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Ὕσον, ὕσον Ζεῦ κατὰ τῆς ἀρούρης τῶν Ἀθηναίων
Do rain, do rain Zeus against the earth of Athenians (Ancient Greek prayer)
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Parts of the presentation

1. The Athens water resource system
History – Components – Technical characteristics

2. Hydrosystem operation issues 
Parameterization – Simulation – Optimization

3. Decision support tool integration
Data acquisition – Software systems – Management plans
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Evolution of water consumption – Milestones
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The hydrosystem: Main components and evolution  
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Classification of water resources
 SURFACE WATER GROUNDWATER 
 

Basin 
Primary 

(Reservoirs) 
Secondary 

(Reservoirs) 
Backup  

(Boreholes) 
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Boeoticos Kifisos 
– Yliki  
2400 km2 
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Hydrosystem: Current structure

+ Boreholes (with connecting pipes)  + Pumping stations  + Small hydroelectric power plants
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2. Hydrosystem operation issues 
Parameterization – Simulation – Optimization
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Typical problems to be answered

Find the maximum possible annual release from the system: 
for a certain (acceptable) reliability level (steady state conditions)
for a certain combination of the system components (e.g. primary resources)

and determine the corresponding:
optimal operation policy (storage allocation; conveyance allocation; pumping 
operation)
cost (in terms of energy; economy; other impacts)

Find the minimum total cost
for a given water demand (less than the maximum possible annual release)
for a certain (acceptable) reliability level

and determine the corresponding:
combination of the system components to be enabled
optimal operation policy (storage allocation; conveyance allocation; pumping 
operation)
alternative operation policies (that can satisfy the demand but with higher cost) 

{1,2,4}
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Categories of problems

Steady state problems for the current hydrosystem
(e.g., previous slide)

Problems involving time 
Availability of water resources in the months to come
Impact of a management practice to the future availability of water resources
Evolution of the operation policy for a temporally varying demand

Investigation of scenarios  
Hydrosystem structure: Impacts of new components (aqueducts, pumping stations 
etc.)
Demand: Feasibility of expansion of domain
Hydroclimatic inputs: Climate change

Adequacy/safety under exceptional events – Required measures
Damages
Special demand occasions (e.g. 2004 Olympic Games)
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The methodology: General aspects

Question 1: Simulation or optimization?
Simulation versus optimization (water resources literature and practice)

Simulation methods for optimization (more mathematical literature)

Answer: Optimization coupled with simulation

Question 2: Which are the control (decision) variables?
Typically: Releases from system components in each time step

Main advantages
Detailed and faithful system representation 
Better understanding of the system operation
Incorporation of stochastic models

Main advantages
Determination of optimal policies
Incorporation of mathematical 
optimization techniques 

Answer: Introduction of parametric control rules with few 
parameters as control variables

{3,5}
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{1,2,3,4}
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Introduction to the parametric reservoir operation rule –
Some analytical solutions

Case a: no conveyance restrictions; 
no leakages

Solution: Probability of spill equal at all 
reservoirs (New York Rule; Clark, 1950)
Under certain (rather common) conditions 
about the distribution of inflows:

Notation: i = Reservoir index, Κ = Storage capacity, S = Storage, V = ΣS, CQ = Cumulative inflow, Ε[ ] = expectation, C = Conveyance capacity

Case c: restricted conveyance capacity; 
insignificant spills; no leakages

Solution:

Maximize release from a simple reservoir system with single water use

Case b: no conveyance restrictions; 
significant leakages; insignificant spills 

Solution:

Space rule
(Bower et al., 1962)
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PSO approach {5}
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Formulation of the parametric reservoir operation rule

Total system storage (V = ΣS)

Ta
rg

et
 re

se
rv

oi
r s

to
ra

ge
 (S

i)

K1

K2
K3

ΣK

Initial linear parametric form
Si

* = ai + bi`V (parameters ai, bi)
subject to    Σai = 0, Σbi = 1, 
since           ΣSi

* = V

Adjusted, nonlinear form

Si΄΄* = Si΄* + (V – ΣSi΄
*) 

Si΄*(1 – Si΄*/ Ki) 

ΣSi΄*(1 – Si΄*/ Ki) 

Two parameters per reservoir (ai, bi) = Control variables
Parameter values determined by optimization – depending on the objective function
Parameters may depend also on season (e.g., refilling-emptying period, or months)
2 × (reservoirs – 1) × seasons total parameters for the reservoir system 

Corrected for physical constraints
0 ai + bi`V < 0
ai + bi`V 0 ≤ ai + bi`V ≤ Ki
Ki ai + bi`V > Ki

Si΄* =

{3,5}
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A comparison with non-parametric optimization
Problem: Find the maximum release that can be ensured by a system of 3 reservoirs with 
reliability 99% (probability of failure 1%). Use 1000 years of simulated data with monthly 
time step. Assume steady state conditions.

Number of control variables:
1000 × 12 monthly releases
× (3 – 1) reservoirs + 1 (problem target)
= 24001

Number of control variables:
2 parameters/reservoir/ season 
× (3 – 1) reservoirs × 2 seasons 
+ 1 (problem target) 
= 9 (as an order of magnitude)

Parametric rule based optimizationNon-parametric optimization

Cannot be combined with simulation
All physical constraints of the system must 
be entered as problem constraints

Can be combined with simulation
Physical constraints of the system are 
handled by the simulation model

Control variables depend on inflow series
Implicit assumption of known inflows 
(perfect foresight)

Control variables do not depend on inflow 
series but on their statistical properties
No assumption of known inflows

The optimization model needs continuous 
runs with updated data

Once parameters are optimized, the system 
can be operated without running the model

{3,5}
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Application of the parametric rule – Optimal results 
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Considering the complete hydrosystem – Simulation

Assuming that parameters ai and bi are known, the target 
releases from each reservoir will be also known in the beginning 
of each simulation time step 

The actual releases depend on several attributes of the 
hydrosystem (physical constraints)

Their estimation is done using simulation

Within simulation, an internal optimization procedure may be 
necessary (typically linear, nonparametric)

Because parameters ai and bi are not known, but rather are to be 
optimized, simulation is driven by an external optimization
procedure (nonlinear)

PSO approach {4}
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Hydrosystem components and attributes

Reservoir
Storage, S
Target release, R

Junction

Consumption point 
Demand, D

One direction aqueduct
Conveyance capacity, C
Unit conveyance cost, u

Two direction aqueduct
Conveyance capacities, Cfor, Crev
Unit conveyance costs, ufor, urev

1

2

3

654

7 8

{1,4}
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Conveyance problem formulation

1

2

3

654

7 8

Given: 
• Demands (D) 
• Reservoir storages (S), 
• Reservoir target releases (R ≤ S; ΣR

= ΣD; from parametric rule) 

Required: 
• Actual (feasible) consumptions 

(at consumption points)
• Actual (feasible) releases 

(from reservoirs)
• Aqueduct discharges
• Conveyance cost

Conditions:
• If possible, no deficits at consumption 

points
• If possible, releases from reservoirs 

equal to target releases
• Minimum conveyance cost

{1,4}
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Transformations of hydrosystem components to 
graph components

One direction 
aqueduct EdgeC, u C, u

Two direction 
aqueduct 

Two conjugate 
edges

Cfor , ufor , 
Crev , urev

Cfor , ufor

Crev , urev

Junction
Node

Consumption 
point

D

One node
+ two edges
(one with known 
discharge, D)

D, uHD, 0 Very high unit cost uH
for deficit

a

c

b

∞, uh

Reservoir S, R

S, 0

R, 0

∞, 0
∞, 0

Three nodes
+ Five edges
(one with known 
discharge, S)

High unit cost uh for 
release exceeding target

{1,4}

D. Koutsoyiannis, The management of the Athens water resource system  22

Hydrosystem and its transformation to digraph
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Digraph solution by linear programming

1a

1c

1b
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Determine all unknown 
discharges Qij at edges ij, by 
minimizing total cost

TC = Σij uij Qij

subject to equality constraints
for each node i

Σj Qij – Σj Qji = 0

and to inequality constraints
for each edge ij

0 ≤ Qij ≤ Cij

PSO approach {1,4}
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General evaluation and extensions of the 
parameterization-simulation-optimization method

Is parametric rule underparametrized?
Nonlinear expressions with three parameters per reservoir did not outperform
Homogeneous linear expressions (one parameter per reservoir, ai = 0) result in 
almost same optimal solutions
Considering seasonality (2 seasons) may improve results (slightly) 

How results of parametric rule based optimization compare to those of nonparametric 
optimization methods?

Generally, they are not inferior
In the non realistic case of perfect foresight, high dimensional methods may 
outperform parametric method with no foresight (slightly, up to about 2%)
In practice, in complex nonlinear problems the parametric method yields better 
solutions due to more effective locating of global optimum

Is the parameterization appropriate for all water uses and hydrosystems?
Yes, but different parameterizations may be needed for different components (e.g. 
aquifers) 
Successful application to hydropower systems

{3,5}



3. Decision support tool integration
Data acquisition – Software systems – Management plans
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Decision support tool structure

Water resources prediction module

Hydrosystem control module

Geographical Information System

Measuring system

Data

Database 

management 

system

{2}
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Measuring system Central data base
(archiving and 

processing of data)

Meteorological 
station (10 min step) 

Rainfall, Temperature, 
Humidity, Wind, Radiation, 

Sunshine duration

Reservoir elevation 
gage

(1 h time step)

River level gage
(10 min time step)

River flow 
measuring station
(~once a month)

Central data 
collection unit

(daily transmission 
by phone) 

Evinos Peripheral 
Data Center

Mornos Peripheral 
Data Center

Hylike Peripheral 
Data Center

Marathon Peripheral 
Data Center
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Data management and processing: Time series manipulation

FROM 
ASCII TO DB

RANGE CHECK
TIME CONSISTENCY

AGGREGATION

INFILLING 
OF MISSING 
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FROM OTHER 

STATIONS

FIXING OF 
TIME STEP

AGGREGATION

COALITION OF 
SEVERAL SENSORS

AGGREGATION

AGGREGATION

INFILLING OF 
MISSING VALUES 

FROM 
OTHER STATIONS

telemetric
raw 
data

raw data
irregular 
time step

10 minute 
processed 

data

hourly 
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data

daily 
aggregated 

data

daily 
filled 
data

monthly 
aggregated 

data

monthly 
filled 
data

annual 
aggregated 

data

daily 
coalesced 

data

METEOROLOGICAL STATIONS
More than 100 time series per station

About one million records per station per year
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Software system characteristics

All models written from scratch

Basic development tool: Delphi (Object Pascal)

Database: Oracle (more recently:  PostgreSQL)

Geographic system: ArcView

Basic software units

Hydrognomon: Database management, processing of 
hydrologic data

Castalia: Stochastic hydrologic simulator

Hydrogeios: Simulation of surface and ground water 
processes

Hydronomeas: Hydrosystem control
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Hydrognomon: Processing of hydrologic time series
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Hydrognomon: Automatic lumped hydrologic modeling
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Hydrogeios is a hydrologic model of the entire hydrologic cycle, designed to 
describe both surface and subsurface processes, and especially karstic processes, 
as well as local withdrawals for irrigation

Hydrogeios: Detailed geo-hydrologic modeling

permeability terrain slope

hydrologic
response units

groundwater 
cells
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Hydrogeios calibration: vector nonlinear optimization
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Castalia:
Parameter 
estimation-
Parameters of 
autocorrelation 
and persistence
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Castalia:
Stochastic 
simulation
without long 
term 
persistence
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Castalia:
Stochastic 
simulation
with long term 
persistence
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Castalia:
Stochastic 
forecasting
with long term 
persistence
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Castalia:
Preservation
of marginal 
statistics –
Skewness

Oct        Nov        Dec      Jan         Feb       Mar       Apr        May       Jun        Jul         Aug        Sep       Annual
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Hydronomeas: Hydrosystem data management

D. Koutsoyiannis, The management of the Athens water resource system  40

Hydronomeas: Visualization of hydrosystem simulation
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Hydronomeas: Stochastic forecast of hydrosystem storage

Evolution of 
quantiles of 
system storage 
(for several 
levels of 
probability of 
exceedance) for 
the next 10 
years as a result 
of 200 
terminating  
simulations with 
long-term 
persistence
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Hydronomeas: Optimal hydrosystem control rules

Target allocation 
of total reservoir 
storage per each 
reservoir
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Hydronomeas: Reservoir balance
Inflows Outflows
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Hydronomeas: Time profile of failure probabilities

Number of 
failures in a 
total of 200
stochastic 
scenarios
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Hydronomeas: Reporting
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Management plans and every day operation of the hydrosystem
Every five years a master plan of the water supply of Athens is elaborated (the first 
was issued in 2000)
Every year the master plan is revised based on current data and model runs 
Every three months the annual plan is reassessed and, if necessary, updated by new 
model runs
Meanwhile, the every day management is based on optimal parametric operation rules 
Models are run for a 10-year lead time to account for long-term effects of today’s 
decisions
The general management targets are: 

Adequacy of water resources
Adequacy of conveyance system
Cost effectiveness

All management is based on a probabilistic approach of forecasts/risk/reliability 
assuming:

Acceptable reliability 99% on an annual basis
Potential for further increase of reliability taking into account elasticity of demand 
and emergency measures in case of impending failure 

So far, the decision support tool and its modules (thoroughly tested for the Olympics 
2004) exhibited good performance
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Early stage

The Hadrianean aqueduct

Supplementary water collection and distribution in 
Athens (early 20th century until 1930s)

Milestones
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Marathon dam

Hydrosystem

Today

Construction of 
spillway, 1928

Construction of dam, 1928

More pictures



D. Koutsoyiannis, The management of the Athens water resource system  51

Marathon dam (2)

Previous pictures

Devastating 
flood, 1926

Inauguration of 
Boyati tunnel, 1928

Marathon spillway 
in action, 1941

Hydrosystem
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Hylike lake and 
pumping stations

Hylike lake

Hylike, main pumping station Kiourka pumping station

Hylike, floating pumping stations

Hydrosystem
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Mornos reservoir 
and aqueduct

Mornos reservoir

Mornos canal at Delphi

Siphon at 
Distomo

Mornos canal at 
Thebes plain

Hydrosystem
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Control of Mornos 
aqueduct

Canal flow control construction

Aqueduct 
supervizing & 
control centre

Hydrosystem
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Evinos dam and 
tunnel

Construction of the Evinos-Mornos
connection tunnel

Evinos dam during construction

Hydrosystem
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Treatment plants

Perissos water treatment plant

Aspropyrgos water treatment plant

Hydrosystem
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