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Abstract In the last two decades, several researchers have claimed to have discovered low-

dimensional determinism in hydrological processes, such as rainfall and runoff, using 

methods of chaotic analysis. Such results, however, have been criticized by others. In an 

attempt to offer additional insights into this discussion, it is shown here that in some cases 

merely the careful application of concepts of dynamical systems, without doing any 

calculation, provides strong indications that hydrological processes cannot be (low-

dimensional) deterministic chaotic. Furthermore, it is shown that specific peculiarities of 

hydrological processes on fine timescales, such as asymmetric, J-shaped distribution 

functions, intermittency, and high autocorrelations, are synergistic factors that can lead to 

misleading conclusions regarding presence of (low-dimensional) deterministic chaos. In 

addition the recovery of a hypothetical attractor from a time series is put as a statistical 

estimation problem whose study allows, among others, quantification of the required sample 

size; this appears to be so huge that it prohibits any accurate estimation even with the largest 

available hydrological records. All these arguments are demonstrated using appropriately 

synthesized theoretical examples. Finally, in light of the theoretical analyses and arguments, 

typical real-world hydrometeorological time series, such as relative humidity, rainfall, and 

runoff, are explored and none of them is found to indicate the presence of chaos.  

Keywords chaos; chaotic dynamics; attractors; entropy; capacity dimension, correlation 

dimension; nonlinear analysis; time series analysis; stochastic processes; hydrological 

processes, rainfall; runoff.  
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Sur la recherche pour des attracteurs chaotiques dans des processus hydrologiques  

Résumé Dans les deux dernières décennies, plusieurs chercheurs ont prétendu avoir 

découvert le déterminisme bas dimensionnel dans des processus hydrologiques, tels que les 

précipitations et l'écoulement, en utilisant des méthodes d'analyse chaotique. De tels résultats, 

cependant, ont été critiqués par d'autres. Afin d'essayer d'offrir des perspicacités 

additionnelles dans cette discussion, on montre ici que dans certains cas simplement 

l'application soigneuse des concepts des systèmes dynamiques, sans faire des calculs, fournit 

des indications fortes que les processus hydrologiques ne peuvent pas être chaotiques 

déterministe (bas dimensionnel). En outre, on montre que les particularités spécifiques des 

processus hydrologiques a(accent grave) des échelles fines, telles qu'asymétrie, fonctions de 

distribution de forme en J, intermittence, autocorrélations élevés, sont des facteurs 

synergiques qui peuvent mener à des conclusions fallacieuses concernant la présence du chaos 

déterministe (bas dimensionnel). En outre l’identification d'un attracteur hypothétique d'une 

série chronologique est posé comme un problème statistique d'estimation dont l'étude permet, 

entre d'autres, l’quantification de la taille de série de données exigées; ceci semble être si 

énorme qu'il interdise toute estimation précise même avec les plus longues séries 

hydrologiques disponibles. Tous ces arguments sont démontrés en utilisant des exemples 

théoriques convenablement synthétisés. En conclusion, à la lumière de nos analyses et 

arguments, des séries chronologiques hydrométéorologiques réelles typiques, telles que de 

l'humidité relative de l’air, de la précipitation, et de l'écoulement, sont explorées et aucune 

d'elles ne s'avère pour indiquer la présence de chaos. 

Mots clefs chaos; dynamique chaotique; attracteurs; entropie ; dimension de capacité 

dimension de corrélation; analyse nonlinéaire; analyse de séries temporelles; processus 

stochastiques; processus hydrologiques; pluie; écoulement. 
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INTRODUCTION 

My thirteenth and last thesis is this. Both classical physics and quantum physics are indeterministic. 

Karl Popper (in his book “Quantum Theory and the Schism in Physics”) 

 

The impressive results of chaos analysis of simple physical and mathematical systems in the 

last two decades offered an alternative way to view natural systems. Specifically, it became 

clear that a simple nonlinear deterministic system, even with one degree of freedom, can have 

a complex, random-appearing evolution. Obviously, however, the inverse is not true: 

Complex or erratic-appearing phenomena do not necessarily imply that the dynamics are 

simple.  

 Loosely speaking, the complexity of a system with deterministic dynamics depends on the 

number of degrees of freedom, or dimension of the system attractor, and on how many of 

them are associated with sensitive dependence on initial conditions. The latter are quantified 

by positive values of the so called Lyapunov exponents that are associated with the system 

dynamics. Chaotic systems are in fact the simplest possible deterministic systems with 

sensitivity to initial conditions: those that have one positive Lyapunov exponent (Kantz and 

Schreiber, 1997, pp. 183, 241), and typically have attractor dimension less than two (Kantz & 

Schreiber, 1997, p. 183). Following Kantz and Schreiber, in this paper the term low-

dimensional (deterministic) chaos is used as synonymous to chaos (even though, as correctly 

pointed out by Schertzer et al., 2002, initially the word chaos was used to describe stochastic 

phenomena such as Brownian motion, or any kind of disorder – cf. Greek mythology).  

 Systems with very many (theoretically infinite) dimensions are usually (and in this paper 

too) characterized as stochastic (or random) systems and are usually modelled using 

probabilistic considerations and the theory of stochastic processes. In a stochastic system, the 

future of the system state cannot be determined completely from its present and past, even if 

the entire past is known. However, the characterization of a system as a stochastic (or a 
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random) system should not be regarded as the denial of deterministic dynamics in its 

evolution but rather as the inadequacy or inefficiency of a pure deterministic mathematical 

description. For example, tossing of dice is regarded as the most typical example of a random 

system (cf. Albert Einstein’s famous aphorism), even though its outcome depends on a few 

collisions of a cube onto a plane, whose deterministic dynamics can be understood rather 

easily (perhaps more easily than those of a hydrological system also influenced by the global 

circulation system). 

 Perhaps to fill the gap between the very low dimensional chaotic systems and the very high 

dimensional stochastic systems, the term hyperchaos has been coined (Rössler, 1979; Kantz 

& Schreiber, 1997, pp. 183, 241). While numerous chaotic and stochastic systems have been 

studied thoroughly, only a few experimental observations of hyperchaos have been recorded. 

To explain this lack of higher dimensional experimental attractors, Kantz & Schreiber offer 

two possible explanations: typical systems in nature possess either exactly one or very many 

positive Lyapunof exponents; or systems with a higher-than-three dimensional attractor are 

very difficult to analyze.  

 Traditionally, stochastic models have been the preferred mathematical tools in hydrology 

and water resources modelling. Hydrological processes have been most frequently modelled 

as stochastic processes, which also incorporate apparent deterministic components of the 

natural processes (e.g., periodicity) in addition to random components. However, in the last 

two decades, the charming possibility that a complex hydrological system with irregular time 

evolution may au fond be a simple chaotic system has motivated several researchers to 

analyze hydrological processes using mathematical tools of the chaos literature. Their 

intention and hope perhaps was to discover simplicity and universal determinism in place of 

what was earlier considered as weak deterministic components superimposed on random 

components. Thus, an increasing number of studies have tried to show that hydrological 

processes are chaotic. Sivakumar (2000, 2004) reviews most of the studies related to chaotic 
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analysis of hydrological processes. Such studies, whose number has continuously increased 

since the late 1980s, have analyzed processes such as rainfall, runoff, and lake storage using 

time series with resolutions from a few seconds to one month and data sizes from one 

thousand to some thousands. In most cases the authors claimed that they discovered 

deterministic attractors with dimensions varying from about 1/2 to about 10. Few authors 

reported absence of chaos or expressed scepticism about the discovery of chaos in other 

studies and provided arguments for the incorrectness of such results.  

 The attempts to discover chaos in natural phenomena are not unique to hydrology. As 

pointed out by Provenzale et al (1992),  

“… the desire for finding a chaotic attractor has led to a naïve application of the analysis 

methods; as a result, the number of claims on the presence of strange attractors in vastly 

different physical, chemical, biological and astronomical systems has grown 

(exponentially?)”. 

Here they quote a statement by Grassbrerger et al. (1991):  

“… most (if not all) of these claims have to be taken with much caution”.  

They also note that convincing evidence for chaos most commonly arises when spatial 

complexity of the system is limited, a condition that could be true for experimental systems, 

but is far from true for hydrological and other geophysical processes.  

 The present paper attempts to proceed a step further than simply expressing scepticism 

about the discovery of chaos in hydrological processes. Specifically, it endeavours to show 

that the hypothesis that hydrological time series manifest stochastic, rather than chaotic, 

systems cannot be rejected using the standard procedures of chaotic analysis. In addition, it 

locates critical issues that may lead to an erroneous conclusion that a hydrological system is 

chaotic; such issues may have influenced earlier studies that identified chaos in hydrology. 

Here, it should be made clear that the intent of the paper is not to spot flaws or erroneous 
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conclusions in particular earlier studies. This is the reason why specific references to these 

studies (or to studies that expressed scepticism) are deliberately avoided (as the reader may 

have already noticed). The references included are only those whose theoretical developments 

or methodologies are used in this paper. The interested reader is referred to the comprehensive 

reviews by Sivakumar (2000, 2004) for locating all related studies and to Sivakumar et al. 

(2001, 2002) and Schertzer et al. (2002) for one of the most recent debates on the issue.  

 In addition to identifying the critical issues, the paper develops ways to recover from them 

and draw correct conclusions. To this aim, the paper first briefly reviews some fundamental 

concepts of chaotic behaviour and the typical procedure for identifying chaos based on the 

estimation of attractor dimensions; it is the author’s opinion that revisiting fundamental 

concepts is generally useful, and necessary for the particular scope of this paper. 

Subsequently, the paper shows that in some cases merely the careful application of the 

concepts of dynamical systems provides strong indications that hydrological processes cannot 

be chaotic. Furthermore, it shows that peculiarities of hydrological processes can lead to 

misleading conclusions regarding presence of chaos, and in addition demand huge data sets, 

whose size can be quantified by statistical reasoning. Finally, in light of the theoretical 

analyses and arguments, typical real-world hydrometeorological time series are explored and 

none of them is found to indicate the presence of chaos. Details of the real-world examples as 

well as mathematical derivations that support the theoretical analysis are given separately in 

Koutsoyiannis (2006). 

 The scope of this paper cannot include all of the numerous applications of chaotic tools in 

hydrology. For instance, many studies have used nonlinear forecast methods from chaotic 

dynamical systems in hydrological applications. The success of such applications is not in 

question, but, as strange as it may seem, this does not necessarily indicate that the system at 

hand is chaotic. For example, in a recent study (Koutsoyiannis et al., 2006), a low-

dimensional chaotic nonlinear method gave forecasts of the monthly flow of the Nile that 
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were equally good in the case that the inflows were historical or synthetic (generated by a 

stochastic model). Thus, the scope here is limited to identification of potential chaos and for 

this reason the emphasis is given to time delay embedding of attractors, which has been the 

standard method for identification of chaos both in general and in hydrological applications.  

DESCRIPTORS OF CHAOTIC BEHAVIOUR 

Dynamical systems and attractors 

The nonlinear time series methods which are applied in hydrology are based on the theory of 

dynamical systems; these are characterized by (a) a phase or state space in which the motion 

of the system takes place, (b) a rule stating where to go next from the system current position 

(also known as system dynamics), and (c) a time set that describes the moments at which 

movements from one position to another take place.  

 Typically, the phase space M is a finite-dimensional vector space R m and the state of the 

system is specified by a vector x with size m. The time set is typically either the set of integers 

I (discrete time) or the set of real numbers R (continuous time). The system dynamics is a 

family of transformations St: M → M (where t denotes time) satisfying (Lasota & Mackey, 

1994, p. 191) 

 S0(x) = x,     St(St΄(x)) = St + t΄(x),   x ∈ M (1) 

In discrete time, the system dynamics is completely determined by the m-dimensional map S1:  

 xn + 1 = S1(xn),        n ∈ I (2) 

In continuous time the dynamics is described as a system of m ordinary differential equations 

 
dx(t)

dt  = s(x(t)),      t ∈ R (3) 

whose solution defines the family of transformations St. 



8 

 For a given initial point x0 or x(0) the sequence of points xn = Sn(x0) or the function x(t) = 

St(x(0)) considered as a function of n or t is called a trajectory of the dynamical system. In the 

so called dissipative dynamical systems, the trajectory of the system, after some transient 

time, is attracted to some subset A of the phase space. This set itself is invariant under the 

dynamical evolution (St(A) = A) and is called the attractor of the system (Kantz & Schreiber, 

1997, p. 32). Only three types of attractors can occur (e.g., Lasota & Mackey, 1994, p. 192; 

Kantz & Schreiber, 1997, p. 32): (a) fixed points indicating that the system settles to a 

stagnant state, i.e., xn = x0 or St(x(0)) = x(0), for all n or t (b) limit cycles, indicating periodic 

motion with period ω, i.e., xn + ω = xn or St + ω(x(0)) = St(x(0)), for all n or t and (c) 

nonintersecting trajectories, in which case xn1 ≠ xn2
 or St1(x(0)) ≠ St2(x(0)), for all n1 ≠ n2 or t1 

≠ t2. For a system in continuous time with a 2-dimensional state space the fixed point and 

cycle are the only possibilities, whereas for 3 dimensions and beyond the more interesting 

nonintersecting attractors can occur, which typically exhibit fractal structure and are called 

strange attractors. For systems in discrete time the nonintersecting attractors can occur even in 

a 2-dimensional state space (Lasota & Mackey, 1994).  

Delay embedding and reconstruction of dynamics 

In this paper, as in other hydrological applications of chaotic dynamics, only systems 

expressed in terms of a single scalar real quantity y (e.g., rainfall, runoff, etc.) are considered. 

Such a system evolves in continuous time, and its m-dimensional state x is theoretically 

expressed in terms of the quantity y and a number m – 1 of its derivatives with respect to time, 

i.e., x(t) = [y(t), y΄(t), … y(m – 1) (t)]T (where (y(k) = dky / dyk and the superscript T denotes the 

transpose of a vector or matrix). 

 However, in a hydrological (natural) system only observations of the quantity y on discrete 

time intervals ∆t (and no observations of its derivatives) can be available. Therefore, the study 

of the system is done as if it were a discrete time system using the so-called delay vectors 
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 xn := [yn, yn – τ, …, yn – (m – 1)τ]T (4)  

where yn := y(n ∆t) and τ is a positive integer.  By studying the simplified discrete time 

system, the properties of the original system since can be inferred: According to Takens’ 

embedding theorem (Takens, 1981), for properly chosen embedding dimension m and time 

delay τ, the discrete time system will trace out a trajectory that represents a smooth coordinate 

transformation of the original trajectory of the system.  

 Thus, the Takens theorem allows for the reconstruction of the dynamics of the system 

using a time series of a single scalar observable. If the only given information is the time 

series, it is not known a priori what the proper embedding dimension m is. This dimension 

depends on the dimension D of the attractor. The latter dimension has important content as D 

(or better the smallest integer that is not smaller that D) represents the number of degrees of 

freedom needed to describe the state of the system (Gershenfeld & Weigend, 1993, p. 48).  

 According to Whitney’s (1936) embedding theorem, which was generalized for fractal 

objects by Sauer et al. (1991), any D-dimensional object (precisely, any D-dimensional 

smooth manifold) can be embedded in an m-dimensional Euclidean space if m > 2D. For 

example, a one-dimensional curve of any shape can always be embedded in a 3-dimensional 

Euclidean space (and all higher-dimensional spaces), but it cannot be embedded in a 2-

dimesional space because, except for special cases, it will overlap itself (this will be further 

clarified later). Thus, an attractor of the nonintersecting type with dimension 1 will 

necessarily intersect itself in a 2-dimesional space but not in a 3-dimesional space.  

 Therefore, if the attractor dimension D were known, the state vector size m would be the 

smallest integer that is greater than 2D. But since D is unknown when merely a time series is 

available, an iterative procedure is followed. For trial m = 1, 2, …, the dimension D(m) of the 

trajectory of the system is estimated at the m-dimensional space, until D(m) becomes constant 

with the further increase of m. This constant is the attractor dimension.  
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Estimation of dimensions 

The problem arises then of how to estimate the dimension D of a trajectory or attractor A in an 

m-dimensional vector space. The estimate of a dimension is typically done in terms of 

entropic quantities. It should be stressed that entropy is a probabilistic concept and thus the 

estimation of entropic quantities obeys statistical laws (although in some studies this is 

missing). Specifically, let A be a subset of an m-dimensional metric space with a normalized 

measure P( ) defined on its Borel field. Equivalently A can be regarded as a sample space and 

the normalized measure P(B) of any subset B of A as the probability of B. In our case, for m = 

1, A may represent all possible values of a hydrological variable such as rainfall or runoff at a 

specified timescale, so that it is the set of positive real numbers R+. Accordingly, for m > 1, 

the set may represent the m-dimensional space formed by the delay vectors.  

 Let us consider a partition of A into ν(ε) boxes (hypercubes) A1, A2, …, Aν(ε) with scale 

length (or simply scale, meaning edge length of each hypercube) ε. The standard entropy, also 

known as the information entropy or the Boltzmann-Gibbs-Shannon entropy is by definition 

 φ(ε) := – ∑
i = 1

ν(ε)

 pi ln pi (5) 

where pi := P(Ai) is the measure of the part of the set A contained in the ith hypercube having 

the obvious property 

 ∑
i = 1

 ν(ε)
 pi = 1 (6) 

Equivalently, pi could be interpreted as the probability that a point of A belongs to Ai. In this 

case φ(ε) is non other than the expected value of the minus logarithm of probability (in this 

case meant on the specific partition) and is typically interpreted as a measure of uncertainty.  

 Several generalizations of the standard entropy have been proposed (Rényi, 1970; Tsallis, 

2004). Among them, the most commonly used for the identification of chaotic systems is the 

Rényi entropy of order q defined to be 
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 φq(ε) := 
1

1 – q ln ∑
i = 1

ν(ε)

 pi
q (7) 

Application of de l’ Hôpital’s rule to (7) for q = 1 shows that φ1(ε) ≡ φ(ε).  

 The entropy φq(ε) is a decreasing function of ε and tends to infinity as ε tends to zero. 

However, the quantity 

 Dq := 
 

lim
ε → 0

 
–φq(ε)

ln ε  (8) 

takes a finite value and it is called the generalized dimension of order q of the set and 

normalized measure under examination (Grassberger, 1983). Applying de l’ Hôpital’s rule in 

(8) it is obtained  

 Dq = 
 

lim
ε → 0

 
d(–φq(ε))

d(ln ε)  (9) 

The latter expression is more advantageous than (8) for numerical applications since the 

convergence of the derivative is faster. 

 For low values of q the most frequently used dimensions are produced. Thus, q = 0 gives 

the so-called “box counting” or “capacity” dimension D0, q = 1 the “information” dimension 

D1, and q = 2 the “correlation” dimension D2. For simple geometrical objects such as 

segments of a line or a surface, if the Lebesgue measure is used (equivalently, if the uniform 

probability distribution is assumed) then all Dq are equal to the integer topological dimension 

(1 for a line, 2 for a surface, etc.). For more complex mathematical objects including fractal 

objects or for these simple objects but for other measures (or probability distributions), they 

are not necessarily integers, nor all Dq are necessarily equal to each other, as will be 

demonstrated later. The most important among generalized dimensions is the capacity 

dimension D0, because this is in fact the one used in the extension by Sauer et al. (1991) of 

the Whitney’s (1936) embedding theorem mentioned above. However the most frequently 

used (for reasons that will be explained next) is the correlation dimension D2. 

 Estimates of probabilities and entropic quantities can be derived by statistical theory based 
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on a certain observed time series or delay vectors thereof. Thus, the statistical estimate of pi 

from a sample of N observed values each one denoted as xj (or a vector sample of N points in 

the m-dimensional space that is formed by time delay vectors, each one denoted as xj), of 

which Ni are contained in the ith hypercube Ai, is typically derived as pi = Ni / N. Accordingly, 

the estimates of dimensions can be derived by numerical evaluation of (5)-(9) substituting 

Ni / N for pi. For integer q ≥ 2, an alternative estimation can be done in terms of the so called 

generalized correlation sum of order q, introduced by Grassberger (1983): 

 Cq(ε) := N−q {number of q-tuples (xj1, …, xjq) with all ||xjs − xjr|| < ε} (10) 

where ||.|| denotes the norm of a vector. This has the important property 

 Cq(ε) ≈ exp[(1 – q) φq(ε)] (11) 

Thus, for integer q ≥ 2, –φq(ε) can be replaced with ln Cq(ε) / (q – 1) in the calculation of 

dimensions using the above equations; the estimation of φq(ε) in terms of Cq(ε) is regarded as 

more accurate than that in terms of Ni / N (Grassberger & Procaccia, 1983; Grassberger, 

1983). In practice however, only the correlation sum for q = 2 is used, because the calculation 

of higher-order sums is extremely time consuming. (In fact, even for q = 2 the calculation is 

extremely time consuming for large data sizes). The correlation sum of order 2, or simply the 

correlation sum, is given by the following equation that is a consequence of (10): 

 C2(ε, m) = 
2

(N – m) (N – m – 1) ∑i = 1

N

  ∑
j = i + w

N

   H(ε – ||xi – xj||) (12) 

where H is the Heaviside’s step function, with H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0 and w 

an integer constant, which for uncorrelated time series is assumed zero but for correlated ones 

takes a nonzero value to exclude from the estimation those pairs of points that are close in 

time (Kantz & Schreiber, 1997, p. 74). For the calculation of the distance ||xi - xj||, the 

maximum norm is usually used as it reduces the computational time (Hübner et al., 1993). In 
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this case, the seemingly complex formula (12) should not prevent one to see that the 

correlation sum C2(ε, m) is none other than the proportion of pairs of points having distance 

smaller than ε between them. In other words, the correlation sum C2(ε, m) is the estimate of 

the true (population) probability that the distance of any two points is smaller than ε. 

Typical procedure for identifying chaos 

The estimation procedure of the correlation dimension D2 in terms of correlation sums, known 

as the Grassberger-Procaccia algorithm (after Grassberger & Procacia, 1983) consists of the 

following steps: 

 1. Calculate the correlation sum C2(ε, m) for several values of the scale ε. 

 2. Make a log-log plot of C2(ε, m) vs. ε and a plot of the local slope d2(ε, m) vs. log ε, 

where 

 d2(ε, m) := 
∆[ln C2(ε, m)]

∆[ln ε]  (13) 

and locate a region with constant slope, known as a scaling region (e.g., Hübner et al., 1993). 

 3. Calculate the slope of the scaling region, which is the estimate of the correlation 

dimension D2(m) of the set for the embedding dimension m. 

 As explained above this is done iteratively for m = 1, 2, … and iterations stop when D2(m) 

saturates to a constant value D2, independent of m. The convergence of D2(m) to the value D2 

verifies that a D2-dimentional attractor (a) exists, which means that the system under study is 

deterministic; (b) has been identified; and (c) can been embedded in an m-dimensional space 

where m is the minimum integer for which D2(m) = D2. Conversely, if D2(m) does not become 

constant for increasing m the system is characterized as stochastic, rather than deterministic. 

This procedure has been applied in most of the hydrological applications mentioned in the 

introduction to characterize a time series as stochastic or deterministic. 

 Several authors have warned that the procedure has several critical points that require 
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careful attention (see discussions in Tsonis, 1992; Tsonis et al., 1993; Kantz & Schreiber, 

1997; Graf von Hardenberg, 1997a; Sivakumar, 2000; among others), otherwise the results 

may be flawed. These points are revisited in the next section, and some additional critical 

points whose ignorance could result in erroneous interpretations are introduced. 

IMPORTANT ISSUES IN IDENTIFYING CHAOS IN HYDROLOGICAL 

PROCESSES 

A conceptual approach to the dimensionality of a hydrological attractor 

Before applying any algorithm to quantify the dimensionality of an attractor in a hydrological 

process, it would be a good idea to try a more conceptual approach and to determine, if 

possible, what would be a reasonable expectation of this dimensionality. It is natural to start 

with the rainfall process in discrete time on daily timescale (the same reasoning applies in 

finer timescales as well). For this process and timescale some studies have claimed to have 

seen chaos with dimensionality D2 as low as 1 (or less).  

 In a daily rainfall time series there exist periods with zero rainfall. Let us consider here the 

complete time series with consecutive dry and wet periods, similar to what most studies have 

done. (Later fine timescale rainfall series excluding dry periods will be also examined). Let k 

be the maximum observed dry period in days. For example, in Athens, Greece, in a 132-year 

record of rainfall record, k = 130 days (more than 4 months). The day when this dry period 

starts is set n = 1, so that the rainfall depths yn for n = 1 to k are all zero. Let us assume that 

the rainfall at the examined location is the outcome of a deterministic system whose attractor 

can be embedded in R m for some integer m. This attractor is reconstructed using delay 

embedding with delay τ. Furthermore, let us assume that m < (k – 1) / τ + 1. Then, there exist 

at least two delay vectors with all their components equal to zero. Namely, xk = [yk, yk – τ , 

yk – 2τ , …, yk – (m – 1) τ ]T = 0 and xk – 1 = xk = [yk – 1, y k – 1 – τ, y k – 1 – 2τ, …, y k – 1 – (m – 1) τ]T = 0 

where 0 is the zero vector. Therefore, xk = S1(xk – 1) = S1(0) = 0, and since the system is 



15 

deterministic, it will result in xn = 0 for any n > 0 (since xk + 1 = S1(xk) = S1(0) = 0, etc.). That 

is, given that rainfall is zero for a period k, it will be zero forever, which means that the 

attractor is a single point. This of course is absurd and thus the embedding dimension should 

be m ≥ (k – 1) / τ + 1. Now, Whitney’s embedding theorem (Kantz & Schreiber, 1997, p. 126) 

tells us that the attractor should have dimension D ≥ (m – 1)/2 and, hence, D ≥ (k – 1) / 2τ. For 

example (as in Athens), if the maximum dry period k = 130 and a “safe” delay τ = 10 is 

assumed (this will be discussed further later), the above analysis results in an embedding 

dimension of at least 13 and an attractor dimension of at least 6.  

 As high as this attractor dimension may seem (compared to values reported in some 

hydrological applications), it is still too low. In this reasoning, rainfall has been considered as 

a discrete time process. If it were considered as a continuous time process, as in fact is, then 

instead of assuming x as a vector of delay coordinates, it would be regarded as x(t) = [y(t), 

y΄(t), … y(m – 1)t)]T, as explained earlier. Now, at any time within a dry period x(t) = 0 

regardless of the dimension m used (the rainfall depth and all its derivatives of any order are 

zero). Clearly then, the attractor cannot be of the nonintersecting type (since x(t) = 0 for 

several, in fact infinite, values of t) but it will be of the fixed-point type, the fixed point being 

the zero vector. Of course, this is not true, because at some time the system will depart from 

the “attracting” zero point. Thus, the system that is described by the rainfall depth is not low 

dimensional (it cannot have a finite dimensional attractor) but rather infinite dimensional 

(stochastic).  

 On coarser discrete timescales, such as monthly, it may be the case (for wet areas) that the 

zero rainfall values do not occur. However, if the rainfall process is high- or infinite-

dimensional on fine timescales, naturally it will be high- or infinite-dimensional on coarser 

timescales as well. In addition, since rainfall is the input that mobilizes all other hydrological 

processes in a catchment, the number of degrees of freedom of any other hydrological process 

(e.g. streamflow) will be at least equal to that of rainfall. Moreover, if rainfall is indeed 
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stochastic, stochastic will be all other processes in the catchment. 

 Until now the conceptual approach followed did not use any algorithm at all. In the case of 

application of an algorithm, it could be a good idea to examine whether its results are 

conceptually consistent and meaningful. For example, if the attractor dimension was found to 

be as low as one or even smaller, as indeed happens in some of the applications published, 

then it would have a direct geometrical interpretation. To demonstrate what an attractor with 

dimension one or less looks like, an example from a system with known chaotic dynamics 

was constructed. The well-known logistic equation zn = a zn – 1 (1 – zn – 1) with a = 3.97977, 

which obviously has one degree of freedom (so that D ≤ 1), was used as a starting point. 

Then, to make the attractor more interesting, zn was routed through a linear filter to obtain the 

series yn := b0 zn + b1 zn – 1 + b2 zn – 2 + b3 zn – 3 + b4 zn – 4 with b0 = 1, b1 =2, b2 =1.5, b3 = 1, b4 = 

0.5. Here no additional degree of freedom was introduced and thus the dimension of the 

attractor was not increased; this was verified using the Grassberger-Procaccia algorithm. The 

attractor, constructed graphically using 10 000 points, is shown in Figure 1 in a 2-dimensional 

(upper panel) and a 3-dimensional (lower panel) space. That the dimension of the attractor 

does not exceed one is obvious in both panels, although the 2-dimensional graph is not 

appropriate to show the nonintersecting type of the attractor (it intersects itself).  

 Now if the same work is done with a hydrological series, what is obtained is totally 

different. In Figure 2 an “attractor” has been plotted in a 2-dimensional (upper panel) and a 3-

dimensional (lower panel) space using 10 000 points of a daily rainfall series, which will be 

discussed further in the section “Real world examples”. These graphs are typical for any daily 

rainfall series. One cannot locate any one-dimensional structure in such graphs. On the 

contrary, the cloud of points fills all space both in two and three dimensions. Therefore its 

topological dimension, which is expressed by the capacity dimension D0, equals the 

embedding dimension, that is, 2 in the upper panel and 3 in the lower panel. As will be shown 

in the next sub-section, the correlation dimension of this 2- or 3-dimensional space filling 
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cloud could be 1 or even less, but this is totally irrelevant. What matters is that the cloud of 

points fills up space and, thus, the capacity dimension equals the embedding dimension. 

 One may argue that the plots of Figure 2 are in two and three dimensions whereas studies 

that estimated attractor dimensions of the order of one have simultaneously shown that the 

embedding dimension should be at least 10 or more, possibly up to 40. But clearly this is an 

inconsistency of these studies. If the attractor dimension were one or less, then, according to 

Whitney’s embedding theorem, a three dimensional embedding space would suffice to embed 

it (there would be no need to go to embedding dimensions 10-40). 

 Another type of suspect results are those in which runoff appears to have an attractor with 

dimension lower than that of rainfall at the same area and timescale. As explained above, it is 

difficult to imagine how runoff (hydrological system output) could have dimension smaller 

than rainfall (hydrological system input).  

Capacity vs. correlation dimension and the effect of an asymmetric distribution  

Wang & Gan (1998) have pointed out that the underlying distribution function plays a role in 

the estimation of correlation dimension. This they demonstrated using random data series 

generated from Gamma and Poisson distributions. They argued that the correlation dimension 

for these data series is underestimated due to a clustering feature, or an “edging effect”. In this 

section this issue is analyzed theoretically and it is shown that small estimated values of 

correlation dimension should not necessarily be interpreted as underestimated, as in fact can 

be correct estimates – but these estimates are irrelevant to the existence of an attractor. 

  It can be easily shown that in random time series from a continuous distribution function 

the capacity dimension D0(m) equals the embedding dimension, m, or, in other words, the 

time-delayed vectors fill up the embedding space. This has been given a key role in 

identifying chaos in hydrological processes and particularly in the characterization of a 

process of chaotic rather than stochastic. However, as discussed in the section “Descriptors of 
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chaotic behaviour”, in identifying chaos the correlation dimension D2(m) rather than the 

capacity dimension D0(m) has been typically used. It is the rule that the correlation dimension 

of a random series D2(m) equals D0(m) and therefore the embedding dimension m. It is shown 

(Koutsoyiannis, 2006) that a sufficient condition for this rule to be valid is that the probability 

density functions f(y) is square-integrable, i.e.,  

 ⌡⌠
A

 
  f 2(y) dy < ∞ (14) 

Furthermore, is shown that this condition may be not valid in purely random processes 

following non-symmetric J-shaped distributions, for which D2(m) is smaller than m. More 

specifically, it is shown that in such processes and for embedding dimension m = 1,  

 D2(1) = 2 + 2 
 

lim
ε → 0

 
ε f ΄(ε)

f(ε)  < 1 = D0(1) (15) 

where f ΄( ) is the derivative of f( ). By analogy, D2(m) = m D2(1) < m.  

 For example, it shown (Koutsoyiannis, 2006) that in distribution functions typically used in 

hydrology such as Pareto, Gamma and Weibull, with shape parameter κ smaller than 1/2 or, 

equivalently, coefficients of skewness greater than 0.639, 2.83 and 6.62, respectively, the 

correlation dimension for embedding dimension 1 is D2(1) = 2 κ < 1. A demonstration of this 

is given in Figure 3 using a series of 10 000 random points generated from the Pareto 

distribution F(y) = yκ, 0 ≤ y ≤ 1 with shape parameter κ = 1/8. Here it is expected that D2(m) = 

0.25 m. In Figure 3 the estimated correlation sums C2(ε, m) (upper panel) and their local 

slopes d2(ε, m) (lower panel) have been plotted vs. scale ε for embedding dimensions m = 1 to 

8. It should be noted that the scales ε in this figure, as well as in all subsequent figures, are 

normalized (by rescaling data values in the interval [0, 1]). The empirical results in Figure 3 

agree perfectly with the theoretical expectations (D2(1) = 0.25, D2(2) = 0.5, etc.). 

 Non-symmetric J-shaped distribution functions with large positive coefficients of skewness 

are the most common in hydrological processes on fine timescales (e.g., hourly or daily), 
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which are the most important timescales when investigating the presence of determinism. 

Therefore, the correlation dimensions estimated from hydrological data series do not 

correspond to the actual topological dimensions of the “attractors”. 

Effect of intermittency 

Things are even worse when examining rainfall series, which on fine and intermediate 

timescales (e.g., finer than monthly) are characterized by the presence of zeros. As shown in 

Koutsoyiannis (2006), when the probability of having zero values is nonzero, the correlation 

dimension D2(m) for any m is precisely zero. This is demonstrated in Figure 4, which shows 

the correlation sums from a series of 10 000 independent random values 80% of which are 

generated from the uniform distribution and the remaining 20% are zeros, located at random. 

Clearly the slopes of the correlation sums are zero for small scale ε for all embedding 

dimensions, except for the very large ones (7 and 8) where the zero slope is not emerging due 

to insufficient number of points in the data set.  

 Therefore, looking for correlation dimensions in a fine timescale rainfall series is totally 

useless: the correlation dimension is simply zero for any embedding dimension. Positive 

estimated dimensions in rainfall series simply indicate that a wrong range of the scale ε was 

used. For example, if the correlation dimension in Figure 4 had been estimated around ε = 

10–2, the resulting D2 would be in the range 0.2 to 1.5 for embedding dimensions 1 to 5. Note 

that, by definition (equations (8) and (9)) the correlation dimension is theoretically determined 

for ε → 0, which means that in practice the lowest possible region of the scale must be used in 

estimations. 

 The problems of intermittency are not unique to rainfall series that contain zeros. 

Streamflow series display another type of intermittency, as the flow shifts among different 

regimes, low and regular flows, and floods. For such kinds of data series, that exhibit 

intermittency without including zeros, Graf von Hardenberg et al. (1997b) have shown that 
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the standard algorithms fail to estimate correctly the dimensions of processes characterized by 

intermittency, while giving no warning of their failure. In addition, they demonstrated that the 

Grassberger-Procaccia algorithm, applied on a time series from a composite chaotic system 

with randomly driven intermittency, estimates a very small dimension (e.g. D2 = 1 or smaller) 

although the actual dimension of the system is infinite (as they assumed randomly driven 

intermittency). Finally, they proposed ways to refine the algorithm so as to obtain correct 

results. The simplest of them is to filter the data by excluding all the delay vectors x having at 

least one component xi < c, where c an appropriate cutoff value (typically a small percentage, 

e.g. 5%, of the average of the data series) that leaves out all “off” data points of the 

intermittent time series. This simple algorithm was proven very effective. It must be noted, 

however, that it reduces dramatically the number of data points, especially for large 

embedding dimensions, and it is well-known that the number of data points is a crucial issue 

in estimating dimensions, as will be further discussed just below. 

 The results of Graf von Hardenberg et al. (1997a, b) have not been given attention in 

hydrological applications, although hydrological processes of central interest such as rainfall 

and runoff are intermittent. This is a source of significant errors, which act synergistically 

with other sources of errors. 

 The effect of intermittency is closely related to the effect of an asymmetric distribution 

function. A J-shaped distribution that is defined for positive values of the variable and has a 

high coefficient of skewness produces random points whose largest percentage are close to 

zero whereas a small number of points can take very large values. This can be interpreted as 

virtually equivalent to intermittency. Therefore, the methods proposed by Graf von 

Hardenberg et al. (1997b) to recover from flawed values of dimensions are appropriate to 

recover from the effect of an asymmetric distribution function, as well.  
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Effect of sample size 

Kantz & Schreiber (1997, p. 242) show that extremely many data points are needed to recover 

chaos from time series and also describe the high difficulties to identify the dynamics of 

systems that are not low dimensional (e.g. have dimension higher than 1-2). However, they 

avoid suggesting a specific formula to estimate the sufficient number of data points required. 

In hydrological applications two such formulae have been used, that by Smith (1988), 

 Nmin = 42m (16) 

and an approximation of the formula due to Nerenberg & Essex (1990), 

 Nmin = 102 + 0.4 m (17) 

The first suggests that more than 108 and 1016 data points are needed to estimate the 

correlation dimension for embedding dimensions m = 5 and 10, respectively. The second 

decreases these figures significantly to the level of 104 and 106 data points, respectively. Even 

in the second case, however, the required data points are too many even to allow one to think 

of applying the time delay embedding method for dimensions higher than 5. However, in 

most hydrological studies the method has been applied for embedding dimensions much 

higher than 5 (even up to 40) and the resulting correlation dimensions have been interpreted 

as accurate enough to assure the existence of chaotic dynamics. Generally, it is hoped that 

both formulae overestimate the required number of data points. However, to the author’s 

knowledge no proof was ever given that the formulae overestimate the required sample size.  

 The problem of determining the sample size is not in fact too difficult, as it can be reduced 

to a standard statistical problem and be resolved in a rigorous manner. When it is attempted to 

show that a time series originates from a low-dimensional deterministic system rather than a 

stochastic system, it is natural to make the null hypothesis that it originates from a stochastic 

system and then to reject this hypothesis. Under this null hypothesis, the correlation sum for 
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any scale ε and any embedding dimension m is  

 C2(ε, m) = [C2(ε, 1)]m  (18) 

As clarified above, C2(ε, m) is the estimate of the true probability that the distance of two 

points is less than ε. This, along with an independence hypothesis (justified from the 

construction of time delay vectors as will be described later) explains (18). Using classic 

statistical techniques it is shown (Koutsoyiannis, 2006) that the required sample size to 

estimate C2(ε, m) is 

 Nmin = 2 (z(1 + γ) / 2 / c) [C2(ε–, 1)]–m / 2  (19) 

where za is the a-quantile of the standard normal distribution, γ is a confidence coefficient, c is 

the acceptable statistical relative error in the estimation true probability from C2(ε, m) and ε– is 

the highest possible scale that suffices to accurately estimate the correlation dimension for 

embedding dimension 1 (meaning that for ε > ε– becomes inaccurate). It can be observed that 

the proposed formula (19) coincides with (17) if it is assumed (as typically in statistics) a 

confidence coefficient γ = 0.95 for which z(1 + γ) / 2 = 1.96, an acceptable error c = 3% and a 

sufficient C2(ε–, 1) = 0.15 (indeed, 20.5 (1.96/0.03) 0.15–m/2 = 101.97 + 0.41m ≈ 102 + 0.4 m). However, 

(19) is a more general equation and the appropriate values of c and C2(ε–, 1) need to be more 

carefully selected, depending on properties of the time series at hand.  

 This result and its application is demonstrated using an example with a totally random 

system. Specifically, a sequence of 10 000 random numbers from the Weibull distribution 

with shape parameter κ = 1/8 (and scale parameter 1) is used. It is known from the discussion 

above that, although the system is random, the correlation dimension D2(m) does not equal the 

embedding dimension m, but rather is 2 κ m = m / 4. In addition, since the probability 

distribution function is known, it is easy to calculate numerically (using equations (11) and 

(5)) the true (population) values, which the correlation sum C2(ε, 1) and the local slope 
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d2(ε, 1) represent, for any scale ε. Then from (18) the true values of C2(ε, m) and d2(ε, m) can 

be calculated for any embedding dimension m. These  have been plotted in Figure 5 as 

continuous curves. It is observed from the lower panel of Figure 5 that the curve d2(ε, 1) rises 

very slowly from d2(1, 1) = 0 to its limit value d2(0, 1) = D2(1) = 0.25, so that even for ε as 

low as 10–10 the theoretical value d2(10–10, 1) = 0.18, i.e., 28% smaller than the correlation 

dimension. At ε = 10–20, d2(10–20, 1) = 0.245 (only 2% smaller than the true correlation 

dimension). Thus, it may be assumed that the highest acceptable ε is ε– = 10–20 and from the 

upper panel of Figure 5 it is concluded that C2(ε–, 1) = 0.0011 (much lower than 0.15).  

 Until now for this example the generated time series was not used at all. Now, to make the 

statistical calculations, the acceptable statistical error c in the estimation of C2(ε, m) is 

assumed equal to 1%. This is safe enough yet not too small as may seem at first glance: as 

demonstrated in Koutsoyiannis (2006), it corresponds to a much larger statistical error in 

d2(ε, m), which may be as high as 20%; this must be considered in addition to the 

“theoretical” error 2% discussed in the previous paragraph. Thus, the required number of 

points is Nmin = 20.5 × (1.96 / 0.01) × 0.0011–m / 2 = 102.44 + 1.48m = 301.65 + m. This is much higher 

than obtained from (17) and closer to that obtained by (16). (More precisely, the results of the 

current analysis are higher than those of (16) unless m > 17.) For instance, for m = 1, 2, 5 and 

10 it is obtained Nmin = 8 350, 252 000, 6.9×109, and 1.7×1017, respectively. This obviously 

means that it is totally impractical to estimate correlation dimensions even for small 

dimensions, not only because of the difficulty to get such a large sample size (in this example 

this is not so important because data is synthesized) but also because of the huge amount of 

calculations required (note that the number of comparisons is in fact proportional to Nmin
2m). 

 Because the actual sample size in the example N = 10 000 is greater than Nmin = 8 350 for 

m = 1, reliable estimates of C2(ε, 1) and d2(ε, 1) can be obtained for ε even smaller than ε– = 

10–20 down to a critical value ε–1. This can be estimated from (17) by replacing Nmin with N 

and ε– with ε–1. Solving then for C2(ε–, 1) for m = 1 it is found that C2(ε–1, 1) = 2 [z(1 + γ)/2 / 
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(c N)]2. In this example, C2(ε–1, 1) = 0.000768, which, according to the graph of the upper 

panel of Figure 5 (after a small extrapolation) corresponds to ε–1 = 2.1×10–21.  

 If the same sample size N is used for all embedding dimensions, as is the case in most 

applications including this example, then the same critical value of C2 applies to all 

embedding dimensions, i.e.,  

 C2(ε–m, m) = C2(ε–1, 1) = 2 [z(1 + γ) / 2 / (c N)]2  (20) 

This has been plotted as a dashed straight line in the upper panel of Figure 5. This line is 

critical for estimations as all points of C2(ε, m) lying below this line do not have the required 

accuracy. The intersections of this line with the different curves C2(ε, m) determine the critical 

ε–m for each embedding dimension m. Given ε–m the corresponding d2(ε–m, m)  can be found and 

a critical curve in the lower panel of Figure 5 can be plotted (dashed line), above which all 

points do not have the required accuracy. It must be noted that this example was structured 

based on the known probability distribution function of the variable. However the method 

developed can be applied even when the distribution function is not known, as will be seen in 

next examples. 

 In conclusion, the proposed approach to determine the required sample size or, 

equivalently, the adequacy of estimations for a given sample size, involves two characteristic 

scales: the upper limit ε–, which is common for all embedding dimensions, and the lower limit 

ε–m which is an increasing function of dimension. The required sample size Nmin for 

embedding dimension m is determined setting ε–m = ε–, whereas for a given N an estimation is 

accurate when ε–m ≤ ε–.  Furthermore, the limits ε–m and ε– can be determined in a geometrical 

manner even without using the sample size N. The steps are the following. 

1. Make plots of C2(ε, m) and d2(ε, m) for several embedding dimensions m. 

2. In the plot of d2(ε, 1) (i.e., for embedding dimension 1) locate a region where d2(ε, 1) 

becomes constant and relatively smooth. Set ε– and ε–1 the upper and lower limit of this 
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area, respectively (meaning that above ε–, d2(ε, 1) is not constant and below ε–1 it 

becomes too rough). 

3. From the plot of C2(ε, 1) determine C2(ε–1, 1). 

4. Set C2(ε–m, m) = C2(ε–1, 1) and determine ε–m for each m. 

5. For those m where ε–m ≤ ε– and d2(ε, m) is relatively constant in the interval (ε–m, ε–), 

determine D2(m) as the average d2(ε, m) on this interval. For those m where ε–m > ε–, 

D2(m) cannot be determined.  

If for any reason the sample size is different for different embedding dimensions (e.g. Nm), the 

equation in step 4 should be replaced by  

 C2(ε–m, m) = C2(ε–1, 1) (N1 / Nm)2. (21) 

 A geometrical view of the procedure is possible by plotting the equations ε = ε– and ε = ε–m 

in both diagrams of C2(ε, m) and d2(ε, m). In the example of Figure 5 it is clear that only D2(1) 

can be estimated with N = 10 000 points, provided that ε– = 10–20. For instance, a larger ε– = 

10–10 would enable estimating D2(2), D2(3) and D2(4) as well, as becomes apparent by 

observing the dashed curve in the lower panel of Figure 5. However, the cost to be paid in this 

case would be the underestimation of dimensions by 28%, as discussed above, which notably 

is due to theoretical rather than statistical reasons.  

Effect of autocorrelation 

Hydrological time series, especially on fine timescales, are characterized by high 

autocorrelation coefficients. Autocorrelation in stochastic processes may be misleadingly 

interpreted as low dimensional determinism when applying the standard algorithms for 

estimating dimensions. Examples of a highly autocorrelated stochastic processes (including 

fractional Gaussian noise and other simpler linear and nonlinear processes) in which the naïve 

application of the standard methods leads erroneously to low dimensional attractors (down to 
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1), have been offered by Osborne & Provenzale (1989); Theiler (1991) and Provenzale et al. 

(1992) (see also Tsonis, 1992, p. 174).  

 In autocorrelated series a larger number of data points may not suffice to avoid misleading 

results. Another important issue is the appropriate selection of the time delay τ in constructing 

delay vectors. Several authors have discussed this (see among others Tsonis, 1992, pp, 151-

156; Abarbenel et al., 1993; Kantz & Schreiber, 1997, pp. 130-134; Sivakumar, 2000). The 

most common approach is to choose as τ the time where the autocorrelation function decays 

to 1/e, whereas e in the base of the natural logarithms. Other options are to choose the time 

where the first minimum of the time delayed mutual information is located, or to optimize it 

inside the interval defined by the times of the 1/e decay of autocorrelation and the minimum 

of mutual information. An additional means of alleviating the effect of temporal correlation is 

to exclude delay vectors that are close in time. This is attained by adopting a relatively high 

value of w in equation (12) that is used for the estimation of correlation sums. 

 The effect of autocorrelation may act synergistically with the effect of an asymmetric 

distribution function and the effect of sample size. To demonstrate this, a data series of 10 000 

autocorrelated values with J-shaped distribution function was considered. This was generated 

in the following manner: For the data point yn, 8 random numbers were generated at a first 

step from the Pareto distribution with shape parameter 1/8 and at a second step the random 

number whose logarithm was nearest to ln yn – 1 was chosen as yn. This technique resulted in a 

series with a Markovian dependence structure with lag one autocorrelation 0.72 and 

approximately Pareto distribution with shape parameter κ = 0.44. Therefore it is expected that 

the correlation dimension in m dimensions of this series will be D2(m) = 2 κ m = 0.88 m. The 

empirical estimates of the correlation sums and their local slopes are shown in Figure 6. These 

estimates were based on delay time τ = 4, which corresponds to the 1/e (= 0.37) decay of the 

autocorrelation function. It is observed that the empirical correlation dimension for m = 1 

agrees perfectly with the theoretical expectation D2(1) = 0.88. However the empirical D2(2) is 
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around 1, significantly less than the expectation 1.76. The technique proposed in the previous 

sub-section for assessing the accuracy of empirical estimation suggests that accurate 

estimations of correlation dimensions for m > 2 are not possible, as demonstrated graphically 

in Figure 6. By ignoring this and considering all estimated dimensions as accurate, it would 

be concluded that correlation dimensions, estimated for ε in the interval (10–4, 10–3), saturate 

at about 1. This would lead to the claim that a purely stochastic system is a low-dimensional 

deterministic system.  

 To recover from this inaccurate result and simultaneously to show the synergistic action of 

the several effects, the technique discussed earlier due to Graf von Hardenberg et al. (1997b)  

of cutting off the very small values, was used, in this case recovering from the effect of the 

high skewness. Applying a cutoff threshold 0.01, the correlation sums and local slopes were 

determined and plotted in Figure 7 (upper and lower panel, respectively). Clearly here, it can 

be observed that for m = 1 and 2, D2(m) = m, whereas for higher dimensions, although 

accurate estimations are not possible, the figures indicate a tendency for high D2(m). Thus, the 

cutoff technique helps to avoid erroneous results in this example. 

REAL WORLD EXAMPLES 

In light of the above theoretical analyses, some real world hydrometeorological series, which 

include rainfall on daily, sub-daily and monthly timescale, relative humidity, and streamflow 

have been examined. The complete study is presented in Koutsoyiannis (2006); here only a 

summary is given. 

 As explained earlier, the role of rainfall is crucial in investigating chaos in hydrological 

processes.  Some arguments that the rainfall process cannot be low-dimensional deterministic 

were also presented without applying any algorithm. However, just for demonstration Figure 

8 gives a graphical depiction of the standard algorithm of estimating dimensions to a 

historical rainfall data series (rainfall in Vakari, western Greece, characterized by wet climate, 
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11 476 daily data 60% of which are zero; skewness 4.59; lag-one autocorrelation 0.35). As 

already discussed, due to the presence of zeros in the data series the local slopes for all 

embedding dimensions become zero for small scales (ε ≤ 0.0004). Thus, this figure says 

nothing about the capacity dimension of the “attractor” of the rainfall process. If the small 

scales were incorrectly ignored and instead scales in the region 0.01-0.1 were chosen, small 

positive dimensions, not exceeding 1.5 even for embedding dimensions 8 would be estimated. 

If such plots were also constructed for embedding dimensions 10, 20, 30 and so on, totally 

ignoring the astronomical number of data points required to do estimations in these 

dimensions, a conclusion that there is a low dimensional chaotic attractor here with dimension 

1.5 would be very likely. This behaviour is representative of all rainfall series examined (in 

drier climates the “dimension” is even smaller) and may explain claims in several studies for 

very low dimension of the rainfall process. This, however, must be a totally erroneous result. 

Even if zero values are excluded and the algorithm due to Graf von Hardenberg et al. (1997b) 

with cutoff value slightly higher than zero is applied, again the local slopes d2(ε, m) are zero 

for small scales. This is the result of round-off errors in the data values, rather than a 

theoretically consistent result. But in this case the local slopes tend to more reasonable values 

(in this example to about 0.7 and 1.4 for m = 1 and 2, respectively; Koutsoyiannis, 2006). To 

minimize the effect of round-off errors the cutoff value should be increased to 2 mm. In this 

case the sample size becomes too low to allow for any accurate estimation but shows 

(Koutsoyiannis, 2006) that the correlation dimension D2(m) tends to the embedding 

dimension m, which means that the time series is better represented as the outcome of a 

stochastic process. 

 If the presence of zeros in a rainfall time series is a strong obstacle to analyzing the 

presence of chaos, one may think that going to a much finer timescale and limiting the 

analysis strictly to a rainy period (a single storm) one could find the deterministic chaos. The 

idea of a deterministic (meaning low dimensional?) evolution of a storm has been favoured 
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long before hydrologists became involved with chaos. For example, Eagleson (1970, p. 184) 

states “The spacing and sizing of individual events in the sequence is probabilistic, while the 

internal structure of a given storm may be largely deterministic”.  

 To explore this idea a storm time series measured with high temporal resolution (10 s) was 

used. This data set (size 9679; skewness 4.83; lag one autocorrelation 0.88) corresponds to 

one of several storms that were measured at the University of Iowa using devices that are 

capable of high sampling rates (Georgakakos et al., 1994). As described in Koutsoyiannis 

(2006), the results of the standard algorithm do not support nor prohibit the existence of low-

dimensional deterministic dynamics but those of the Graf von Hardenberg et al. (1997b) 

algorithm excluding data values smaller than 1% of the maximum value (to recover from zero 

slopes that again are due to round-off errors) show a tendency that D2(m) = m, which indicates 

the absence of chaotic behaviour. 

 It has been found that many systems are composed of a huge number of internal 

microscopic degrees of freedom, but nevertheless produce signals which are found to be low 

dimensional (Kantz & Schreiber, 1997, p. 34). The coupling between the different degrees of 

freedom and an external field of some kind, lead to collective behaviour which is low 

dimensional. The reason is that most degrees of freedom are either not excited at all or 

“slaved” (Kantz & Schreiber, 1997, p. 239).  

 By analogy, if a system on a fine timescale appears random, one may think of some 

collective behaviour on a coarser timescale, which could result in a low-dimensional attractor. 

In this respect, a rainfall series on a coarse (monthly) timescale, was studied. This is from 

Athens, Greece, characterized by a dry climate, and contains 1586 monthly data values being 

the longest rainfall record in Greece and one of the longest in the world (zero values 9%; 

skewness 1.75; lag one autocorrelation 0.32). As can bee seen in Koutsoyiannis (2006), due to 

the small record size only the estimate of D2(1) is accurate and is about 1. For higher 

dimensions no accurate estimations can be obtained, but again the tendency is that D2(m) = m, 
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which does not signify a chaotic behaviour. 

 Since difficulties were found in identifying chaos in rainfall on all timescales, it could be a 

good idea to move to another related process in the direction of meteorology. The 

meteorological variable most closely related to rainfall is the relative humidity since when it 

rains, it approaches saturation (i.e., the value 100%). A relative humidity series is totally free 

from zeros, intermittency, and high skewness which makes its study easier and the results 

more reliable. The correlation sums and their local slopes of a relative humidity time series 

for Athens, Greece, on hourly timescale (18 888 data values; skewness –0.26; lag one 

autocorrelation 0.97)  are shown in Figure 9 vs. scale ε for embedding dimensions m = 1 to 8. 

It is observed on the plots of m = 1 that a long scaling area appears between ε– = 0.08 and ε–1 = 

0.00092. Thus, ε–m < ε–, for m ≤ 4, as shown graphically in Figure 9, which means that D2(m) 

can be estimated accurately for m = 1 to 4. The estimated values are D2(m) = m, a result that 

again does not allow any hope for low-dimensional determinism.  

 Finally, the most representative hydrological process has been studied using a daily 

streamflow series (Pinios River, Greece; 8 246 data values of which 1435 were missing data 

that were left unfilled; skewness 3.46; lag one autocorrelation 0.86). As explained earlier, a 

streamflow series must be regarded as intermittent even if it is free from zeros. As in rainfall 

examples, again here an accurate estimation of D2(m) is possible only for m = 1; this is D2(1) 

≈ 1. For higher embedding dimensions m, a tendency appears for D2(m) increasing with m, 

which again does not indicate a chaotic behaviour (Koutsoyiannis, 2006).  

SUMMARY AND CONCLUSIONS 

The debate about the presence of low dimensional deterministic (chaotic) dynamics in 

hydrological processes such as rainfall and runoff is still active, almost 2 decades after the 

first publications claiming detection of such dynamics and some contemporaneous studies 

expressing scepticism about such claims. This paper has attempted to offer some additional 
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insights on this discussion by studying several aspects of dynamical systems and their 

application to the characterization of the hydrological processes. 

 The arguments that are presented and studied in the paper are the following: 

1. A time series that contains periods with zero values, as does rainfall, can hardly be the 

outcome of a low-dimensional deterministic dynamical system. 

2. In addition, since rainfall is the input that mobilizes all other hydrological processes in 

a catchment, such as streamflow, these processes can hardly be chaotic, too.  

3. An attractor dimension as low as 1 or even smaller, which in some cases were claimed 

for hydrological processes, would be directly visualized via delay representation 

graphs. This however, has never come into light, simply because in fact such graphs 

manifest space filling clouds rather than one-dimensional structures. 

4. The attractor dimension must be consistent with the dimension used to embed it 

according to Whitney’s embedding theorem. For example, if an attractor dimension 

were 1 or less, then a three dimensional embedding space would suffice to embed it. 

The fact that the required embedding dimension in some cases was reported to be as 

high as 10-40 simply indicates inconsistency of results. 

5. The embedding theorems are in fact based on the concept of the capacity dimension 

whereas the standard algorithms to determine attractor dimensions use the concept of 

the correlation dimension. The two dimensions are most often identical but it is proved 

that if the distribution function is J-shaped with high skewness, as is the case with 

hydrological processes on fine timescales, the correlation dimension is smaller than 

the capacity dimension. This may produce misleadingly small estimated dimensions. 

6. Intermittency (which is apparent in hydrological processes – not only in rainfall but in 

streamflow as well) is another factor that can result in a misleading low attractor 

dimension even in infinite dimensional systems. This known result has not been given 

the required attention in hydrological studies investigating chaos. 
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7. Another known issue is the fact that extremely many data points are needed to recover 

chaos from time series, which are hardly available in hydrological processes. This has 

not been given the required attention in hydrological studies (albeit mentioned 

sometimes) because perhaps the calculation of the sample size is ambiguous.  Here, 

using statistical reasoning, a rigorous methodology has been proposed for estimating 

the required sample size for a certain embedding dimension or, conversely, the 

maximum allowed embedding dimension for a given sample size. It turns out that the 

required sample size in hydrological time series may be even more exceptionally high 

than believed due to the asymmetric distribution functions. 

8. The high autocorrelation that characterizes many hydrological processes, mostly on 

fine timescales, is another factor that, acting synergistically with the other factors 

described above, may be misleadingly interpreted as low dimensional determinism. 

 All these arguments have been demonstrated using appropriately synthesized theoretical 

examples. Finally, in light of the theoretical analyses and arguments, typical real-world 

hydrometeorological time series, which include rainfall on daily, fine sub-daily, and monthly 

timescale, relative humidity, and streamflow, have been explored and none of them is found 

to indicate the presence of chaos but, rather, correspond to the outcomes of stochastic 

systems. 
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Figure 1 Delay representation of a series of 10 000 points generated from the linearly routed 

logistic equation (see text) in two (upper panel) and three (lower panel) dimensions.  
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Figure 2 Delay representation of a series of 10 000 daily rainfall depths in two (upper panel) 

and three (lower panel) dimensions.  
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Figure 3 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values with Pareto distribution with exponent 1/8.  
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Figure 4 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random values, 80% of which are generated from the uniform distribution and 

the remaining are zeros (located at random).  
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Figure 5 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

independent random points from the Weibull distribution with shape parameter 1/8. 

Continuous lines represent the true (population) quantities, whose estimates are C2(ε, m) and  

d2(ε, m). 
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Figure 6 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from a series of 10 000 

autocorrelated random values having approximately Pareto distribution with shape parameter 

0.44.  
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Figure 7 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from the same series as in Figure 6 

but excluding points having at least one coordinate smaller than 0.01.  
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Figure 8 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from the daily rainfall series at the 

Vakari raingauge.  
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Figure 9 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 

vs. scale ε for embedding dimensions m = 1 to 8 calculated from the relative humidity series 

at Athens.  

 


