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Abstract A hydrological simulation model was developed for conjunctive 
representation of surface and groundwater processes. It comprises a conceptual soil 
moisture accounting module, based on an enhanced version of the Thornthwaite 
model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module 
and a module for partitioning water abstractions among water resources. The resulting 
integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and 
space scales (catchment scale, aquifer scale). Model calibration involved successive 
phases of manual and automatic sessions. For the latter, an innovative optimization 
method called evolutionary annealing-simplex algorithm is devised. The objective 
function involves weighted goodness-of-fit criteria for multiple variables with 
different observation periods, as well as penalty terms for restricting unrealistic water 
storage trends and deviations from observed intermittency of spring flows. Checks of 
the unmeasured catchment responses through manually changing parameter bounds 
guided choosing final parameter sets. The model is applied to the particularly complex 
Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin 
response, i.e. the runoff at its outlet, and also other important components. Emphasis 
is put on the principle of parsimony which resulted in a computationally effective 
modelling. This is crucial since the model is to be integrated within a stochastic 
simulation framework. 
Key words  conjunctive surface and groundwater use; Thornthwaite model; multi-cell model; 
global optimization; evolutionary annealing-simplex algorithm; hydrological simulation 

Calage d’un modèle semi-distribué pour la simulation conjointe 
d’écoulements superficiels et souterrains 
Résumé Un modèle de simulation hydrologique a été développé pour la 
représentation conjointe de processus superficiels et souterrains. Il comprend un 
module conceptuel de prise en compte de l’humidité du sol, basé sur une version 
renforcée du modèle de réservoir d’humidité du sol de Thornthwaite, un module 
d’écoulement souterrain darcien multi-cellules, et un module qui distribue les 
prélèvements d’eau parmi ses différentes ressources. Le schéma intégré qui en résulte 
est très flexible pour le choix des échelles de temps (mois, jour) et d’espace (bassin 
versant, aquifère). Le calage du modèle comprend des phases successives de sessions 
manuelles et automatiques. Pour ces dernières, une méthode originale d’optimisation 
est proposée, appelée algorithme évolutif de recuit simulé-simplex. La fonction 
objectif s’appuie sur des critères pondérés d’ajustement liés à plusieurs variables et 
différentes périodes d’observation, ainsi que sur des termes de pénalisation afin de 
limiter les tendances irréalistes de stockage d’eau et les dérives par rapport à 
l’intermittence observée des écoulements de printemps. Les vérifications des réponses 
non mesurées du bassin versant via un changement manuel des paramètres ont guidé 
le choix final des jeux de paramètres. Le modèle est appliqué au bassin versant 
particulièrement complexe de Boeoticos Kephisos, en Grèce, où il simule de manière 
précise la réponse principale du bassin, i.e. l’écoulement à l’exutoire, mais aussi 
d’autres composantes importantes. La priorité est mise sur le principe de parcimonie, 
ce qui conduit à une modélisation efficace en termes de calcul. Cela est crucial dans la 
mesure où le modèle doit être intégré à un dispositif de simulation stochastique.  
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Mots clefs  utilisation conjointe surface-souterrain; modèle de Thornwaite; modèle multi-
cellules; optimisation globale; algorithme évolutif de recuit simulé-simplex; simulation 
hydrologique 

 
 
INTRODUCTION 
 
Integrated management of water resource systems requires a conjunctive representa-
tion of surface and groundwater dynamics, especially when combined uses are 
involved. This stands as one of the most challenging issues in hydrological modelling. 
Traditionally, to simulate water fluxes, a hydrosystem is represented by storage and 
conveyance components for which inflow time series, whether they originate from 
surface water or groundwater resources, are pre-computed (i.e. measured or 
synthetically generated) and entered externally. However, this may be insufficient due 
to decision-related interactions between surface and groundwater flows. A typical 
example is when inflows to a reservoir are significantly reduced due to upstream 
groundwater abstractions. In that case, conjunctive simulation of both surface and 
groundwater processes is needed, to assess the impacts of the abstractions on the 
reservoir yield. 
 A mathematical framework for conjunctive modelling of surface and groundwater 
flows is presented. This hydrological simulator consists of three components: (a) a 
semi-distributed soil moisture accounting module for surface processes, (b) a multi-cell 
groundwater module, and (c) a demand-partitioning module. The synthetic model is 
established for the Boeoticos Kephisos River basin, the most important characteristic 
of which is the existence of an extended karstic aquifer that contributes significantly to 
the total basin streamflow. Both surface and groundwater resources supply irrigation 
water locally as well as drinking water to Athens. Furthermore, the basin’s surface 
outflows account for most of the inflow of Lake Yliki, which is the second largest 
reservoir of the Athens water supply system. Hence, the interactions between surface 
and groundwater flows and abstractions, in addition to the need for a rational water 
management, impose the adoption of a conjunctive simulation scheme. The hydro-
logical simulator is designed as part of an integrated decision support system (DSS) for 
the management of the water resource system of Athens (Koutsoyiannis et al., 2002). 
The DSS yields the optimal operation of the hydrosystem, employing stochastic 
simulation within an optimization scheme. Inflow series, including those of Lake 
Yliki, are synthetically generated through a stochastic module of the DSS. Until now, 
several attempts were made to integrate a hydrological model within the DSS, in order 
to estimate the impacts of water supply and irrigation abstractions to Yliki inflows 
(Nalbantis et al., 2002). Among these were a lumped simulation scheme and a 
distributed model, implemented within the MODFLOW package (Nalbantis & Rozos, 
2000). While the lumped model performed relatively well regarding its prediction 
accuracy, it was not able to represent the basin processes at the desired spatial scale, 
and especially the spring flow dynamics that are directly affected by the water supply 
abstractions. On the other hand, the MODFLOW model, although useful for better 
spatial information treatment, was ineffective regarding its ability to run in stochastic 
simulation mode. Hence, the requirement was to build a model that provides a 
satisfactory prediction of the hydrological processes, while remaining at the same time 
computationally effective. 
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 In addition to the model formulation, this study is focused on the parameter 
estimation procedure. A hybrid approach that combines manual and automatic 
calibration is presented, aiming at restricting the uncertainties due to the complexity of 
the physical system and the lack of reliable and systematic spatially distributed data. 
The objective function attempts to incorporate all information concerning the water-
shed response, by means of measured hydrographs and, to a lesser extent, groundwater 
level observations. Finally, for the automatic calibration procedure, a new heuristic 
evolutionary optimization algorithm is introduced, in which a generalized downhill 
simplex scheme is effectively coupled with a simulated annealing strategy. 
 The paper is organized in five sections. The next section describes the 
mathematical structure, the assumptions and the integration of the three components of 
the model, followed by a section dealing with the optimization algorithm. In the fourth 
section, the application of the model to the Boeoticos Kephisos River basin are 
presented and the calibration procedure and the results are discussed. The final section 
summarizes the conclusions and provides some remarks on possible further research. 
 
 
MATHEMATICAL FRAMEWORK 
 
Hydrological simulation through conceptual water balance models 
 
Simulation models help understand mechanisms regarding water fluxes; moreover, 
they serve to predict the behaviour of the physical system, under a given set of 
naturally occurring circumstances (Beven, 1989). Typically, such models are applied at 
the watershed or the aquifer scale; but conjunctive simulations are relatively rare. This 
is due to the different physical characteristics of the surface and groundwater 
processes. For example, in the usual case of porous aquifers, groundwater velocities 
are some orders of magnitude smaller than the surface ones, thus imposing proper 
adaptation of temporal and spatial scales. Another typical example is when spring 
runoff to streamflow is negligible, as compared to flood runoff. 
 In typical practical applications, conceptual models, with an a priori specified 
mathematical structure based on empirical hypotheses, are preferable to physically-
based approaches, which are restrained by the large amount of spatially distributed 
data required to represent the heterogeneity of physical processes. It is widely 
recognized that the reliability of conceptual models is strongly dependent on the 
adequacy of the calibration procedure employed (e.g. Sorooshian & Gupta, 1983; 
Yapo et al., 1998). Hence, the confidence in these models depends on the predictive 
uncertainty remaining after the calibration. Other sources of uncertainty are the 
structural complexity of the model and the level of information contained within the 
observations used as inputs. Therefore, when formulating and calibrating a hydro-
logical model, the key point is to find a good equilibrium between model complexity 
and predictive uncertainty, given the available data (Wagener et al., 2001). A 
successful calibration should involve sufficient predictive capacity of the model, in 
addition to a realistic parameter set. The former ensures the reproduction of catchment 
behaviour with satisfactory accuracy, while the latter ensures that the model 
parameters, albeit conceptual, are representative of the essential effective charac-
teristics of the entire basin. 
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Surface water simulation model 
 
Water balance models for surface hydrology processes have been developed at various 
scales and to varying degrees of complexity (cf. Xu & Singh, 1998), ranging from 
relatively complex models with 10–15 parameters for arid regions to very simple ones, 
for humid regions in temperate zones (Makhlouf & Michel, 1994). Most of them 
represent the transformation of rainfall to runoff through one or more conceptual 
reservoirs, based on the pioneering work of Thornthwaite (1948) and Thornthwaite & 
Mather (1955). Specifically, the Thornthwaite model was initially developed to 
estimate monthly actual evapotranspiration Et, using monthly values of precipitation, 
Pt, and potential evapotranspiration, EPt (a schematic illustration of the model is given 
in Fig. 1(a)). The whole basin is represented by a conceptual soil moisture reservoir of 
capacity K, which is the only parameter of the model. When the soil is saturated, i.e. 
the storage exceeds the capacity K, the reservoir spills; this spill corresponds to the 
basin runoff, Qt. The evapotranspiration demand is first satisfied through precipitation 
and, at a second stage, if necessary, through the available soil moisture. In that case, it 
is assumed that the soil evaporation rate, symbolized ESt, is proportional to the deficit 
EPt – Pt and the storage ratio St/K.  
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Fig. 1 (a) Original and (b) modified Thornthwaite model. 

 
 
 The above approach is suitable only for catchments without significant ground-
water contribution, since it cannot represent the deep percolation process, neither 
permanent flows. Moreover, when applying this model in arid or semiarid regions, the 
assumption that the entire precipitation is transformed into evapotranspiration becomes 
unrealistic. This is because the monthly precipitation occurs through few storm events 
at much finer time scales (e.g. hourly, daily); at such scales, precipitation usually 
exceeds potential evapotranspiration, whereas on a monthly basis this may not be true. 
 To cope with the above drawbacks, several modifications were implemented to the 
original model, as shown in Fig. 1(b). In the modified scheme, the total runoff, Qt, is 
divided into two parts: a direct component, Dt, occurring during storm events, and the 
quick subsurface flow (interflow), It. The former occurs when the actual soil moisture 
storage exceeds the reservoir capacity, now symbolized as K2 instead of K. The latter is 
represented by a horizontal orifice, lying at level K1 < K2, and its outflow rate is 
assumed proportional to St – K1 and a recession coefficient λ, i.e. It = λ(St – K1). 

(a) (b) 
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Additionally, the modified soil moisture reservoir contains a bottom orifice, for 
percolation, Gt, to deeper zones. Similarly to the interflow, percolation rate is assumed 
proportional to the actual moisture storage St and a recession coefficient µ, i.e. Gt = µSt. 
Finally, the modified model imposes a maximum fraction, ε, of precipitation that can 
be directly evaporated. Therefore, the soil evaporation rate is estimated by: 

ESt = 
max(0, EPt – εPt)

K2
 St (1) 

For ε = 1, the above relationship is identical to that of the Thornthwaite model. At the 
beginning of each time step, the precipitation excess ∆Pt = Pt – min(εPt, EPt) is added 
to the actual soil moisture storage. To cope with typical time scale drawbacks, the 
calculation of water balance components is implemented analytically, by formulating a 
first order differential equation, based on the mass conservation (continuity) principle. 
This equation is written as: 

1
∆ 

dS
dτ = λK1 – 

�
�
�

�
�
�λ + µ + 

max(0, EPt – εPt)
K2

 S (2) 

where ∆ is the time resolution (e.g. one month) and τ is dimensionless time, in the 
interval [0,1]. By solving equation (2), assuming as initial storage the amount 
St-1 + ∆Pt, one obtains the soil moisture storage at the end of the actual time step. An 
important assumption is that, within the time interval, the soil moisture is allowed to 
exceed the reservoir capacity. Practically, this excess represents water that cannot be 
absorbed by the saturated soil and is first let to pond and then evaporate or infiltrate. 
This assumption enables the generation of more realistic output series, the variability 
of which is consistent with the variability of precipitation. After the calculation of 
hydrological outflows given by equation (2), the soil moisture excess (if this still 
exists) is spilled and contributes to the streamflow as direct runoff. 
 In conclusion, the modified model, besides the direct runoff and the actual 
evapotranspiration, estimates also the interflow and the percolation, by using five 
parameters in total, namely the interflow threshold K1, the soil storage capacity K2, the 
recession rates λ and µ, and the fraction, ε (if the model is applied in a finer than 
monthly scale, one can set ε = 1). 
 
 
Groundwater simulation model 
 
The groundwater flow simulation is based on the concept of multi-cell models that 
stand between conceptual and physically-based models (Bear, 1979, pp. 447–454). 
They resemble the finite difference models with small number of cells, but there are 
some fundamental differences. The geometry and discretization of multi-cell models is 
very flexible and, although the cells are usually rectangular, they may correspond to 
aquifer regions with any shape. The discretization is mainly imposed by the available 
hydrological information and the water management plans. Moreover, model 
parameters are rather conceptual, thus needing calibration. The dynamics of multi-cell 
models arise from the application of water balance equations in all cells, in 
combination with Darcy’s law; on the other hand, although water levels do not 
correspond to physical magnitudes, their variability may only be used to estimate real 
groundwater level trends. 
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 In the proposed approach, which is suitable for phreatic conditions, a network is 
formulated consisting of storage elements (tanks) and conveyance elements (conduits). 
The properties of each tank i are its centroid coordinates, its base area, Fi, that equals 
the area of the corresponding aquifer multiplied by its specific yield, SY. The properties 
of each conduit that links tank i with tank j are its conductivity, Cij (expressed in 
velocity units), its length, Lij, and its cross-sectional area, Aij, which is identical to the 
corresponding aquifer cross-section area. Note that both Aij and Lij correspond to real 
geometrical magnitudes, which are calculated according to the centroid coordinates of 
model tanks and the aquifer thickness, b. 
 The neighbouring tanks 1 and 2 in Fig. 2 correspond to the aquifer regions 1 and 2. 
Their base areas are F1, F2 and the water levels in them are w1 and w2, respectively. 
The discharge, Q12, occurring from tank 1 to tank 2, is estimated via the Darcy’s 
equation, i.e. Q12 = C12A12(w1 – w2)/L12, where C12 is the conductivity of conduit 1–2, 
L12 is the conduit length, and A12 is the cross-section area between aquifer regions 1 
and 2. After time δt, the water level changes (fall or rise) in tanks 1 and 2 are 
∆w1 ≈ –Q12δt/F1 and ∆w2 ≈ Q12δt/F2, respectively. 
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Fig. 2 Groundwater model tanks. 

 
 
 The groundwater flow problem is solved via an explicit numerical scheme, by 
adopting a small time step δt within which the influence of the variation of water levels 
to the groundwater discharge can be neglected. To achieve the optimum speed and 
stability of the arithmetic solution, the time step is tuned throughout the simulation by 
using a maximum allowed water level change, ∆wmax, within a time interval, a 
tolerance, a, and a multiplier, β. If ∆wmax(1 – a) < ∆wi < ∆wmax(1 + a) for each tank i, 
the time step remains unchanged, otherwise the time step is either multiplied or 
divided by β. The initial time step, δt0, the maximum allowed water level change, 
∆wmax, the tolerance, a, and the time step multiplier, β, are user-specified. 
 The initial conditions refer to initial water level values in tanks, whereas the 
boundary conditions refer to tanks with constant level. The latter can be modelled 
through a tank of very large base. Hence, a spring is modelled as a tank of very large 
base and the simulated series of the slight changes of level can be directly transformed 
to spring hydrographs. The stress at each tank may be positive (recharge) or negative 
(pumping). 
 



Calibration of a semi-distributed model 
 
 

 

825

Model integration within a conjunctive surface–groundwater simulation scheme 
 
The models developed were integrated within a conjunctive simulation scheme, based 
on a semi-distributed concept, as illustrated in Fig. 3. The model was applied on a 
monthly scale; however, the authors believe that a daily scale would also be suitable. 
On the other hand, a finer time step is not recommended, because it would need 
routing procedures that are not incorporated in this scheme. The whole catchment is 
divided into spatial subunits with similar hydrological and morphological charac-
teristics. These so-called hydrological response units (HRUs) do not necessary corre-
spond to physical sub-basins; they are rather conceptual elements, the dynamics of 
which are modelled via a soil moisture accounting reservoir. On the other hand, the 
aquifer is divided into cells, each one represented by a conceptual groundwater tank. 
 Each cell is supplied by the percolation of a specific HRU; but the same HRU can 
supply more than one cell. Supposing that percolation is expressed in terms of 
equivalent water depth, its distribution is made proportionally to the area of each cell. 
This feature increases the flexibility of the model since it allows using different spatial 
analysis for the surface and groundwater processes. Thus, a detailed scheme for the 
representation of groundwater fluxes can be easily coupled with a coarse one for the 
simulation of the surface ones; even a lumped approach (i.e. a single HRU) may be 
adequate, provided that the catchment characteristics are homogenous. To achieve 
numerical stability in groundwater simulation, a small computational step δt has to be 
adopted, which is much finer than the initial simulation step, ∆t (monthly or daily). 
Hence, the stress inputs (percolation and pumping) that are given at a resolution ∆t are 
uniformly disaggregated, in order to be consistent with δt. On the other hand, the 
output series of the multi-cell model are aggregated at the specified simulation step, ∆t. 
 The total streamflow is estimated by adding the spring outflows to the direct runoff 
and the interflow components, while the water abstractions are made either from 
surface or groundwater resources. The implementation of the former is trivial whereas  
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Fig. 3 An example of establishing a scheme for combined simulation of surface and 
groundwater flows. 
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the latter require some modelling when combined abstractions exist. Let Rt be the 
water demand at time interval t, which is primarily fulfilled via surface abstractions 
and secondly via pumping, and let Qt be the actual streamflow, part of which arises 
from spring outflows. If Qt < Rt, the actual deficit, Rt – Qt, has to be fulfilled via 
pumping. However, pumping reduces water level at the groundwater tanks; this 
reduces the spring outflow and, consequently, the total runoff. This imposes further 
pumping, and so on. For this reason, the simulation scheme is coupled with a demand-
partitioning model, which is executed in several cycles, until the streamflow value 
stabilizes. Usually, only one or two cycles are needed for convergence. 
 
 
THE OPTIMIZATION ALGORITHM 
 
General principles 
 
The recent development of effective and robust global optimization techniques enables 
the automatic calibration of hydrological models. Franchini et al. (1998) make a 
thorough review of these techniques, which aim to handle the usual handicaps of 
nonlinear optimization, such as the existence of multiple local optima at various scales 
and parameter interactions. 
 The calibration of the conjunctive simulation model was implemented through the 
evolutionary annealing-simplex algorithm, which is a probabilistic heuristic global 
optimization technique that incorporates strategies from different methodological 
approaches, enhancing them with some original elements (Efstratiadis, 2001; 
Efstratiadis & Koutsoyiannis, 2002). This algorithm was successfully applied to a 
variety of benchmark functions as well as some simple hydrological applications, and 
proved very reliable in locating the global optimum, requiring reasonable computa-
tional effort. But till now, it was not tested in such a challenging real-world model 
calibration problem (some information about the peculiarities of this problem are given 
in the section “Model calibration”). Its main principle is to effectively couple the 
robustness of simulated annealing in problems with rough search space, with the 
efficiency of local search methods in simple ones. There are only few references in the 
literature on how to implement such combined schemes; among them, the simplex-
annealing algorithms of Press et al. (1992, pp. 451–455), Kvasnicka & Pospichal 
(1997) and Pan & Wu (1998) are distinguished. Simulated annealing is a stochastic 
optimization technique based on an analogy with the homonymous thermodynamic 
process. During the cooling process of a metal, nature’s strategy is to both decrease 
and increase its energy, enabling thus to escape from a local minimum energy state in 
favour of finding a better one. This principle is implemented according to a probabil-
istic law, depending on the temperature; the lower the temperature, the less likely is a 
significant “uphill” transition. To apply a similar strategy within an optimization 
procedure, it is required to use a control parameter, analogous of the temperature, and 
an annealing cooling schedule that describes the gradual temperature reduction. It can 
be proven that, assuming a large initial temperature and a proper schedule, a simulated 
annealing procedure asymptotically converges to the global optimum. Hence, an 
annealing-based algorithm can escape from local optima and pass through various 
regions of attraction until locating the global optimum; but in so doing it sacrifices 
efficiency. 
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 On the other hand, deterministic search methods, either gradient-based or direct 
(i.e. derivative-free), can easily converge to a local stationary point, but they have no 
way of getting out of it. A well-known direct search method is the downhill simplex 
algorithm of Nelder & Mead (1965). Its core is an evolving pattern of n + 1 points 
(assumed as the vertices of a simplex) that span the n-dimensional search space. The 
simplex explores the feasible space either by reflecting, contracting or expanding away 
from the actually worst vertex, or by shrinking towards the best one. An appropriate 
sequence of such movements guides the simplex to the nearest local minimum, 
provided that the search space is relatively smooth. Due to its efficiency, the principles 
of the Nelder-Mead method have been incorporated into some global optimization 
schemes, such as the shuffled complex evolution algorithm of Duan et al. (1992), which 
is widely used in hydrological applications (Gan & Biftu, 1996; Thyer et al., 1999). 
 
 
Description of the algorithm 
 
The proposed algorithm is based on the following three concepts: (a) an evolutionary 
search strategy, (b) a set of combined (both deterministic and stochastic) transition rules, 
either downhill or uphill, mainly implemented within a simplex-based evolving pattern, 
and (c) an adaptive annealing cooling schedule that regulates the “temperature” of the 
system, determining the degree of randomness through the evolution procedure. 
 To initialize, a population of m ≥ n + 1 points is randomly generated into the 
feasible space, where n is the problem dimension. This population is gradually evolved 
by, usually, replacing just one existing point by a new one (adopting the terminology 
of genetic algorithms, the former will be referred to as “parent”, and the latter as 
“offspring”). Note that according to the simulated annealing principle, an “offspring” 
should not necessarily be better than its “parent”. Considering a minimization problem, 
a typical iteration cycle consists of the following steps: 
Step 1: The minimum, fmin, and maximum, fmax, values of the objective function, f, 
within the actual population are drawn and the system temperature, T, is re-evaluated 
so that it never exceeds the amount ξ(fmax – fmin), where ξ ≥ 1 is a parameter of the 
annealing schedule. This restriction prevents the “temperature” taking extremely high 
values, which would drastically reduce the speed of the algorithm due to the fact that 
the searching procedure would become extremely random. 
Step 2: A set of n + 1 points is randomly selected from the actual population. This set 
will next be referred as a simplex and symbolized as S = {x1, x2, …, xn + 1}, where f(x1) 
corresponds to the best (lowest) and f(xn + 1) to the worst function value. 
Step 3: From the subset S – {x1}, the point xw is chosen as candidate parent that 
maximizes the probabilistic criterion: 

g(x) = f(x) + uT (3) 

where u is a random number uniformly distributed in the interval [0,1]. By adding a 
random component to the objective function f, relative to the actual temperature T, the 
algorithm behaves as in between random and downhill search. In reality, the evaluation 
criteria are now based on a transformed objective space, which may be much smoother 
than the original one, thus providing more flexibility to the search procedure, 
especially at the early stages of it (i.e. when temperature is high). 
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Step 4: A new point, xr is generated by reflecting the simplex away from xw, according 
to the formula: 

xr = g + (0.5 + u) (g – xw) (4) 

where g is the centroid of the subset S – {xw}. 
Step 5: If f(xr) < f(xw), xr replaces xw in the actual population. Next, two cases arise. If 
f(xr) < f(x1), i.e. the reflection point is better than the current best vertex, the difference 
xr – g denotes a direction of function minimization or, equivalently, an estimation of 
the gradient. This fact is of high importance, because it enables the search procedure to 
progress quickly towards a local minimum. Generally, the location of the gradient in a 
rough search space may be extremely difficult, especially when the problem is of high 
dimension. Therefore, whenever the gradient is found, a sequence of “expansion” steps 
are implemented towards the direction of function minimization, according to the 
simple formula: 

xe = g + φ[s] (xr – g) (5) 

where φ[s] = φ[s – 1] + u, with φ[0] = 1. The expansion continues as long as the 
function value improves, thus accelerating significantly the search procedure. The 
second case arises when f(xr) > f(x1), indicating that a local minimum is in the 
neighbourhood of x1. Then, an offspring is generated as follows: 

xc = g + (0.25 + 0.5u)(xr – g) (6) 

Adopting the terminology of Nelder & Mead, the above configuration is called outside 
contraction. If f(xe) < f(xr) or f(xc) < f(xr), the new point (either xe or xc) replaces xr in 
the actual population. 
Step 6: If f(xr) > f(xw), the probabilistic criterion (3) is used to accept or reject xr as 
candidate offspring. Hence, if g(xr) > g(xw), xr is rejected and the simplex is inside 
contracted as: 

x΄c = g – (0.25 + 0.5u)(g – xr) (7) 

If f(x΄c) > f(xn+1), i.e. x΄c is worse even than the actual worst vertex, the simplex shrinks 
towards the actual best vertex x1, such as xs,i = 0.5(x1 + xi) for i = 2, …, n + 1. A 
simplex volume reduction indicates that a local optimum is surrounded. In that case, 
more than one offspring is generated, and the system temperature is reduced by ψ, 
which is a second parameter of the annealing schedule, taking values into the interval 
0.90–0.99. A slight reduction rate prevents temperature taking extremely low values. 
Hence, the searching procedure is prevented from becoming too deterministic, thus 
avoiding early convergence to a local optimum. 
Step 7: If g(xr) < g(xw), xr is accepted even if it deteriorates the function value. Next, a 
given number of uphill movements is implemented using a formula analogous to equa-
tion (5), until passing the hill and finding a new region of attraction. This strategy, which 
is quite similar to those introduced by Pan & Wu (1998), makes the simplex easily 
escaping from the current local minimum and search for neighbouring local minima. 
Step 8: If it is not possible to locate a better offspring, in either the downhill or uphill 
direction, a random point is generated within the boundaries of the actual population 
and replaces xr according to a mutation probability pm.  
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Fig. 4 Schematic representation of simplex configurations in a two-dimensional search 
space: (a) reflection, (b) expansion, (c) outside contraction, (d) inside contraction, and 
(e) shrinkage. Solid lines correspond to the initial configuration, whereas dashed ones 
correspond to the final configuration. 

 
 
 Only the main issues of the algorithm are given above; for more details, the reader 
may refer to the original work of Efstratiadis (2001) and Efstratiadis & Koutsoyiannis 
(2002). The main configurations of the search strategy are illustrated in the graphical 
example of Fig. 4. 
 
 
APPLICATION OF THE MODEL TO THE BOEOTICOS KEPHISOS RIVER 
BASIN 
 
Description of the study area 
 
The Boeoticos Kephisos River basin, illustrated in Fig. 5, lies on the eastern Sterea 
Hellas, north of Athens, and drains an area of 1987 km2. The catchment geology 
comprises heavily karstified limestone, practically developed on the mountainous and 
semi-mountainous areas of the basin, and alluvial deposits, lying in the plain areas. 
Due to its karstic background, the watershed has a significant groundwater yield. The 
main discharge points are large karstic springs in the upper and middle part of the 
basin, the most important of which are shown in Fig. 5. These account for more than 
half of the catchment runoff. Moreover, an unknown portion of groundwater is 
conducted to the sea, from the northeastern boundary of the basin. A direct measure-
ment of those outflows is infeasible since their front is too extended. 
 The river network of the basin originates from altitudes as high as 2400 m and 
reaches downstream to a plain with an area of about 250 km2 and a mean ground 
elevation of 95 m. Prior to 1860, the plain was permanently flooded by the basin’s 
runoff, thus giving rise to the formulation of a shallow lake (Kopais) with a mean area 
of about 150 km2. However, during periods of high flows, the lake expanded to  
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Fig. 5 The Boeoticos Kephisos River basin, its main karstic springs and the water 
supply boreholes at Vassilika-Parori. The shaded area represents the mountainous 
regions of the basin and corresponds to HRU 1, whereas the white one represents the 
plain regions and corresponds to HRU 2.  

 
 
250 km2 as the capacity of karstic sinkholes was insufficient. Effective drainage works 
were initiated in ancient times (2000 BC), as reported by Strabo, the geographer 
(Koukis & Koutsoyiannis, 1997). The problem was permanently remedied only by the 
end of the 19th century, after the construction of an extended drainage network and a 
tunnel (Karditsa tunnel) that conveys the entire surface water resources of the basin to 
the external Lake Yliki. From 1950 to 1980, this lake was the major water storage 
project of Athens. Today, Lake Yliki is part of a complex hydrosystem, extending on 
an area of more than 4000 km2 and comprising three additional reservoirs, 350 km of 
aqueducts, 15 pumping stations, four treatment plants and a hundred boreholes. 
Besides, some of the most important supply boreholes are located at the Vassilika-
Parori region, just upstream of the Mavroneri springs. These boreholes were drilled in 
the early 1990s, within the frame of emergent measures taken during a severe drought 
in the period from 1989 to 1994, at the end of which almost all surface resources dried 
out. Due to a significant reduction of precipitation, in addition to major abstractions 
through the Vassilika-Parori boreholes, the discharge of Mavroneri springs was totally 
interrupted during 1990 and 1993, thus resulting in various social and environmental 
problems.  
 In addition to drinking water for Athens, the surface and groundwater resources of 
the study basin are used for irrigation. The total irrigated area is 325 km2 and the total 
irrigation demand is estimated at 216 hm3 year-1 (Table 1). In the upper and middle 
courses, the irrigation demand is merely fulfilled through pumping, whereas in the lower 
river course, both surface water and groundwater abstractions take place. More 
precisely, during the irrigation period, the discharge of Boeoticos Kephisos is regulated 
through a system of locks, which divert water to the main irrigation channels. This 
results in practically zero inflows to Lake Yliki during summer. If surface water resources 
are insufficient, the deficit is fulfilled via pumping from nearby aquifers and Lake Yliki. 
 It is obvious that the development of a simulation model for the Boeoticos 
Kephisos water resource system is a challenging task. This is justified by both the 
complexity of the related physical processes (mainly due to the dynamics of the karst 
and the underground losses) and the existence of combined uses. It should be pointed  
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Table 1 Allocation of irrigation demand, ordered by priority. 

Irrigated region Area  
(km2) 

Abstractions from Demand  
(hm3 year-1) 

Upstream boundaries to 
Mavroneri springs 

19 Aquifers (borehole group 1) 13 

Mavroneri springs region 51 Mavroneri springs 
Aquifers (borehole group 2) 

34 

Between Mavroneri and Melas 
springs 

29 Aquifers (borehole group 3) 19 

Downstream of Melas springs 226 Lake Yliki (≈ 20 hm3) 
Streamflow diversions 
Aquifers (borehole group 4) 

150 

Total 325  216 
 
 
out that, although this watershed is one of the most studied in Greece—the first studies 
were carried out at the end of 19th century—no attempt was made towards an 
integrated approach. Moreover, the estimations regarding the basin’s water potential 
are characterized by considerable disagreements. 
 
 
Model formulation and input data 
 
When formulating a conceptual model, an essential option is to calibrate as many 
parameters as the available information can support. Results from previous research 
suggest that, in the case of hydrological modelling, up to five or six parameters can be 
identified from a time series of observed series (i.e. streamflow), using a traditional 
curve-fitting procedure (e.g. Wagener et al., 2001). 
 This principle of parsimony was applied by taking into account the available 
hydrological data of the watershed. This consists of daily discharge measurements at 
the basin outlet (Karditsa tunnel), semi-monthly discharge measurements at the main 
karstic springs and non-systematic level observations at a relatively small number of 
wells, mostly located in the plain areas of the watershed. Except for the discharge 
record at the outlet, which is the longest one in Greece—measurements exist from the 
beginning of the 20th century—the rest of the data were systematically available for a 
much shorter period, i.e. 1984–1994. Nevertheless, this period can be assumed repre-
sentative of the hydrological regime of the basin, because it contains both high- and 
low-flow periods, including the severe drought mentioned before. Moreover, within 
this period the water supply boreholes at Vassilika-Parori were drilled and operated 
intensively, by a rate of 50 hm3 year-1. 
 The simulation model structure was constructed based on the physical 
characteristics of the watershed and its underlying aquifer. Specifically, for the 
simulation of the surface hydrological processes, the watershed was divided in two 
hydrological response units (HRUs). This discretization is in accordance with the 
catchment terrain and geological properties; the first HRU (shaded area of Fig. 5) has 
an area of 649 km2 that corresponds to the karstic, mountainous part of the basin, 
whereas the second one (white area of Fig. 5), has an area of 1339 km2 that 
corresponds to the alluvial plains of the basin. The total number of parameters is nine, 
namely the four parameters of each soil moisture reservoir (K1, K2, λ, µ) and the upper 
bound ε, assumed common for the two HRUs. 
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Fig. 6 (a) Illustration of the multi-cell groundwater simulation model and (b) the 
hydrosystem schematization. The aquifer bounds are represented by the thick frame. 
Grey cells correspond to mountainous karstic regions whereas white ones correspond 
to plain regions, and they are supplied by the percolation of HRU 1 and HRU 2, 
respectively. Dummy cells are illustrated with dotted lines. On the left figure, arrows 
represent feasible water paths between groundwater tanks; at each one corresponds a 
specific conductivity value. Circles represent springs, whereas triangles (on the right 
scheme) represent groundwater abstractions from the corresponding borehole groups 
(Table 1). 

 
 
 For the simulation of the groundwater processes, the aquifer was represented 
through a grid of 4 × 4 = 16 cells, illustrated in Fig. 6(a). Cells (1,1) and (2,4) 
correspond to groundwater tanks whose inflows represent the basin leakages to the sea. 
Cells (1,4), (3,4) and (4,4), illustrated with dotted lines, correspond to dummy tanks of 
zero area that are set for convenience (i.e. to run the numerical solving scheme that 
imposes a rectangular multi-cell grid). The main karstic springs of the basin, for which 
there exist systematic discharge measurements, were grouped and represented by tanks 
corresponding to respective cells. Specifically, cell (4,1) corresponds to the springs of 
Lilea and its surrounding region, cell (4,2) corresponds to Mavroneri springs, cell (1,3) 
corresponds to Melas and Polygyra springs (assumed merged), and cell (4,3) 
corresponds to Erkina springs. The tanks corresponding to cells that are marked grey 
are supplied by the percolation of HRU 1, namely the karstic, mountainous areas of the 
basin that contribute directly to the spring yield. Similarly, cells (2,1), (2,2) and (2,3) 
are supplied by the percolation of HRU 2, namely the plain areas of the basin. The 
arrows in Fig. 6(a) represent the prevailing groundwater flow directions, and each one 
corresponds to a conductivity term. The total number of the groundwater model 
parameters is 13, namely 12 conductivities and the specific yield, assumed common 
for the whole aquifer, for reasons of parsimony. All tank heights were set equal to the 
average aquifer thickness (230 m). The initial water levels of all tanks representing 
springs was set equal to the spring altitude, whereas for the tanks representing the sea 
this was set to zero. Finally, for the rest of groundwater tanks, the initial levels were 
chosen to be consistent with the historical observations and the steady-state solution. 
 In Fig. 6(b), a coarse representation of the hydrosystem is illustrated, consisting of 
the main branch of Boeoticos Kephisos River, its main tributaries, supplied by the four 
karstic springs, and five borehole groups. Specifically, borehole groups 1–4 are used 

(a) (b) 
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for irrigation, as explained in Table 1, whereas group 5, set just upstream of Mavroneri 
springs, corresponds to Vassilika-Parori boreholes that are used for the water supply of 
Athens. Groundwater abstractions from each borehole group are made from the corre-
sponding tank, according to the priorities of Table 1. 
 The model was calibrated on six years (October 1984–September 1990) and 
validated on four years (October 1990–September 1994). For the former period, there 
exist semi-monthly discharge measurements at all spring sites, whilst for the latter 
there exist less systematic measurements. These raw data were used to construct 
monthly runoff records for the four springs; their average annual values are shown in 
Table 2. Other input series were the demand for irrigation, the areal precipitation and 
the potential evapotranspiration. The precipitation of HRU 1 was estimated via the 
point rainfall samples of seven raingauges lying at altitudes above 350 m, whereas the 
precipitation of HRU 2 was estimated via the point rainfall samples of five raingauges 
of lower altitude (the average altitude of the watershed is about 480 m, with maximum 
2457 m). The corresponding mean annual values for the whole control period are 
707 mm (458 hm3) and 622 mm (832 hm3). Finally, the potential evapotranspiration 
was estimated using the Penman method. 
 
 
Table 2 Mean annual runoff of Boeoticos Kephisos River and its springs (hm3). 

Runoff series Calibration period  
(October 1984–September 1990) 

Validation period  
(October 1990–September 1994) 

Lilea springs 34.8 Not available 
Mavroneri springs 48.4 27.2 
Melas-Polygyra springs 123.7 Not available 
Erkina springs 21.0 Not available 
Net runoff at Karditsa tunnel 233.9 171.6 
 
 
Model calibration 
 
An automatic calibration procedure requires the specification of a goodness-of-fit 
measure between the simulated and the observed response series of the catchment 
(habitually, the runoff at its outlet), constituting the objective function of an optimiza-
tion problem. It is now recognized that a parameter estimation based on a single 
performance measure is rather inadequate to simulate properly all important 
characteristics of the physical system that are reflected in the observations (Gupta et 
al., 1998; Kuczera & Mroczkowski, 1998). On the other hand, the use of alternative 
goodness-of-fit criteria may lead to multiple optimal parameter sets, which provide 
equally satisfactory responses. Despite the progress made after three decades of 
research (e.g. Johnston & Pilgrim, 1976; Sorooshian & Gupta, 1983; Beven & Binley, 
1992; Gupta et al., 1998; Boyle et al., 2000; Wagener et al., 2001), the parameter 
estimation problem is still considered a challenging issue. During the last years, 
research has focused on the application of vector optimization techniques, through the 
use of multiple performance criteria that measure either different aspects of the 
hydrograph or different watershed responses (e.g. Yapo et al., 1998; Madsen, 2000). In 
that case, there exist significant trade-offs between the various objectives and no 
unique set of parameters is able to optimize them simultaneously. In contrast, the 
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solution to the calibration problem is a set of parameters that are, from a mathematical 
point-of-view, equivalent (these constitute the so-called Pareto set). Although the 
statistical characteristics of these solutions provide useful information about model 
uncertainty, only one of them must be finally selected if the model is to be employed 
in hydrological forecasting. In such cases, the choice of the best compromise set is 
either based on the experience of the hydrologist or on numerical criteria, such as a 
weighted utility function (Cohon, 1978, pp. 164–212). 
 The model efficiency was evaluated by considering multiple performance criteria 
that refer to the observed response series at the basin outlet (Karditsa tunnel) and the 
four springs. However, instead of employing multi-objective optimization, a scalar 
optimization approach was adopted, by aggregating the various criteria into a single 
objective function. This approach was preferred for practical reasons, since the model 
complexity as well as the existence of various performance components within the 
objective function (five fitting criteria and two penalty terms, as will be explained 
below) would lead to a high-dimensional (i.e. 7-D) Pareto front. Primary investigations 
indicated that there exists an enormous number of non-dominated parameter sets 
providing calibrations that are far away from the objectives of the study, i.e. relatively 
good predictions of the spring hydrographs, but simultaneously bad prediction of the 
hydrograph at Karditsa tunnel or unrealistic parameter values. Moreover, a manual 
choice of the best compromise parameter set would be an extremely hard and time-
consuming task. On the other hand, the adopted strategy, where all performance 
criteria were aggregated through the use of appropriate weighting coefficients, in 
addition to the empirical guidance of the optimization procedure that will be explained 
herein, ensured a relatively fast and reliable model calibration. 
 Initially, the objective function was formulated as the weighted sum of the 
determination coefficients of the five hydrographs. The determination coefficient, 
usually referred to in the hydrological literature as the Nash-Sutcliffe measure (Nash & 
Sutcliffe, 1970), is a goodness-of-fit measure given by: 

d = 1 – 
�
i=1

n
 (xi – yi)2

�
i=1

n
 (xi – x–)2

 (8) 

where xi is the observed series, x– is its average value, yi is the simulated series and n is 
the time horizon. The determination coefficient dj of each series j was multiplied by a 
weighting factor wj. For the total runoff, the prediction of which stands as the main 
objective of the study, the weight was set equal to 6. Furthermore, for the Mavroneri 
springs flow, a reliable prediction of which is also important for the reasons explained 
earlier, the weight was set equal to 2. For the rest of springs, a unit weight was 
adopted. We recall that the total number of parameters is 22, namely 9 for the surface 
and 13 for the groundwater module. This number is in accordance to the principle of 
parsimony, given that the objective function consists of five goodness-of-fit measures. 
Therefore, there is sufficient information to explain the adopted parameterization. 
 Besides spring flow measurements, other useful raw data were the water table 
observations at a restricted number of wells. However, a direct incorporation of these 
measurements into the objective function was not feasible since these refer to the drill 
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scale, while the simulated tank level series refer to the aquifer scale. But the 
observations indicate that, during the whole calibration period, the water table decline 
was negligible for the entire aquifer except for the vicinity of Mavroneri springs. This 
useful information, which is independent of the model scale, was taken into account by 
introducing a penalty term P1, defined as the squared difference between the initial and 
the final level of each tank regarding the whole calibration period, i.e. (wn – w0)2. In 
that manner, it was ensured that the calibration would forbid the appearance of over-
year trends in the simulated aquifer level series. 
 A major characteristic of the groundwater system dynamics was the occasional 
interruption of spring flows. During the control decade, this phenomenon was 
observed at all springs except those of Melas. A successful representation of a spring’s 
intermittency was assumed a crucial factor of the model reliability. Hence, a second 
penalty term P2 was introduced (by means of average squared error), to prohibit the 
generation of runoff in case of spring interruption or the opposite. Note that the above 
penalty is additional to the error term already incorporated into the Nash-Sutcliffe 
measure; the latter is affected by measurement errors as well as errors due to the use of 
monthly runoff values based on sparse discharge measurements, whereas the penalty 
term is independent of such errors. 
 According to the above assumptions, the formulation of the objective function 
was: 

f = �
j=1

5
 wjdj + ξ1P1 + ξ2P2 (9) 

where ξ1 and ξ2 are scalar coefficients, the value of which was allowed to change in 
order to generate alternative optimal parameter sets. 
 The calibration procedure followed a hybrid strategy based on a combination of 
automatic and manual methods; such strategies have proved very effective in case of 
complex hydrologic models (e.g. Boyle et al., 2000; Eckhardt & Arnold, 2001). First, a 
“rough” calibration was employed, allowing a large variation of parameters. Several 
optimizations were carried out, by modifying the boundaries of the feasible parameter 
space and the weights ξ1 and ξ2 of the two penalty terms. In that manner, some 
characteristic regions of attraction corresponding to specific regions of the Pareto set 
were detected. Next, the optimization was allowed to search for the global optimum of 
each region of attraction, already identified within the previous phase, by drastically 
restricting the feasible space. Throughout this phase, the calibration was separately 
performed for the surface and groundwater model parameters, in order to primarily 
ensure a very good adaptation of the hydrograph at the basin outlet, and secondly, an 
acceptable adaptation of the spring hydrographs. All optimizations were carried out via 
the evolutionary annealing-simplex algorithm, which proved very effective and 
efficient, taking into account the peculiarities of this problem. Moreover, the manual 
control of calibrations directed the algorithm to acceptable regions, which ensured a 
satisfactory model performance for the entire set of criteria, in spite of the various 
uncertainties concerning the physical processes, the relatively large number of para-
meters and their interactions, as well as the major approximations concerning the 
model inputs (e.g. the abstractions).  
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Analysis of results 
 
As expected, a large number of parameter sets was found to provide almost equivalently 
good performance, according to numerical (best-fit) criteria. Therefore, the selection of 
the best compromise set was based on empirical considerations. Specifically, all sets 
providing at least one of the following characteristics were rejected: (a) parameters with 
no physical sense; (b) bad performance regarding the reproduction of some of the 
observed runoff series, namely points lying on the boundaries of the Pareto set; and 
(c) bad reproduction of output statistics. The last criterion refers to response series 
except the calibrated ones, namely series for which there are no available measurements. 
Investigating the properties of those series (marginal statistics and existence of over-year 
trends), ensured both a reliable reproduction of all physical processes of the basin and a 
realistic hydrological balance of it. 
 After extended investigation, two parameter sets were finally detected, the values 
of which are illustrated in Table 3. These sets provide similar performance by means of 
both numerical and empirical criteria. Table 4 illustrates the model efficiency values of 
the five hydrographs for the calibration and validation period. The determination 
coefficient for the runoff series at the basin outlet exceeds 92% for the calibration and 
80% for the validation, thus ensuring a very satisfactory predictive capability of the 
model. Moreover, the bias referring to both the historical mean and standard deviation 
is negligible (about 1% and –4%, respectively, for both parameter sets). Although 
model efficiency regarding the springs was not as good as the hydrograph at the outlet, 
this was still acceptable, given the complexity of the karstic system and the 
inaccuracies in the calibration data (hydrographs based on infrequent measurements). 
Even the performance of Melas-Polygyra springs is satisfactory, despite the fact that  
 
 
Table 3 List of calibrated model parameters. 

Parameter Symbol Unit Set 1 Set 2 
Interflow threshold for HRU 1  K1(1) m 0.037 0.019 
Interflow threshold for HRU 2  K1(2) m 0.331 0.331 
Storage capacity of HRU 1  K2(1) m 0.167 0.132 
Storage capacity of HRU 2 K2(2) m 0.442 0.589 
Interflow retention rate of HRU 1  λ(1) month – 1 0.068 0.078 
Interflow retention rate of HRU 2  λ(2) month – 1 0.043 0.042 
Percolation retention rate of HRU 1  µ(1) month – 1 0.359 0.452 
Percolation retention rate of HRU 2  µ(2) month – 1 0.056 0.089 
Upper bound of potential evapotranspiration ε  0.232 0.213 
Specific yield (common for the entire aquifer) SY  0.274 0.171 
Conductivity from cell (1,2) to (1,1)  Cx(1,1) m s-1 0.000025 0.000023 
Conductivity form cell (2,1) to (2,2) Cx(2,1) m s-1 0.000275 0.000471 
Conductivity form cell (1,2) to (1,3) Cx(1,2) m s-1 0.020333 0.008856 
Conductivity from cell (2,2) to (2,3) Cx(2,2) m s-1 0.000067 0.002120 
Conductivity form cell (2,3) to (2,4) Cx(2,3) m s-1 0.000127 0.000414 
Conductivity from cell (3,1) to (2,1) Cy(2,1) m s-1 0.000033 0.000043 
Conductivity from cell (3,1) to (4,1) Cy(3,1) m s-1 0.010815 0.005089 
Conductivity from cell (2,2) to (1,2) Cy(1,2) m s-1 0.001712 0.001931 
Conductivity from cell (3,2) to (3,3) Cy(2,2) m s-1 0.000066 0.000096 
Conductivity from cell (3,2) to (4,2) Cy(3,2) m s-1 0.006275 0.003562 
Conductivity from cell (3,3) to (2,3) Cy(2,3) m s-1 0.000005 0.000007 
Conductivity from cell (3,3) to (4,3) Cy(3,3) m s-1 0.000862 0.000562 
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Table 4 Model efficiency, by means of determination coefficients for the calibration and validation 
periods (NSCAL and NSVAL, respectively) and relative error of average and standard deviation 
(AVERR and STDERR, respectively) for the calibration period. 

Runoff series NSCAL NSVAL AVERR STDERR 
Parameter set 1:     
Basin outlet 0.926 0.803 0.011 –0.041 
Lilea springs 0.795 0.522 0.054 –0.069 
Mavroneri springs 0.659 0.495 –0.069 –0.299 
Melas-Polygyra springs 0.194 - –0.029 –0.301 
Erkina springs 0.358 0.254 0.001 –0.303 
Parameter set 2:     
Basin outlet 0.922 0.801 –0.009 –0.036 
Lilea springs 0.805 0.527 0.015 –0.131 
Mavroneri springs 0.688 0.469 –0.059 –0.286 
Melas-Polygyra springs 0.249 - –0.021 –0.452 
Erkina springs 0.354 0.258 –0.005 –0.227 
Note: The determination coefficients of the spring hydrographs are not corresponding to the entire 
validation period (48 months), but to a smaller one (34 months for Lilea and Mavroneri springs, 
30 months for Erkina springs, and none for Melas and Polygyra springs). 
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Fig. 7 Observed and simulated time series of (a) the monthly runoff at the basin outlet 
(Karditsa tunnel) and (b) the mean monthly discharge of Mavroneri springs, from 
October 1984 to September 1994 (parameter set 1). 

(a) 

(b) 
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their historical runoff series present almost zero or even negative cross-correlation with 
precipitation. Figure 7(a) and (b) illustrates the observed and simulated hydrographs at 
the basin outlet and Mavroneri springs, respectively (for the entire time horizon). 
Although these hydrographs refer to the first parameter set, they are practically 
identical to those of the second one. 
 As shown in Table 3, some parameter values are almost identical for the two sets, 
thus indicating low uncertainty. But for others, the uncertainty remaining after the 
calibration is still significant; these are parameters mainly affecting the estimation of 
the evapotranspiration and outflows to the sea (e.g. conductivities upstream of tanks 
concentrating the losses to the sea). In reality, due to the existence of non-measurable 
outflows to the sea, the problem of allocating the hydrological losses of the basin is ill-
posed, given that it has a degree of freedom. Table 5 shows the mean annual surface 
and groundwater hydrological balance for the 10-year control period, which refers to 
the two parameter sets. In reality, these sets provide two extreme scenarios regarding 
the allocation of hydrological losses. Specifically, the first parameter set provides the 
higher evapotranspiration (835 hm3 year-1 or 64.7% of the mean annual precipitation) 
and the lower outflows to the sea (61 hm3 year-1), whereas the second set provides the 
lower evapotranspiration (727 hm3 year-1 or 56.4% of the mean annual precipitation) 
and the higher outflows to the sea (182 hm3 year-1). In the absence of further 
information, such as estimations based on direct measurements, any of the parameter 
sets is suitable for the purpose of the study. 
 
 
 
Table 5 Mean annual water balance of Boeoticos Kephisos catchment (hm3). 

Hydrological variable Parameter set 1 Parameter set 2 
Surface water balance: 
Precipitation 1291 (100.0%) 1291 (100.0%) 
Actual evapotranspiration   835 (64.7%)   727 (56.4%) 
Percolation   342 (26.5%)   457 (35.5%) 
Flood runoff   114 (8.8%)   109 (8.4%) 
Groundwater balance: 
Percolation   342 (100.0%)   457 (100.0%) 
Spring runoff   192 (56.0%)   192 (42.0%) 
Pumping   134 (39.1%)   133 (29.0%) 
Underground flows to the sea     61 (17.8%)   182 (39.7%) 
Groundwater storage difference    –44 (–12.9%)   –49 (–10.7%) 
Water abstractions: 
Surface water abstractions     83 (38.3%)     84 (38.7%) 
Groundwater abstractions (pumping)   134 (61.7%)   133 (61.3%) 
Total abstractions   217 (100.0%)   217 (100.0%) 
Hydrological losses: 
Evapotranspiration   835 (93.2%)   727 (80.0%) 
Outflows to the sea     61 (6.8%)   182 (20.0%) 
Total losses   896 (100.0%)   909 (100.0%) 
Boeoticos Kephisos runoff: 
Total runoff   306 (100.0%)   301 (100.0%) 
Surface water abstractions     83 (27.1%)     84 (27.8%) 
Net runoff (Karditsa tunnel)   223 (72.9%)   217 (72.2%) 
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SUMMARY AND CONCLUSIONS 
 
An integrated approach is presented of conjunctive modelling of surface and 
groundwater hydrological processes, through a case study on a watershed with many 
peculiarities. The following issues were investigated: (a) building a model for 
simulating both physical processes and human interventions at the watershed scale; 
(b) developing an innovative optimization method for automatic model calibration; and 
(c) proposing a calibration strategy that used both manual and automatic procedures 
and was based on a combined optimization criterion, including various types of 
information on the system studied. 
 The hydrological simulator consists of three independent modules that were 
integrated within a conjunctive scheme. The first is a conceptual soil moisture 
accounting model, based on an enhanced version of the classical Thornthwaite 
approach. The model is able to represent the main hydrological processes, even when 
applied to a semiarid catchment. The second module is a groundwater model based on 
a multi-cell approach that uses an explicit numerical scheme for the solution of flow 
equations. Its novelty is that, although it uses only two conceptual components 
(groundwater tanks and conveyance elements), it succeeds in representing all essential 
processes of a groundwater system, including spring runoff and water exchanges with 
neighbouring aquifers (or the sea). The third module is a water management model, 
which is linked to the aforementioned ones in cases of combined abstractions. Outputs 
of one model become inputs to the other; e.g. the percolation rates of the surface 
simulation model supply the groundwater tanks, whereas the demand rates of the water 
management model are used to estimate surface and groundwater abstractions. The 
main advantage of the above scheme is that each of the three modules can be applied at 
different time and space scales. Moreover, although it uses relatively few parameters, it 
succeeds in representing particularly complex physical systems, even when perturbed 
through human interventions. 
 For the automatic calibration of model parameters, an innovative method, the so-
called evolutionary annealing-simplex algorithm, was used. This is a robust global 
optimization scheme, suitable for problems with rough response surfaces. This 
algorithm combines well-known methodologies, such as simulated annealing and the 
downhill simplex technique, within an evolutionary scheme. Its specific feature is the 
use of transition rules that are both deterministic and stochastic, where the degree of 
randomness is automatically adapted through a suitable annealing schedule; as the 
search proceeds, the influence of the stochastic component is gradually reduced until 
the global optimum is reached. The case study, also regarded as a benchmark test for 
the evolutionary annealing-simplex algorithm, provided encouraging conclusions 
about its performance; generally, in terms of both accuracy and speed, the algorithm 
proved practically equivalent to the widely used shuffled complex evolution method. 
 This study indicates that, when calibrating hydrological models, especially in the 
case of complex simulation schemes with many parameters and multiple performance 
criteria, it is preferable to employ both automatic and manual methods. In that case, the 
hydrologist’s experience is crucial regarding three issues: (a) the formulation of the 
objective function; (b) the guidance of the search procedure, through setting 
appropriate boundaries on parameters; and (c) the selection of the best compromise 
solution. Regarding the first issue, it proved critical to take advantage of all available 
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data reflecting the basin responses, thus using multiple performance criteria. 
Specifically, the model performance was tested on the basis of measured responses 
(i.e. hydrographs) and indicative but non-representative measures of model state 
variables (i.e. groundwater levels). Concerning the second issue, the shrinkage of the 
feasible space facilitates the search procedure and also leads to realistic parameter 
values. Finally, the third issue points out the importance of analysing model outputs 
regarding not only the observed responses but also the non-observed series (i.e. evapo-
transpiration), and using empirical criteria in order to achieve realistic predictions. The 
authors also note that, in the specific case study, the adopted scalar optimization 
strategy that involved manual interventions proved much more convenient than typical 
multi-objective optimization approaches, since it avoided exploring a vast number of 
solutions that may be inconsistent with the objectives. 
 The application of the conjunctive model to the particularly complex Boeoticos 
Kephisos basin proved that, albeit using relatively few parameters and a coarse spatial 
analysis, the model managed to reliably represent not only the main responses of the 
catchment, i.e. the runoff at its outlet, but also other important components concerning 
the dynamics of the underlying system. The model provided satisfactory predictions 
despite various uncertainties related to the complexity of the physical processes and 
the quality of input data. Moreover, due to its parsimonious formulation, the model 
was computationally quite effective. However, some weaknesses have been detected 
regarding the simultaneous calibration of parameters of different scales, e.g. reservoir 
capacities and conductivities. This problem is typical in conjunctive modelling and 
may be a possible issue for further research. 
 An appropriate implementation of the model presupposes, among others, the 
discrimination of the watershed and its underlying aquifer into spatial elements with 
homogenous characteristics, i.e. hydrological response units and groundwater cells, 
respectively. Although in the case study this was done manually, the existence of a 
systematic procedure for formulating the model structure (based on criteria such as 
geology, geomorphology and land use) not only would assist the user but also would 
contribute to a more rational conceptualization. Other issues for further improvement 
of the model are: (a) the incorporation of routing procedures, in order to employ simu-
lations at finer than monthly time steps, (b) the use of a better (e.g. implicit) numerical 
scheme, in order to reduce the computational effort of groundwater simulation, and 
(c) the enhancement of the water management model, to represent more complex 
hydrosystems, consisting of reservoirs, river diversions, etc. 
 The calibration strategy may stand as a proposal for treating the equifinality 
problem in response to the need of a unique parameter set for engineering applications. 
Moreover, this strategy is consistent with the most recent approaches on multi-
objective optimization, where decision making is implemented in an interactive 
manner, by articulating preferences during the search; after each optimization step, a 
number of alternative solutions is obtained, on the basis of which the user specifies 
further preference information, thus guiding the search (Horn, 1997). 
 This study focused mainly on the formulation and calibration of the hydrological 
model. The next step is to integrate this model within the DSS for the management of 
the Athens water supply system, as explained in the introduction. Currently, this 
research team is working in this direction; the results will be reported in due course. 
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