
1. Abstract
Multiyear persistence of droughts is a typical natural behaviour that
cannot be modelled by typical stochastic or deterministic approaches.
As this persistence is closely related to the Hurst (or scaling)
behaviour, a stochastic approach to represent multiyear persistence
of droughts should also reproduce the Hurst phenomenon. An
advanced, yet simple, stochastic methodology, is proposed based on
the concept of maximum entropy that is able to represent multiyear
persistence. The approach can be used to generate long term
simulations or shorter term forecasts, and is demonstrated for the
Nile River, the persistence behaviour of which motivated the
discovery of the Hurst phenomenon. The analysis and
demonstrations use the Nile flow record, the longest available flow
record worldwide. The stochastic methodology is also compared
with an analogue (local nonlinear chaotic) model and a connectionist
(artificial neural network) model developed using the same flow
record.

2. Background and data
• Nile is the longest river of the world (6521 km)
• Due to large length, the travel time is of the order of a month
• This induces strong dependence on the monthly scale and makes monthly forecast

possible
• The modern flow record at Aswan is one of the longest worldwide (131 years) and

makes analysis and modelling more reliable
• In addition, there exist older instrumental records of annual maximum and minimum

water level at the Roda Nilometer for more than 800 years
• All flow records as well as additional historical and archaeological data (Said, 1993)

affirm the long range dependence of the Nile flows and raise the question whether or
not this dependence should be incorporated in the monthly forecast model

• Another important question is whether stochastic or deterministic models have better
forecast skills; this is studied by comparing the performance of a stochastic model and
two deterministic models (analogous, connectionist) on a 53 year validation period
whose data were not used into model fitting

1870-71 1947-48 2000-011921-22
52 years calibration period 26 years verification 53 years validation period

78 years fitting period 53 years validation period

Deterministic (data driven) modelStochastic (parametric) model

3. Modelling approaches
and underlying concepts
• According to the stochastic approach the flows are

modelled as a stochastic process
• Maximization of Shannon entropy on a

multivariate setting results in multivariate normal
distribution (Papoulis, 1991)

• This entails linear dependence of lagged flows
(stochastic linear model 2)

• Maximization of Tsallis (non extensive) entropy
(Tsallis, 2004) results in linear dependence of
nonlinearly transformed flows using a normalizing
transformation (stochastic linear model 1, only
slightly different from 2; see panel 6)

• According to the deterministic approach, a
deterministic relationship of lagged flows is
assumed as in the hypothetical (caricature) case
shown in the figure with a single time delay
component, where the hypothetical relationship is
a non intersecting curve passing from all 78 points
of the ‘fitting’ period (but the points of the
‘validation’ period lie outside the curve)
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4. Synopsis of models

Model type Model specifications Model 

abbreviation 

Cyclostationary with short- and long-range dependence, 

using normalizing  transformation of time series 

S1

As S1 but without normalizing transformation S2 

Stochastic 

PAR(2) without normalizing transformation S3 

Single scale, 12 consecutive time delay items; 11 

neighbors

A1

Single scale, 13 consecutive time delay items; 24 

neighbors

A2

Analogue

(Local linear) 

Two scales; 4 time delay items; 7 neighbors A3 

Single scale, 5 inputs, 2 layers, 2+2 hidden nodes C1 

Single scale, 14 inputs, 2 layers, 11+11 hidden nodes C2 

Connectionist

(Artificial 

neural

network)

Two scales (delay times 1, 2, 12, 24), 2 layers 4+2 hidden 

nodes

C3
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5. Statistical characteristics of the Aswan flow record
Month µ (km3) (km3) Cs Ck 3 4 FGN1 1 2 12

Aug 19.37 4.62 -0.09 -0.14 0.00 0.12 0.76 0.43 0.71 0.26 0.16

Sep 22.98 4.29 -0.12 -0.57 -0.02 0.07 0.74 0.39 0.80 0.51 0.17

Oct 16.33 3.65 0.41 0.31 0.08 0.14 0.76 0.44 0.88 0.70 0.24

Nov 8.79 2.34 0.42 -0.27 0.09 0.11 0.80 0.51 0.90 0.77 0.26

Dec 5.92 1.60 0.86 0.60 0.19 0.13 0.89 0.72 0.94 0.85 0.42

Jan 4.37 1.20 0.64 0.31 0.15 0.15 0.88 0.70 0.98 0.91 0.44

Feb 3.02 1.00 0.85 0.27 0.20 0.12 0.82 0.55 0.96 0.92 0.35

Mar 2.51 0.96 1.25 1.34 0.26 0.17 0.78 0.48 0.91 0.84 0.31

Apr 1.89 0.75 1.75 3.56 0.33 0.19 0.78 0.47 0.94 0.78 0.33

May 1.68 0.63 2.13 6.30 0.33 0.23 0.72 0.36 0.93 0.85 0.30

Jun 1.91 0.68 1.89 6.00 0.27 0.20 0.63 0.20 0.70 0.59 0.11

Jul 5.06 1.84 0.75 0.24 0.16 0.12 0.89 0.71 0.65 0.44 0.47

Average   0.90 1.50 0.17 0.14 0.79 0.50 0.86 0.70 0.30

Annual 93.85 20.16 0.35 -0.08 0.09 0.09 0.85 0.63 0.35 0.35  

6. Marginal distributional properties
• During August October, the Blue Nile flows dominate; these seem to be

approximately normally distributed
• During November July, other parts of the basin contribute more than Blue Nile, but

with flows much lower than in August October; these seem to be non normally
distributed with positive skewness and kurtosis

• On the annual scale the dominance of the high flows during August October results in
flows that are approximately normally distributed

• The normal distributions of August October could be derived postulating Shannon
entropy maximization; the non normal distributions of November July could be
described by postulating Tsallis entropy maximization (Koutsoyiannis, 2005a)

• Non normal Tsallis distributions (Tsallis et al., 1995) can be described by the
normalizing transformation

where x and z are the natural and normalized flows, is a tail determining
dimensionless parameter, is a scale parameter with same units as x (which enables
physical consistency) and c a translation parameter with same units as x; for = 0, z is
identical to x

• The fitted parameters are = 0 (normal) for August October, and = 2.76, c = 0 and
= 0.47 km3 for November July

z = g(x) = c + sgn(x – c) 1 + 
1

 ln 1 + 
x – c 2

7. Normal probability plots: annual and monthly flows
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8. Dependence properties
• Monthly autocorrelations differ significantly from month to month for small lags

(periodicity) but become very similar for large lags
• Clearly, the monthly autocorrelation function for large lags suggests long range

dependence (see also panel 9)
• At the annual scale as well as at the monthly scale with lags that are multiples of 12,

the autocorrelation functions suggest a nearly power law (Hurst) decay but not a
simple scaling stochastic process (SSS or fractional gaussian noise)

• Entropy maximization at a
multiple time scale setting as
in Koutsoyiannis (2005b) but
with two autocorrelation
constraints (annual scale, lags
1 and 4) results in asymptotic
scaling with almost power
law autocorrelation decay
as in panel 9
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9. Long range dependence: detection and modelling
Explanation
Autocorrelations of annual
flows: Corr(Yi, Yi + j) vs. j
Autocorrelations ofmonthly
flows: Corr(Xi, Xi + 12 j)) vs. j
for i = 1 (August) and 5
(December)
Empirical classic: the
classical statistical estimates
of autocorrelations
Empirical SSS: Modified for
SSS processes estimates of
autocorrelations
(Koutsoyiannis, 2003)
Modelled SSS: the typical
SSS dependence
Modelled, ME: Dependence
derived by the principle of
maximum entropy applied
on multi scale setting with
two autocorrelation
constraints (annual scale,
lags 1 and 4); it is an
asymptotic scaling
dependence that tends to
simple scaling for multi year
scales; the annual model is
also applied to the monthly
flows with same parameters
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10. Stochastic model formalism
• The predictionW of the monthly flow one month ahead, conditional on a number s of

other variables with known values that compose the vector Z, is based on the linear
model:

W = aT Z + V
where a is a vector of parameters (the superscript T denotes the transpose of a vector
or matrix) and V is the prediction error, assumed independent of Z; for simplicity, Z is
assumed standardized with zero mean and unit variance

• After several trials, an optimal composition of Z was found to be the following
– All available flow measurements of the same month on previous years; for

simplicity the number of these elements is left unchanged, equal to the length of
the fitting period (78 variables)

– The flows of the two previous months of the same year (2 variables)
With this composition of Z, the model takes account of both long range and short
range dependence

• The model parameters are estimated from (Koutsoyiannis, 2000)
aT = T h–1, Var[V] = 1 – T h–1 = 1 – aT

where := Cov[W, Z] and h := Cov[Z, Z]
• In forecast mode, V = 0 (to obtain the expected value ofW conditional on Z = z); in

simulation mode V is generated from the normal distribution independently of Z

11. Parameter estimation
• Both a and Var[V] are estimated from the vector := Cov[W, Z] and the matrix h :=

Cov[Z, Z] that contain numerous items (in our case 80 + 80 80 = 6480 for each month;
such a number of parameters cannot be estimated from 78 monthly data values)

• However, most covariances in and h depend on:
– 2 3 parameters (same for all months) expressing the long range dependence, as

estimated by application on the ME principle on a multi time scale setting (a
stationary component)

– 2 parameters (per month) expressing the monthly autocovariances at the monthly
scale (a cyclostationary component)

• All other covariances that cannot be
derived from these parameters are left
‘unestimated’ (in terms of statistics)
and are calculated by the ME principle,
applied on a single scale

• The entropy maximization in this case
has an easy analytical solution that can
be formulated as a generalized Cholesky
decomposition (assuming that h = b bT)
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Graphical depiction of the vector of
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12. Results of stochastic model (validation period)

The graphical
depiction of
monthly
predictions (model
S1), in comparison
to historical values,
indicates good
performance of the
model (see also
panel 17)
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13. The analogue model
• This is a simple nonlinear prediction model: chaotic deterministic, data driven and

non parametric
• The only adjustable parameters it uses are the embedding dimension m and the

number of neighbours n
• The underlying assumptions are:

– The system dynamics can be described by an attractor that can be embedded in an
m dimensional Euclidian space;

– This attractor (and the state of the system) can be described in terms of time delay
vectors xi := [xi, xi – , …, xi – (m – 1) ]Twhere a positive integer (typically = 1)

– Thus, the system dynamics is expressed as xi + 1 = S(xi) or xi + 1 = S1(xi)
– The transformation S1(xi) is unknown but can be locally approximated from the

data point nearest to xi (an ‘analogous’ state) or else from n points nearest to xi
• The algorithm is very easy (Kantz & Schreiber, 1997; Georgakakos & Yao, 1995, 2001):

– At the current time i, compose the state vector xi
– In the calibration data set locate n vectors yi(j) (j = 1, …, n) nearest to xi
– The prediction of xi + 1 at time i + 1 is the average of yi + 1(j) over j

• The model calibration is a trial and error procedure aiming at finding the optimal m
and n that make the prediction error minimum at the verification period

• A two scale modified version can be derived assuming xi := [xi, xi – 1, xi – 12, xi – 24]T

14. Fitting of the analogue model

Model Untransformed 

values

Logarithmically 

transformed values 

A1 0.959 0.945 

A2 0.945 0.942 

A3 0.955 0.954 
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15. The connectionist model
• The connectionist model, also known as an artificial neural network model is a

deterministic model based on the same assumptions as the analogue model
• The difference is that it expresses the transformation xi + 1 = S1(xi) explicitly, as a

weighted sum of linear or sigmoidal ( (x) = 1/(1 + eb x – c) elementary functions; the
elements of xi represent the ‘input nodes’ on an ‘input layer’, the result xi + 1 represents
the ‘output node’ and the specific expression of S1(xi) corresponds to a geometric
analogue of nodes and arcs forming a network, which has been called ‘connectionist
model’ or metaphorically ‘neural network model’

• The intermediate (between input and output) nodes are typically arranged in the so
called ‘hidden layers’; in our case, structures with one or two ‘hidden layers’ have
been examined

• The model fitting, metaphorically known as ‘training’ or ‘learning’, is a nonlinear
optimization procedure than minimizes fitting errors and is typically executed by the
‘error backpropagation’ method which is a version of a gradient descent method

• To avoid overfitting (i.e. use of too many components of elementary functions) two
fitting measures should be used: the calibration error (in the calibration period) and the
verification error (in the verification period; Georgakakos and Yao, 1995)

• The two errors typically display a conflicting behaviour; thus the solution of the
optimization problem is the determination of a Pareto front rather than a single point

• As in the analogue model case, a two scale modified version was also used

16. Fitting of the connectionist model

Mean square error Coefficient of efficiency Model
Calibration Verification Calibration Verification 

C1 0.289 0.241 0.749 0.435 

C2 0.183 0.309 0.842 0.277 

C3 0.241 0.240 0.794 0.438 
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further explored
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17. Intercomparison of the prediction skill of models

Model Untransformed 

values

Logarithmically 

transformed values 

Seasonally standardized 

untransformed values 

S1 0.911 0.904 0.673 

S2 0.907 0.899 0.675 

S3 0.884 0.884 0.624 

A1 0.840 0.613 -0.145 

A2 0.847 0.623 -0.126 

A3 0.879 0.851 0.490 

C1 0.888 0.878 0.583 

C2 0.775 0.791 0.280 

C3 0.859 0.849 0.472 

Performance index = coefficient of efficiency (CE = 1 – E[(W – X)2] / Var[X])
for the validation period (53 years, all months simultaneously)

18. The behaviour of models in simulation mode
• The stochastic forecast models can be directly operate in simulation mode by

generating the random component V (instead of equating it to zero)
• The analogue model cannot operate in simulation mode because soon it converges to

an “attracting” periodic trajectory, same for all years
• The connectionist model, when the number of nodes is small, behaves like the

analogue model resulting in an “attracting” periodic trajectory; otherwise (for more
than 15 20 hidden nodes) it produces irregular trajectories, which however are
statistically inconsistent with historical evolution of flows
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19. Conclusion: questions studied (and answers)
• Which of the models is based on the most consistent concept? (S)
• Which of the models is the simplest to construct? (A)
• Which of the models has the least number of parameters? (A)
• Which of the models has the best performance? (S)
• Which of the models can incorporate/reproduce long range

dependence? (Only S; but A and C can be altered in a two scale
setting thus enabling incorporation of a “medium range”
dependence)

• Does incorporation of long range (or medium range) dependence
increase performance? (Yes: S1 > S3, S2 > S3; A3 > A1, A3 > A2)

• Which of the models can run in simulation mode, in addition to
forecast mode? (Only S)

• How can the stochastic model, built on the hypothesis on
maximum uncertainty (entropy), yield better forecasts than the
deterministic models negating uncertainty? (Perhaps because it is
closer to natural behaviour?)
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