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Executive Summary 
 
 
 Determination of confidence limits of distributional parameters (either marginal or dependence) 

and derivative quantities (e.g. distribution quantiles) is crucial for estimation of uncertainty and risk. 

Analytical determination is possible in few cases only. Monte Carlo simulation is a numerical method 

with the potential to determine confidence limits without restrictions. However, even Monte Carlo 

simulation is not as direct, general and easily applicable as it may seem. Existing direct solutions are 

exact only in limited cases whereas if applied in other cases may result in significant errors. Extending 

and generalizing existing solutions, a simple Monte Carlo simulation technique is studied that can 

determine good approximations of confidence limits in a general setting. The proposed method is partly 

heuristic and simultaneously so general that needs no assumptions about the statistical behavior of the 

statistics under study, i.e. it can perform for any distribution with any number of parameters, and for any 

distributional or derivative parameter. Only the theoretical probabilistic model is needed and all other 

calculations are done by a number of Monte Carlo simulations without additional assumptions. Some tests 

of the method in cases with analytically determined confidence limits indicate impressively good 

performance. Even though the method has been tested for independent sequences of random variables 

(random samples) its general formulation allows direct application in stochastic processes with any 

dependence structure, provided that a stochastic generator of the process of interest exists.  
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1.  Definitions and Introductory Comments 

 
Let β be an (unknown) true (population) parameter whose confidence limits are sought. Let B 
and b denote the estimator and the point estimate (PE), respectively, of β, based on a random 
sample of size n; it is reminded that B is a random variable and b is a numerical value. If β were 
known then it would be generally easy to infer the probability distribution of the estimator B and, 
consequently, to find to numbers λ and υ, so that that for a certain α < 1,  

 P{λ < B < υ} = α (1)  

where P denotes probability. The determination of λ and υ is called prediction and the number α 
is the confidence coefficient of the prediction (Papoulis, 1990, p. 241). The numbers λ and υ are 
the lower and upper prediction limits, respectively. Typically, they are estimated such as  

 P{B < λ} = (1 – α)/2,    P{B < υ} = (1 + α)/2 (2)  

 If analytical determination of the prediction limits is difficult or intractable, Monte Carlo 
simulation can be readily compute them numerically; in the latter case these will be referred to as 
Monte Carlo prediction limits (MCPL). Although prediction limits provide some indication of 
uncertainty, useful in sensitivity studies, strictly they are not the appropriate measure of 
parameter uncertainty. Instead, confidence limits should be used, which are defined in terms of 
some random variables L and U that embrace the unknown parameter β with a given probability 
or confidence coefficient α, i.e., 

 P{L < β < U} = α (3)  

The numerical values l and u of the random variables L and U, respectively, calculated from the 
available sample, are the required confidence limits for confidence coefficient α.  
 The determination of L and U, and the calculation of l and u, are difficult tasks except for 
certain cases that can be treated analytically (e.g. for the mean and variance of a normal variable 
based on an independent sample) and unless very sophisticated numerical methods are used (e.g. 
based on Markov chain Monte Carlo methods), which however are out of the scope of this study. 
Nevertheless, Ripley (1987) provides a simple approximate way to transform MCPL into Monte 
Carlo confidence limits (MCCL), which is the reflection of the prediction limits about the 
estimate of β, i.e.,   

 l = 2b – υ, u = 2b – λ (4)  

This method however may not give good approximations for models with more than one 
parameter (see Figure 5 and its discussion). Also, the method does not work in cases that the 
estimator B has asymmetric distribution (see Figure 6 and its discussion). For such cases, Ripley 
(1987) gives a second alternative, i.e. a logarithmic reflection, 

 l = b2 / υ,  u = b2 / λ (5) 
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This is not free of the weakness of the first alternative; in addition, the selection of one of the two 
methods is not easy, unless there is concrete theoretical knowledge of the model behavior, which 
cannot be the case even in models with moderate complexity.  
 The methods described by equations (4) and (5) will be referred to as Methods 1 and 2, 
respectively and the resulting confidence limits as MCCL1 and MCCL2. The method proposed 
here, which will be referred to as Method 3, is a unification, generalization and extension of 
Methods 1 and 2 done two steps: In the first step both Methods 1 and 2 are unified and 
generalized in problems involving a single parameter and in the second one the method is 
extended to incorporate more than one parameter.  
 As it will be demonstrated in the following sections, Method 3 is partly heuristic and 
simultaneously so general that needs no assumptions about the statistical behavior of the 
statistics under study. Only the theoretical model of the process is needed and all other 
calculations are done by a number of Monte Carlo simulations free of additional assumptions. 
Some tests of the method in cases with analytically determined confidence limits indicate 
impressive performance. 
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2. Confidence limits for one unknown distributional parameter 
 
 
We consider a random variable X whose distribution depends on a single parameter β, which is 
unknown. If we assume a certain value of β, then using Monte Carlo simulation we can readily 
calculate an estimate b of β for a sample of size n and by repeating the simulation for a large 
number of times we can estimate the average η = E[B] (which may not be identical to β if the 
estimator B is biased) as well as the prediction limits λ and υ for a certain confidence coefficient 
α. Theoretically, by doing the same procedure for a number of different values of β, we can 
construct the curves η(β), λ(β) and υ(β) shown in Figure 1. The prediction limits for β = b are 
marked in this figure as points A and A΄. The confidence limits of β for the given estimate b are 
given by points C and C΄, which are the intersections of the horizontal line at abscissa b with the 
curves υ(β) and λ(β), respectively.  
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Figure 1 Explanation sketch for the determination of confidence limits for one unknown 
distributional parameter. 
 
 
 Now from the triangle ADC we obtain 
 

 
υ – b
b – l  = 

ΑD
DC ≈ 

dυ
dβ (6) 
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where the derivative is meant at point A (i.e. for β = b). Solving for the lower confidence limit l 
we find   

 l = b + 
b – υ
dυ/dβ (7) 

and in a similar manner, the upper confidence limit u will be 

 u = b + 
b – λ
dλ/dβ (8) 

 In this way, to estimate the confidence limits l and u we need to estimate the prediction 
limits λ and υ at β = b as well as their derivatives at the same value of β. To estimate the latter an 
additional ensemble of Monte Carlo simulations is required at a point near to β = b. Thus the 
method is computationally efficient as only two Monte Carlo simulation ensembles are required. 
 It can be readily verified that when dυ/dβ = dλ/dβ = 1, this method yields Method 1 as a 
special case, whereas when dυ/dβ = υ/β and dλ/dβ = λ/β it yields Method 2. 
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3. Confidence Limits for Many Unknown Distributional Parameters 
 
 
Let us now assume that the model under study involves k parameters (referring to the marginal 
distribution or the dependence structure) that form the vector θ = [θ1, θ2, …, θk]΄, whose 
estimator is the vector T = [T1, T2, …, Tk]΄ (where the prime denotes the transpose of a vector or 
matrix). We wish to determine confidence limits for a single parameter β dependent on θ, i.e. β = 
h(θ), whose estimator is B = h(T) and its estimate is b = h(t). For a given θ, it is easy to compute 
by Monte Carlo simulation the prediction limits λ and υ of b as in the single parameter case. 
However, to extend Method 3, described by equations (7) and (8) in the multiple parameter case, 
the derivatives dλ/dβ and dυ/dβ should be evaluated at appropriate directions dλ and dυ 
 Let γ = [λ, β, υ]΄ the vector consisting of β and its prediction limits (λ, υ) for confidence a 
and let Var[T] = diag(Var[Τ1], ..., Var[Τk]). The latter can be easily computed during the same 
Monte Carlo simulation that is performed to compute γ. It is reasonable to assume that dλ and dυ 
will depend on Var[T] as well as of the matrix of derivatives of γ,  

 
d γ
d θ =  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤dλ

d θ
dβ
d θ
dυ
d θ

 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤∂λ

∂θ1

∂λ
∂θ2

L
∂λ
∂θk

∂β
∂θ1

∂β
∂θ2

L
∂β
∂θk

∂υ
∂θ1

∂υ
∂θ2

L
∂υ
∂θk

 (9) 

 Heuristically, we can assume a simple relation of the form 

 dλ = Var[T] ⎝⎜
⎛

⎠⎟
⎞d γ

d θ

΄
 eλ

 

 (10) 

where eλ is a size 3 vector of constants needed to transform the matrix product of the first two 
terms of the right hand side into a vector. The elements of this vector could be thought of as 
weights corresponding to each of the derivatives of the three elements of γ = [λ, β, υ]΄. The 
simplest choice is to assume equal weights, i.e. eλ = [1, 1, 1]΄. However, numerical investigations 
showed that the choice eλ = [0, 1, 1]΄ yields better approximations. The derivative of λ and β with 
respect to θ on direction dλ will then be  

 ⎝⎜
⎛

⎠⎟
⎞d λ

d θ  dλ = ⎝⎜
⎛

⎠⎟
⎞d λ

d θ  Var[T] ⎝⎜
⎛

⎠⎟
⎞d γ

d θ

΄
 eλ,     ⎝⎜

⎛
⎠⎟
⎞d β

d θ  dλ = ⎝⎜
⎛

⎠⎟
⎞d β

d θ  Var[T] ⎝⎜
⎛

⎠⎟
⎞d γ

d θ

΄
 eλ (11) 

and are both scalars, so by taking their ratio we can calculate dλ/dβ. By symmetry, similar 
relationships can be written for υ and dυ with eυ = [1, 1, 0]΄. The two groups of relationships can 
be unified in terms of the 3 × 3 matrix q defined as 

 q := 
d γ
d θ Var[T] ⎝⎜

⎛
⎠⎟
⎞d γ

d θ

΄
 (12) 
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It can then be easily shown that on the directions dλ and dυ, 

 
dλ
dβ = 

q12 + q13
q22 + q23

 ,     
dυ
dβ = 

q31 + q32
q21 + q22

 (13) 

 It can be observed that the evaluation of all terms used in the method requires 1 + k 
simulation ensembles, one for the calculation of γ and Var[T] at point θ = t, and k for the 
calculation of the derivatives and eventually of the matrix q.  
 



 

7 

 
4.  Method Validation for One Unknown Distributional Parameter 
 
 
As a first example, we consider a random variable x exponentially distributed with density 

 f(x) = e –x/θ / θ , x > 0 (14) 

where θ is the single parameter of the distribution. It is known that the mean µ ≡ β as well as the 
standard deviation σ are both equal to θ. We seek confidence limits for the parameter µ ≡ β ≡ θ, 
assuming that its estimator is the mean of a sample x1, …, xn, i.e.,  

 x
_
 = 

x1 + … + xn
n  (15) 

The classic theoretical confidence limits given in the statistical literature are (Papoulis, 1990, p. 
281):  

 l, u = 
x
_

1 ± z(1 + α)/2 n
 (16) 

where zp denotes the p-quantile of the standard normal distribution. These, however, are obtained 
assuming normal distribution of the mean, which is not the case for small n; the convergence of 
the distribution of x

_
 to the normal distribution is very slow due to the skewness of the 

exponential distribution. However, the exact distribution of x
_
 is known to be gamma with shape 

parameter n and scale parameter θ/n (symbolically FG(x
_
; n, θ/n)). From this it can be deduced 

that the exact confidence limits l, u of the mean can be determined by solving numerically the 
equations 

 FG(x
_
, n, l/n) = (1 + α)/2,   FG(x

_
, n, u/n) = (1 – α)/2 (17) 

 For demonstration, the theoretical confidence limits given by both (16) and (17) 
assuming x

_
 = 1 and n = 10 are plotted against α ranging from 0.80 to 0.99 in Figure 2. Clearly, 

the classic statistical confidence limits are very poor for such a low sample size. At the same 
figure, the MCPL as well as MCCL for all three methods 1, 2 and 3 are also plotted. It can be 
observed that the curves of both MCCL2 and MCCL3 are indistinguishable from the exact 
curves and outperform significantly the classic theoretical limits. In contrast, MCCL1 are poor, 
worse than the classic theoretical limits.  
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Figure 2 Point estimate, prediction limits and confidence limits for the mean of an exponentially 
distributed variable against the confidence coefficient α, as estimated by various methods 
assuming x

_
 = 1 and n = 10. MCC2 and MCC3 are indistinguishable from the exact theoretical 

confidence limits.  
 
 
 The second example is related to the coefficient limits of a probability p ≡ β of a certain 
event A, which is estimated by the mean x

_
 of a binary random process X, assuming X = 1 for the 

occurrence of this event and X = 0 otherwise. Obviously b ≡ x
_

 = ns/n, where ns is the number of 
the occurrences of A in n total trials. For relatively large n, the theoretical confidence limits 
(TCL) are given as the two roots of equation  

 (p – x
_
)2 = 

z2
(1 + α)/2

n  p (1 – p) (18) 

solved for p (Papoulis, 1990, p. 284). Figure 3 provides a demonstration of the resulting MCCL 
for all three methods in comparison to TCL. Here the performance of Method 1 is rather 
satisfactory where that of Method 2 is poor. Method 3 outperforms the two yielding confidence 
limits very close to the exact ones (TCL). 
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Figure 3 Point estimate, prediction limits and confidence limits for the probability of an event 
assuming confidence coefficient α = 0.99 and n = 80. For MCPL input probability is the 
theoretical probability p and output probabilities are the prediction limits λ and υ; for all other 
cases input probability is the estimate x

_
 and output probabilities are the estimates of p (PE) and 

the confidence limits l and u (TCL, MCCL).  
 
 
 The third example deals with the most common case of the statistical literature, which is 
the mean µ ≡ β of a normally distributed variable whose variance σ2 is known, so that the model 
has again a unique unknown parameter. This case is so common because of its simplicity; 
however, it is almost never met in real world problems. (The case where both µ and σ2 are 
unknown is examined in the next section).  
 TCL in this case are given by  

 l, u = x
_

 ± 
z(1 + α)/2 σ

 n
 (19) 

Figure 4 provides a demonstration of the resulting MCCL in comparison to TCL. Here the 
performance of Methods 1 and 3 are excellent whereas that of Method 2 is poor.  
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Figure 4 Point estimate, prediction limits and confidence limits for the mean of a normally distributed 
variable against the confidence coefficient α, as estimated by various methods assuming x

_
 = 1, σ = 0.5 

(assumed known) and n = 10. All curves except MCC2 are indistinguishable from the exact TCL.  
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5. Method Validation for Many Unknown Distributional Parameters 
 
 
In the first example of the multiple parameter setting of the methods we consider again the mean 
of a normally distributed variable whose variance σ2 is now unknown, being estimated by the 
sample variance s2, and we wish to find the confidence limits for its mean µ ≡ β. TCL in this 
case are given by  
 

 l, u = x
_
 ± 

t(1 + α)/2(n – 1) s
n

 (20) 

where tp(m) denotes the p-quantile of the Student t distribution with m degrees of freedom. 
Figure 5 provides a demonstration of the resulting MCCL for all three methods in comparison to 
TCL. Here the performance Method 3 is excellent whereas that of Methods 1 and 2 is poor.  
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Figure 5 Point estimate, prediction limits and confidence limits for the mean of a normally 
distributed variable against the confidence coefficient α, as estimated by various methods 
assuming x

_
 = 1, s = 0.5 (both assumed unknown) and n = 10. MCC3 are indistinguishable from 

the exact TCL.  
 
 
 In the second example we consider a normally distributed variable with unknown mean 
and variance, and we wish to find the confidence limits for its variance σ2 ≡ β. TCL in this 
case are given by  
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 l = 
n s2

χ2
(1 – α)/2(n)

 ,     u = 
n s2

χ2
(1 + α)/2(n)

 (21) 

where χ2
p(n) denotes the p-quantile of the χ2 distribution with n degrees of freedom. Figure 6 

provides a demonstration of the resulting MCCL for all three methods in comparison to TCL. 
Here the performance Methods 2 and 3 is excellent whereas that of Method 1 is poor.  
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Figure 6 Point estimate, prediction limits and confidence limits for the variance of a normally 
distributed variable against the confidence coefficient α, as estimated by various methods 
assuming x

_
 = 1, s = 0.5 (both assumed unknown) and n = 10. MCC2 and MCC3 are 

indistinguishable from the exact TCL.  

 In conclusion, all verification comparisons showed that the proposed Method 3 had in all 
cases excellent performance whereas each of the other methods in some cases failed to 
approximate the exact confidence limits that were obtained theoretically. Obviously, however, 
these demonstrations are not a mathematical proof of the exactness of the proposed method, 
which, in some degree, is heuristic.  
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