices 

aj, bj of the MPAR(1) model, can be estimated using equations, 

  aj = hj{dj-1}-1 ,  j = 1, …, k    (11) 

  bj (bj)T =  dj - aj dj-1 (aj)T ,  j = 1, …, k    (12) 

  ξvj := µ3[Vj] = ( )bj
(3) -1

 { ξwj - µ3[aj Wj-1]} ,  j= 1, …, k     (13) 

where bj
(3)  is the matrix whose elements are the cubes of the elements of matrix bj. Equation 

(12) yields the matrix bj(bj)T whose decomposition specifies the matrix bj. The decomposition 

has an infinite number of solutions bj if bj(bj)T is positive definite and no solution if bj(bj)T is 

not positive definite. For a positive definite matrix bj(bj)T, two well-known algorithms are 

commonly used which result in two different solutions bj (Bras et al., 1985, p. 96; 
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Koutsoyiannis, 1999). The first and simpler algorithm, known as triangular or Cholesky 

decomposition, results in a lower triangular b. The second, known as singular value 

decomposition, results in a full b using the eigenvalues and eigenvectors of bj(bj)T. A third 

algorithm has been proposed by Koutsoyiannis (1999) which is based on an optimisation 

framework and can be applied for both positive and not positive definite matrices bj(bj)T. 

Overall, the MPAR-SMAF model is very simple and fast to apply as all required parameters 

and coefficients are estimated analytically. 

3. Multivariate split model 

3.1 Initial equations and assumptions 

The second model is based on the assumption that is possible to reproduce cyclostationarity, 

short-term memory and long-term persistence by splitting the stochastic process of interest 

into two components, a stationary stochastic process with long memory and a cyclostationary 

stochastic process with short memory.  

 As defined in section 2.2, Xi
l is a cyclostationary stochastic process with period k, where k 

is the number of seasons of the year. For each location l we assume that the stochastic process 

Xi
l can be described by the model, 

  Xi
l = el

i Yl
i + Wl

i ,  l = 1, …, ν (14) 

where el
i (l = 1, …, ν) are periodically changing parameters with period k (i.e. el

i = el
i+κk for 

any l and κ = 0, ±1, ±2, …) and Yl
i and Wl

i are stochastic processes independent to each other. 

The stochastic process Yl
i is stationary with zero expected value (E[Yl

i] = 0) and long memory 

(i.e. βl
p := Cov[Yl

i, Yl
i-p] ≠ 0 even for large values of p). The stochastic process Wl

i is 

cyclostationary with period k and zero expected values (E[Wl
i] = 0). We assume, that Wl

i has 

short memory and only its lag zero and lag one autocovariances are non zero (all others are 

zero, i.e. δl
i, p := Cov[Wl

i, Wl
i-p] = 0, p = 2, … and l = 1, …, ν).  
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 We will now array the necessary conditions that should be maintained by the model in 

order to preserve the statistical properties of both Xi
l and Ζl

i. The equations 

  Var[Xi
l] = (el

i)2 βl
0 + δl

i, 0 ,  l = 1, …, ν;  i = 1, …, k (15) 

  µ3[Xi
l] = (el

i)3 µ3[Yl
i] + µ3[Wl

i] ,  l = 1, …, ν;  i = 1, …, k (16) 

assure the preservation of both variance and skewness at sub-annual (seasonal) scale, for each 

location l. The preservation of lag one autocovariances among sub-periods (seasons), is 

described by the equation 

  Cov[Xi
l, Xl

i-1] = el
i el

i-1 βl
1 + δl

i, 1 ,  l = 1, …, ν;  i = 1, …, k (17) 

The preservation of the annual variance of each location l is described by the equation  

Var[Ζl
i] = βl

0 ∑
s=1

k

 (el
s)2 + 2 ∑

s=1

k-1

  ∑
j=s+1

k

  el
s el

j βl
j-s + ∑

s=1

k
 δl

s‚0 + 2 ∑
s=2

k
 δl

s‚1 ,  l = 1, …, ν (18) 

As described in section 2.2, in order to preserve the Hurst coefficient for each location l, we 

have to reproduce the autocorrelation function of the stochastic process Ζl
i. This preservation 

is represented by the equation, 

 γl
p = Cov[Ζl

i, Ζl
i-p] = ∑

j=1

k

 ∑
s=1

k

  el
j el

s βl
kp-s+j  + U(1-p) δl

1, 1 ,  l = 1, …, ν;  p > 0 (19) 

where U(x) is Heaviside’s step function with U(x) = 1 if x ≥ 0 and U(x) = 0 otherwise.  

 To define the model completely we need to estimate the parameters el
i (l = 1, …, ν and i = 

1, …, k) of model (14) and the statistical properties of the stochastic processes Yl
i, Wl

i. This is 

a complicated issue which is resolved in four steps, shown in Figure 2, each of which is 

described in the following four sub-sections. 



 10

3.2 Preservation of variances and short-term autocovariances 

For this step, we use equations (15)-(19) but we ignore equation (16) which refers to seasonal 

skewness (we will refer to skewness preservation in section 3.5). Generally, we wish to 

preserve q+1 elements of the autocovariance function of the stochastic process Ζl
i (i.e. γl

0, γl
1, 

…, γl
q) for some large q (e.g. 1000), but in this stage we will preserve a smaller number n+1 

of them (n < q). The preservation of the remaining elements will be discussed latter. In this 

case, for each location l we have to solve a nonlinear system of 2k+n+1 equations (i.e. k 

equations (15), k equations (17), one equation (18) and n equations (19)) with k(n+4) 

unknown parameters (i.e. el
0, el

1, …, el
k; βl

0, βl
1, …, βl

k(n+1)-1; δl
1,0, …, δl

k, 0; δl
1,1, …, δl

k, 1). 

Obviously, the number of unknowns is greater than the number of equations and the nonlinear 

system has an infinite number of solutions. This must be regarded as an advantage as it allows 

introducing some constraints to ensure that the unknown parameters are physically and 

mathematically consistent. Specifically we have used the following constraints: 

  βl
0 ≥ ε, δl

i, 0 ≥ ε ,  l = 1, …, ν;  i = 1, …, k (20) 

  






δl

i‚1

δl
i‚0 δl

i-1‚0
 ≤ 1 - ε ,  l = 1, …, ν;  i = 1, …, k (21) 

  ε ≤ 
βl

p
βl

0
 ≤ 1 – ε ,  p = 1, …, k(n+1)-1;  l = 1, …, ν (22) 

where, ε is a small positive number (e.g. ε = 0.01). Constraint (20) prohibits negative 

variances, whereas constraints (21) and (22) prohibit correlation coefficients greater than one. 

The latter also prohibits negative correlations in order to achieve a smooth seasonal 

autocorrelogram (see Figure 15). A solution to the nonlinear system that simultaneously 

obeys constraints (20)-(22) can be obtained using gradient based multivariate nonlinear 

optimisation (e.g. conjugated gradient methods) where the constraints can be incorporated 

into the objective function using the method of penalties. The objective function needed for 
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the former optimisation, as well as the expression of its derivative have been determined 

analytically (Langousis & Koutsoyiannis, 2003). In order to keep the number of variables 

involved in the optimisation procedure as low as possible, the number of the autocovariances 

n maintained at this stage can be set equal to one.  

3.3 Preservation of long-term autocovariances 

For maintaining the next q-n autocovariances of the process at the annual scale, we should 

estimate the remaining coefficients βl
k(n+1), …, βl

k(q+1)-1 (k(q-n) unknowns) so that the 

covariances given by equation (19) be preserved for lags p = n +1 , …, q (q-n equations). 

Again, the number of unknowns is greater than the number of equations which in this case are 

all linear in terms of the unknowns βl
i. In this case we adopt the generalised inversion 

procedure which results a tridiagonal system of linear equations (Langousis & Koutsoyiannis, 

2003) that is very easily solved.  

3.4 Parameters of the generating schemes  

Having already estimated the basic statistical properties of the stochastic processes Yl
i and Wl

i 

for each location l, we may now array the models selected to reproduce these statistical 

properties and determine their parameters. The stochastic process Yl
i can be described using a 

SMA (Symmetric Moving Average) model (Koutsoyiannis, 2000) given by the equation  

  Υl
i = ∑

j=-k(q+1)+1

k(q+1)-1

  αl
│j│ Vl

i+j ,  l = 1, …, ν (23) 

where al
j (j = 0, 1, …, k(q+1)-1) are the SMA parameters of location l and Vl

i is uncorrelated 

in time but correlated among locations white noise with zero expected value (E[Vl
i] = 0) and 

unit variance (Var[Vl
i] = 1). The stochastic process Vl

i may be described by the simple 

multivariate model, 
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  Vi := [Vi
1, …, Vi

ν]T = b Hi (24) 

where b is a ν × ν parameter matrix (the estimation of which will be discussed in section 3.5) 

and Hi := [Hi
1, …, Hi

ν]T is the vector of ν stationary stochastic processes which are 

uncorrelated in time and among locations with zero expected values (E[Hl
i] = 0) and unit 

variances (Var[Hl
i] = 1).  

 The SMA parameters al
j (j = 0, 1, …, k(q+1)-1) of each location l can be estimated from 

the autocovariance sequence (i.e. βl
0, βl

1, …, βl
k(q+1)-1) of the stochastic process Yl

i. If the 

autocovariance matrix of Yl
i is feasible, then the SMA parameters al

j of each location l can be 

estimated analytically using the power spectrum sl
β(ω) of the stochastic process Yl

i,  

  sl
β(ω) := 2 βl

0 + 4 ∑
j=1

k(q+1)-1
 βl

j  cos(2πjω) ,  ω Є [0, ½] (25) 

  sl
α(ω) = 2 sl

β(ω)  (26) 

  αl
j = ⌡⌠

0

1/2

 sl
α(ω) cos(2πjω)dω ,  j = 0, 1, 2, …, k(q+1)-1  (27)   

It is generally expected that the autocovariance sequences will be feasible so that the spectrum 

sl
β(ω) will be positive for any ω. However, it is possible that some small negative values will 

emerge since no relevant constraint was imposed in earlier phases of parameter estimation (in 

fact such a constraint is difficult to incorporate). For this case, a simple algorithm has been 

developed, which uses iteration to modify the autocovariance sequences βl
i in order to be 

feasible (Langousis & Koutsoyiannis 2003) (note that infinite number of βl
i sequences exist 

that satisfy equations (15)-(19)). 

 The stochastic process Wl
i (l = 1, …, ν) can be described by the Multivariate Periodic 

Forward Moving Average model, 

  Wi := [Wi
1, …, Wi

ν]T
 = 0fi Ri + 1fi Ri+1 + gi Gi (28) 
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where jfi (j = 0, 1), gi are ν × ν periodically changing parameter matrices with period k (the 

estimation of which is going to be discussed in section 3.5) and Ri := [Ri
1, …, Ri

ν]T, Gi := [Gi
1, 

…, Gi
ν]T are vectors of ν cyclostationary stochastic processes with period k, which are 

uncorrelated in time and among locations with zero expected values and unit variances. 

3.5 Skewness preservation and multivariate consistency  

The additional requirements remained to be specified in this final step is the preservation of 

skewness of variables and the preservation of cross-correlations among different locations. 

These requirements will be based on the coupling of stochastic models (23) and (28). The 

preservation of the variance-covariance matrix of each season is described by the following 

equation which is a direct consequence of (14) and (28), 

  Cov[Xs, Xs] = us + 0fs (0fs)T + 1fs (1fs)T + gs (gs)T  ,  s = 1, …, k  (29) 

where Xs = [Xs
1, …, Xs

ν]T and us is a periodically changing ν × ν parameter matrix with period 

k. The elements of the latter are estimated by equation, 

  us
i, j = ui, j 











∑
r=-k(q+1)+1

k(q+1)-1
 ai

|r| aj
|r|  ei

s ej
s ,  s = 1, …, k;  i, j = 1, …, ν (30) 

which is a consequence of (14) and (23). Matrix u is the variance-covariance matrix of vector 

Vi described by the equation, 

  u := Cov[Vi, Vi] = b bT (31) 

the diagonal elements of which must be unit by definition (i.e. u i, i = Var[Vj
i] = 1).  The 

preservation of seasonal skewness is described by the equation, 

 µ3[Xs] = qs + (0fs)(3) µ3[Rs] + (1fs)(3) µ3[Rs+1] + (gs)(3) µ3[Gs] ,  s = 1, …, k  (32)   



 14

where the meaning of the superscript (3) is that all elements of the matrix should be cubed 

element by element. The vector qs with dimension ν has elements given by the following 

expression, which is a consequence of (14), (23) and (28), 

  qs
i = 











∑
j=1

ν
(bi, j)3 µ3[Η j]  











 ∑
r=-k(q+1)+1

k(q+1)-1
 (ai

|r|)3  (ei
s)3 ,  i = 1, …, ν;  s = 1, …, k (33)   

 Equations (29) and (32) written for s = 1, …, k, form the basis of this estimation step in 

which we wish to determine parameters b, 0fs, 1fs and gs. Each of them has v2 unknowns so the 

total number of unknown matrix elements is (3k+1)ν2. Simultaneously, we wish to determine 

the vectors of skewness coefficients µ3[H], µ3[Rs], µ3[Gs] (a total of (2k+1)ν unknowns). 

Knowing that the matrix Cov[Xs, Xs] in (29) is symmetric, the number of independent 

equations, which are non-linear, is kv(ν+3)/2 (i.e. smaller than the number of unknowns). 

Thus, again we have an optimisation problem which can be resolved using gradient based 

nonlinear optimisation.  

 A number of constraints need to be incorporated into this optimisation. First we need a 

constraint that all the diagonal elements of matrix u = b bT are unity, i.e. 

  u i, i = 1  ,  i = 1, …, ν (34) 

Next we need a constraint for the preservation of lag one autocovariances among seasons of 

the same location, i.e. 

 diag{Cov[X1
s, X1

s-1], …, Cov[Xνs, Xνs-1]} = diag{ωs
1, …, ωs

ν} +  

 + diag{0f1
s (1f1

s-1)T, …, 0f 
ν
s (1f νs-1)T}  ,  s = 1, …, k (35)   

where 0f js is the jth line of matrix 0fs, and 

  ωs
l= u l, l 











∑
r=-k(q+1)+1

k(q+1)-2
 al

|r| al
|r+1|  el

s el
s-1 ,  l = 1, …, ν;  s = 1, …, k (36) 
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A final set of constraints should be incorporated in order to avoid high values of skewness 

coefficients of the auxiliary processes Hl, Rl
i and Gl

i, knowing that very high coefficients of 

skewness cannot be generated in finite length series (Todini, 1980). In this case, we set an 

upper limit ξmax for the absolute value of skewness coefficients, i.e.  

  |µ3[Hl]|≤ ξmax ,  l = 1, …, ν (37) 

  |µ3[Rl
i]|, |µ3[Gl

i]|≤ ξmax ,  i = 1, …, k;  l = 1, …, ν (38) 

All constraints can be incorporated into the objective function using, once more, the method 

of penalties. The objective function needed for the optimisation, as well as the expression of 

its derivative have been determined analytically (Langousis & Koutsoyiannis, 2003).  

4. Applications  

4.1 Reproduction of the statistical properties of hydrological data  

In order to check the efficiency of MPAR-SMAF and Split models, we applied them for the 

reproduction of the statistical properties of two cross-correlated real-world monthly 

hydrological time series. The first time series is the longest available monthly discharge 

record in Greece, the Boeoticos Kephisos river discharge series, and the second time series is 

the monthly rainfall time series at the Aliartos rain gauge, which is the oldest station existing 

in the Boeoticos Kephisos basin (Koutsoyiannis et al, 2002).  

 The parameters of both models were estimated based on the historical statistics (Langousis, 

2003). The long-term persistence (overyear scaling behaviour) was described assuming that 

the annual discharge and rainfall time-series follow the FGN (Fractional Gaussian Noise) 

autocorrelogram that is determined totally by the Hurst coefficient (Hl) of the annual time 

series (equation (2)). One set of series for all locations was then generated using each model 



 16

with length of 5 000 years (i.e. 60 000 months). The statistical properties of the generated 

series were subsequently compared to the historical statistics. 

  Referring to the monthly time scale, both MPAR-SMAF and Split models preserve the 

seasonal expected values (Figures 3, 4), standard deviations (Figures 5, 6), skewness 

coefficients (Figures 7, 8) and lag one autocorrelation coefficients (Figures 9, 10) of both 

discharge and rainfall time series. Also, both models preserve the seasonal lag zero cross-

correlation coefficients between the discharge and rainfall time series (Figure 11).  

 Referring to the annual time scale, we observe that both models reproduce the annual 

expected values of the discharge and rainfall time series (Figure 12). Although Split model 

reproduces the annual standard deviation of both time series (as long as this is implied by 

equation (18)), MPAR-SMAF model yields only a good approximation of it (Figure 12). This 

is explained by the structure of the MPAR-SMAF model that uses an MPAR(1) model to 

generate the initial time series on which SMA filter is then applied. It is evident, that series 

generated by an MPAR(1) model preserve only lag one autocovariances among months (that 

leads to a good approximation of the annual standard deviation) and not the whole 

autocovariance sequence (12 autocovariances for each month) needed for the accurate 

reproduction of the annual standard deviation. Further, as we observe in Figures 13 and 14 

both models are capable of reproducing the overyear scaling behaviour of the historical time 

series. 

 Although it is not of direct interest (and not explicitly preserved by the models), Figure 15 

depicts the monthly autocorrelogram (autocorrelogram of one month of a certain location with 

previous months of the same location) for the month of October. This provides information 

about the functioning structure of the two models developed. Comparing the monthly 

autocorrelogram of the MPAR(1) model with that of the MPAR-SMAF model, we observe 

that the autocorrelogram of the former tends quickly to zero due to the short memory of the 
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model. However, the SMA filter that is applied on the series produced by the MPAR(1) 

model performs a periodical shift (period 12 months). In the aggregated (annual) scale, this 

shift is capable of reproducing the long-term persistence of the historical time series. In 

contrast, the Split model yields a smooth structure of the monthly autocorrelogram.   

4.2 Operational comparison of the results of the two models 

The analysis of the previous sub-section showed that both models can preserve several 

important statistical characteristics of hydrological processes. We have seen that there are 

some differences between the two models. Particularly, the MPAR-SMAF model 

approximates the variance at the annual scale whereas the Split model preserves it exactly. 

Moreover, even though both models yield the same annual autocorrelogram, the former model 

results in monthly autocorrelogram which may have an unrealistic periodic form, whereas the 

latter model yields a smooth realistic monthly autocorrelogram. On the other hand the former 

model is extremely simpler than the latter so a question arises, whether these differences are 

so important as to prefer the latter model over the former. To give a pragmatic answer to this 

question, one needs to test the model results in operational problems of stochastic hydrology. 

In this respect, the most common and effective test is related to reservoir design and 

operation. Specifically, the reservoir storage-yield-reliability relationship is regarded to be 

one of the most common tools to compare different models in an operational manner. Here we 

use this approach to compare the two models and also to intercompare them to the standard 

MPAR(1) model.  

 Let c the reservoir storage capacity of a hypothetical reservoir and δ the water demand 

from this reservoir on an annual basis assumed to be constant in all years. According to a 

general definition (Chow et al., 1988, p. 434) the reliability of a system is the probability that 

the “loading” will not exceed the “capacity” at a specified period of time. Applied to a 
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reservoir on an annual basis, this definition implies that the reliability of the reservoir is the 

probability that the reservoir will satisfy the required demand during the whole year, i.e. 

  a = P[Rt = δ] (39) 

where Rt is the reservoir release given by,  

  Rt = min(St – 1 + Xt, δ) (40) 

Xt is the reservoir inflow as generated by the model used and St is the reservoir storage given 

by,   

  St = max[0, min(St – 1 + Xt – δ, c)] (41) 

The reliability is related to the recurrence interval of emptiness T by the equation  

  T = 1 / (1 – a) (42) 

 Given the reservoir storage c and the demand δ, as well as the inflows Xt a simulation can 

be performed based on equations (40) and (41) and by counting the number of successes the 

reliability α and the recurrence interval T are estimated (equations (39) and (42)). Repeating 

this procedure several times with different values of c and δ, the relationship among c, δ, Τ 

can be determined. Usually, the quantities c and δ are standardised by the mean µ or the 

standard deviation σ of the annual inflows. 

 This procedure was applied with three synthetic series with length 20 000 years (to assure 

accuracy of calculations) generated by the MPAR(1), Split and MPAR-SMAF models for the 

Boeotikos Kephisos river inflows. The results are shown in Figure 16 and suggest that models 

Split and MPAR-SMAF are practically equivalent to each other and both differ tremendously 

from the MPAR(1) model especially for large standardised reservoir capacities or large 

standardised demands. These tremendous differences from the MPAR(1) model emphasise 

the major importance of preserving the overyear scaling behavior of hydrological processes 

and concur with the already known result (e.g. Koutsoyiannis, 2004) that the lack of 
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preservation of the long term persistence causes significant underestimation of the reservoir 

characteristics. For this reason, a model without ability to preserve long term persistence 

should be not used for generation of hydrological inputs. On the other hand, the close results 

of the two models developed in this paper lead us to conclude that even the simple MPAR-

SMAF is operationally as good as the more complicated Split model.  

5. Conclusions  

The reproduction of the scaling behaviour or equivalently the long term persistence of 

hydrological processes turns out to be essential in modelling and operation of hydrosystems. 

This reproduction may be regarded as a routine task when the modelling time scale is annual. 

However, the annual scale is not appropriate for simulation of most hydrosystems. Until now, 

only disaggregation approaches which combine different stochastic models that use different 

time scales (annual and seasonal) could give a solution to the problem of simultaneous 

reproduction of over year scaling and seasonal statistical characteristics. In this paper an 

alternative approach is presented, according to which one single model can directly generate 

synthetic time series that are consistent with historical data in several time scales, from 

seasonal to multiyear simultaneously, avoiding the use of disaggregation, which involves 

several difficulties (e.g. in parameter estimation) and inaccuracies. Following this approach, 

two specific stochastic models have been studied. The first one (MPAR-SMAF) a simple 

model based on the widely used MPAR(1) model combined with a Symmetric Moving 

Average filter. The latter takes the outputs of the MPAR(1) model and filters them adding the 

required long term persistence. The second model (Split model) reproduces seasonal 

characteristics and short- and long-term persistence by combining two sub-models, a 

stationary one with long memory and a cyclostationary one with short memory. Split model is 

more complete with respect to the reproduced statistical properties but simultaneously is far 

more complicated, especially in parameter estimation which requires several steps of 
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nonlinear multivariate optimisation. MPAR-SMAF does not require any optimisation and its 

parameters are determined by analytical equations. Both models have been tested in a real 

world case and found to be accurate in reproducing all the desired statistical properties and 

virtually equivalent to each other from an operational point of view.  
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Figure 1 Empirical autocorrelation coefficients of the synthetic monthly series of the months of October and 

June, generated by an MPAR(1) model (the lag is expressed in years).  
 

 

 

 

 
 
 

Figure 2 Split model application flowchart 
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Figure 3 Monthly expected values of the discharge time series 
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Figure 4 Monthly expected values of the rainfall time series 
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Figure 5 Monthly standard deviations of the discharge time series 
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Figure 6 Monthly standard deviations of the rainfall time series 
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Figure 7 Monthly skewness coefficients of the discharge time series 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Historical
Split model
MPAR-SMAF

 
Figure 8 Monthly skewness coefficients of the rainfall time series 
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Figure 9 Lag one autocorrelation coefficients of the discharge time series 
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Figure 10 Lag one autocorrelation coefficients of the rainfall time series 
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Figure 11 Lag zero cross-correlation coefficients of the two time series 
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Figure 12 Annual expected values and standard deviations of the discharge and rainfall time series  
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Figure 13 Comparison between the empirical autocorrelogram of the annual discharge time series and the FGN 

autocorrelogram (Hurst coefficient equal to the one of the historic sample H=0.784) 
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Figure 14 Comparison between the empirical autocorrelogram of the annual rainfall time series and the FGN 

autocorrelogram (Hurst coefficient equal to the one of the historic sample H=0.642) 
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Figure 15 Seasonal autocorrelations of the month of October with previous months, for 3 independent synthetic 

series produced using MPAR(1), Split and MPAR-SMAF models. 
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Figure 16 Relationship between recurrence interval of reservoir emptiness (T) and reservoir storage capacity 
standardised by mean inflow (c/µ) for several values of demand standardised by mean (δ/µ), as obtained from 
simulations using Split model (continuous lines), MPAR-SMAF (dashed lines) and MPAR(1) (dotted lines).   


