Stochastic rainfall forecasting by conditional simulation using a scaling model

Presentation at the XIX EGS General Assembly Session HS2/OA13/02 "Stochastic Modelling of Rainfall in Space and Time"

By N. Mamassis, D. Koutsoyiannis

Department of Civil Engineering
Division of Water Resources, Hydraulic & Maritime Engineering
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

and E. Foufoula-Georgiou

St Anthony Falls Hydraulic Laboratory
Department of Civil and Mineral Engineering
UNIVERSITY OF MINNESOTA

Topics of the presentation

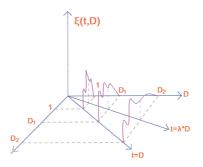
- ☆ Synopsis of the Scaling Model of Storm Hyetograph
- ★ Data presentation and model parameters
- ☆ Performance evaluation
- ☆ General simulation scheme
- ☆ Conditional simulation scheme
- Application of the model for conditional simulation
- ☆ Conclusions

The Scaling Model of Storm Hyetograph – General Structure

Main hypothesis

$$\begin{split} \left\{ \xi(t,D) \right\} &= \left\{ \lambda^{-H} \xi(\lambda t \,,\, \lambda D \,) \right\} \\ \text{where } & \xi(): \text{ instantaneous} \\ & \text{rainfall intensity} \\ & D: \text{ duration of the event} \end{split}$$

t: time (0 \leq t \leq D) H: scaling exponent



Secondary hypothesis: Weak stationarity (= stationarity within the event)

$$E[\xi(t,D)] = c_1 D^H$$

$$E[\xi(t,D) \xi(t+\tau,D)] = \varphi(\tau \mid D) D^{2H}$$

$$\varphi(\tau \mid D) = k(\tau \mid D)^{-\beta}$$

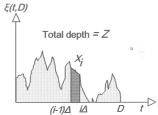
Stochastic rainfall forecasting by conditional simulation using a scaling model

The Scaling Model of Storm Hyetograph – Main statistics

Statistics of total depth, Z

$$E[Z] = c_1 D^{H+1}$$

 $Var[Z] = c_2 D^{2(H+1)}$
where $c_2 = c_1^2 + 2k / [(1-\beta)(2-\beta)]$



Statistics of incremental depth, X

E[
$$X_i$$
] = $c_1 \delta D^{H+1}$
Var[X_i] = $[(c_2 + c_1^2) \delta^{-\beta} - c_1^2] \delta^2 D^{2(H+1)}$
Cov[X_i, X_j] = $[(c_2 + c_1^2) \delta^{-\beta} f(|j-i|, \beta) - c_1^2] \delta^2 D^{2(H+1)}$
where $\delta = \frac{\Delta}{D}$, $f(m, \beta) = \frac{1}{2} [(m-1)^{2-\beta} + (m+1)^{2-\beta}] - m^{2-\beta}$ $(m > 0)$

The Scaling Model of Storm Hyetograph - Estimation of parameters

Parameters

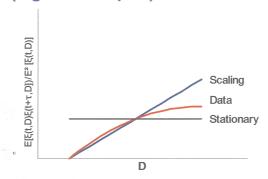
- H scaling exponent
- c_1 mean value parameter
- c_2 variance parameter
- β correlation decay parameter

```
estimated from E[Z] = c_1 D^{H+1} (by least squares) estimated from c_2 = Var[Z] / D^{2(H+1)} estimated from \beta = 1 - \frac{\ln(E[X_i X_{i+1}] / E[X_i^2] + 1)}{\ln 2}
```

Stochastic rainfall forecasting by conditional simulation using a scaling model

The Scaling Model of Storm Hyetograph – Modification

Dependence of covariance structure on duration (logarithmic plot)



Correction to the correlation decay parameter

$$\beta = \beta_0 + \beta_1 \ln(D) \quad (\beta_1 < 0)$$

The Scaling Model of Storm Hyetograph – General properties

- Not description of the structure of a specific storm
- Statistical description and efficient parametrisation of a population of storms
- This population can include:
 - ♦ All storms,
 - ♦ Storms of a specific season,
 - ♦ Storms with intensity and/or depth greater than a given threshold, etc.
 - ◆Point rainfall or areal (average) rainfall
- Simple construction of generation schemes for simulation (sequential, disaggregation, conditional)
- Consistency with, and parametrisation of, normalised mass curves

Stochastic rainfall forecasting by conditional simulation using a scaling model

Data presentation and model parameters

Data sets

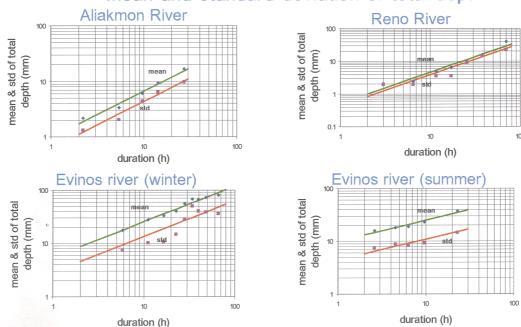
Data 30t3				
River Basin	Aliakmon (Greece)	Reno (Italy)	Evinos (Greece)	Evinos (Greece)
Point or areal rainfall	Point	Areal	Point	Point
Event type	All	hourly depth >1 mm	hourly depth > 7 mm or daily depth > 25 mm	hourly depth > 7 mm or daily depth > 25 mm
Season	April	All year	Oct Apr.	May - Sep.
Record period	13 years (1971-1983)	2 years (1990-1991)	20 years (1971-1990)	20 years (1971-1990)
Number of events	89	149	200	93

Model parameters

Н	-0.163	-0.051	-0.332	-0.604
c1	0.964	0.518	5.475	10.042
c2	0.392	0.190	8.373	19.232
β_0	0.635	0.434	0.620	0.608
β_1	-0.1	-0.065	-0.109	-0.020

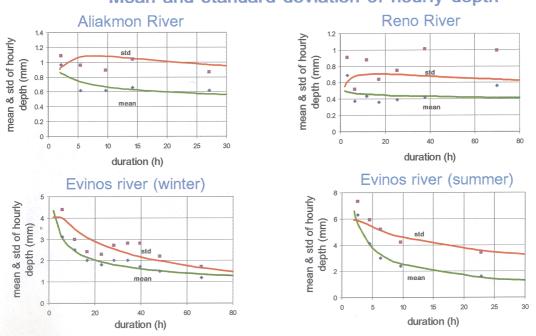
Performance evaluation

Mean and standard deviation of total depth



Stochastic rainfall forecasting by conditional simulation using a scaling model

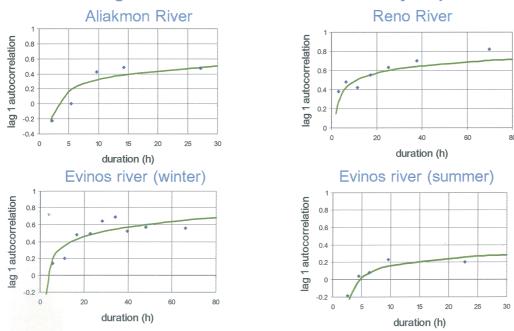
Performance evaluation Mean and standard deviation of hourly depth



Stochastic rainfall forecasting by conditional simulation using a scaling model

Performance evaluation

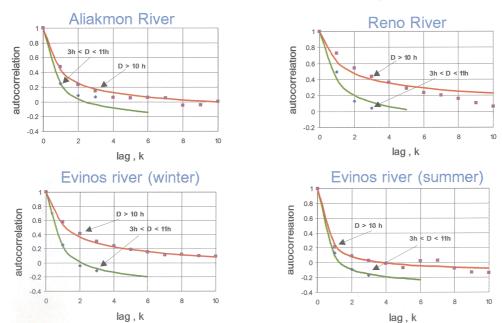
Lag 1 autocorellation coef. of hourly depth



Stochastic rainfall forecasting by conditional simulation using a scaling model

Performance evaluation

Autocorrelation function of hourly depth



Stochastic rainfall forecasting by conditional simulation using a scaling model

General simulation scheme

Sequential scheme

- 1. Calibration of scaling model: Estimation of parameters c_1 , c_2 , β (or β_0 , β_1), H
- 2. Calculation of E[X], Cov[X,X], $\mu_3[X]$
- 3. Formulation of generating scheme

$$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} = \begin{bmatrix} \omega_{11} & 0 & \cdots & 0 \\ \omega_{21} & \omega_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \omega_{k1} & \omega_{k2} & \cdots & \omega_{kk} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_k \end{bmatrix}$$
 or $\mathbf{X} = \Omega \mathbf{V}$ (V_i independent, appr. 3-par. gamma)

- 4. Estimation of parameters of the generating scheme
 - a. Coefficient matrix

$$\Omega\Omega^{\mathsf{T}} = \mathsf{Cov}[\mathbf{X}, \mathbf{X}] \Rightarrow \Omega$$
 by decomposition (lower triangular)

b. Statistics of V_i

$$\omega_{ii} E[V_i] = E[X_i] - \sum_{i=1}^{i-1} \omega_{ii} E[V_i]$$

$$Var[V_i] = 1$$

$$\omega_{ii}^3 \mu_3[V_i] = \mu_3[X_i] - \sum_{i=1}^{i-1} \omega_{ii}^3 \mu_3[V_i]$$

- 5. Generation of Vi
- 6. Calculation of Xi

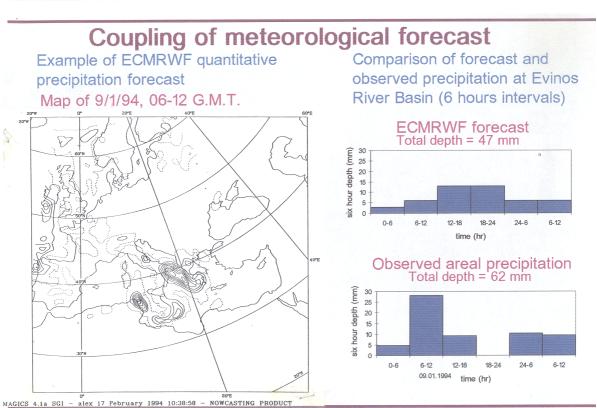
Stochastic rainfall forecasting by conditional simulation using a scaling model

General simulation scheme

Disaggregation scheme

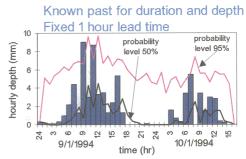
- 1. Generation of total depth Z
- 2. Application of the sequential procedure to obtain an initial sequence \mathcal{X}_i
- 3. Determination of the final (adjusted) sequence $X_i = \frac{X_i^k}{\sum_{i=1}^k X_i^k} Z_i$

Conditional simulation scheme Generation of duration D Step 1 Predicted future (Total duration Known past is given approximately from **Conditions** (Total duration > meteorological forecasts) current duration) Generation of hourly depths Xj Step2 Fixed, L Not fixed (adaptation Generation of all Lead time of parameters remaining steps) every L steps) Known past + Predicted Known past + Predicted future future Total depth for a Total depth is given **Conditions** future time period (6 hours) Known past approximately from is given approximately from meteororological forecasts meteororological forecasts Generation Sequential Disaggregation scheme scheme scheme Stochastic rainfall forecasting by conditional simulation using a scaling model

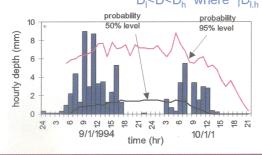


Stochastic rainfall forecasting by conditional simulation using a scaling model

Application of the model for simulation



Known past for duration and depth. Not fixed lead time Estimates for future: $Z_1 < Z < Z_h$ where $|Z_{l,h} - Z| = 0.3*Z$ where $|D_{l,h} - D| = 0.2*D$



Stochastic rainfall forecasting by conditional simulation using a scaling model

Conclusions

- 1. The Scaling Model of Storm Hyetograph is suitable for a variety of data sets regardless of season and rain type.
- 2. It can support a variety of stochastic simulation schemes taking into account any information (condition) for the past or future of rainfall.
- 3. Specifically, it can be combined with a meteorological forecast to disaggregate it into smaller time steps, also adding a stochastic component to the deterministic forecast.