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Part 1: Theoretical framework




How nature works — and how we can model her

Property Mathematical formulation
* She preserves a few * One equation per preserved quantity:
quantities a(s)=c, i=1 k
(mass, momentum ! v T
energy, ....) where ¢, constants; s the size n vector of state variables (n >k,
sometimes 7 = )
* She i)ptimize?s a * A single “optimation”:
single quantity ..
(Dependent on the optimize f(s)
specific system - [i.e. maximize/minimize f(s)] This is equivalent to many
Difficult to find equations (as many as required to determine s)
what this quantity Conversely, many equations can be combined into an
is) “optimation”
¢ GShe disallows some ¢ Inequality constraints:
states .
(s) = =1,...
(Dependent on the h](s) 0, J oo M
specific system — ¢ In conclusion, we may find how nature works and model
Maybe difficult to her effectively solving the problem:
find) optimize £(s)
s.t. g(s) =c, =

i ..
h]-(s)ZO, j=1,..,m

Optimizable quantity in simple systems

e Fermat's principle for the light propagation

— The path taken between two points by a ray of light is the
path that can be traversed in the least time

— More correct to substitute “extremal” (or “stationary”) for
“least” (e.g. in concave mirrors the light path corresponds to
maximum time)

* Principle of least action (Hamilton’s principle — applicable both
in classical and in quantum physics)

— From all possible motions between two points, the true
motion has least action

— More correct to substitute “extremal” (or “stationary”) for
“least”




Optimizable quantity in complex systems

Entropy — entropie — Entropie — entropia — entro ia — entropl - entr0p1a -
entroopia — entropija — 9HTPOITHS — EHTPOTIIS — -T2 hAE— - odia—
DINVIN— E—:VTQOTCLO(

The word is ancient Greek (evtooTia, a feminine noun meaning: turning
into; turning towards someone’s position; turning round and round)

The scientific term is due to Clausius (1850); the entropy concept was
fundamental to formulate the 2nd law of thermodynamics

Boltzmann (1877) (later complemented by Gibbs, 1948), gave it a statistical
mechanical content, showing that entropy of a macroscopical stationary
state is proportional to the logarithm of the number w of possible
microscopical states that correspond to this macroscopical state

Shannon (1948) generalized the mathematical form of entropy and also
explored it further

At the same time, Kolmogorov (1957) founded the concept on more
mathematical grounds on the basis of the measure theory

Entropy is a measure of uncertainty, or (depending on the discipline)
disorder and complexity

The principle of maximum entropy (ME) and the
marginal distribution

¢ The Boltzmann-Gibbs-Shannon entropy for a continuous random

variable X with density function f(x) is by definition (e.g. Shannon,
1949; Papoulis, 1991)

=E(~In f(x) jf (x))dx

* The principle of ME, as formahzed by E.T. Jaynes (1957a, b), states that

the (unknown) density function f(x) of a random variable X is the one
that maximize the entropy S, subject to any known constrains

Application of the ME principle using the Boltzmann-Gibbs-Shannon
entropy with simple constraints of known mean p and variance o2
results in

fix) =exp(-Ag— Ay x = A, x?) 1)
where A, A, and A, are parameters depending on the known mean and
variance; inspection of (1) shows that it is the normal density function

In statistical physics, if X denotes the momentum of molecules or
atoms in a gas volume, the mean and variance constraints correspond
precisely to the principles of preservation of momentum and energy




An entropic approach to rainfall — Step 1

Let X; denote the rainfall rate at time i discretized at a fine time scale (tending
to zero)

What we definitely know about X is X; >0

Maximization of entropy with only this condition is not possible
Now let us assume that rainfall has a specific mean p
Maximization of entropy with constraints

X.>0, E[X]= ij(x)dx=,u
results in the exponent}al distribution: f(x) = exp(-x/u)/u

In addition, let us assume that there is some time dependence of X,
quantified by E[X,, X;, ] =; this will introduce an additional constraint for
the multivariate distribution

o0

E[X: Xii1] = J xixio1 flenxic ) dvdxi 1 =y=p o+

Here p is the correlation coefficient (p > 0) and o is the standard deviation
(0 = u for the exponential distribution and thus y = p 6>+ 2= (p + 1) u> > u?)

Entropy maximization in multivariate setting will result (?) in Markovian
dependence

An entropic approach to rainfall — Step 2

¢ The constant mean constraint in rainfall modelling does not result

from a natural principle — as for instance in the physics of an ideal gas,
where it represents the preservation of momentum

Although: it is reasonable to assume a specific mean rainfall, we can
allow this to vary in time

In this case we can assume that the mean at time i is the realization of a
random process M; which has mean u and lag 1 autocorrelation pM > p

Application of the ME principle will yield that M, is Markovian with
exponential distribution

Then application of conditional distribution algebra results in

£x) =2 Ko(2 (/)" , () = 1= 2 (/)2 Ko (2 (/)2
where K, (x) is the modified Bessel function of the second kind
The moments of this distribution are E[X"] = u" n!? (note: in
exponential distribution E[X"] = u" n!) so that

E[X]=u, Var[X] =3 u2 —» Cy=o/u=V3>1
The dependence structure becomes more complex than Markovian
(difficult to find an analytical solution)




An entropic approach to rainfall — Step 3

* Proceeding in a similar manner as in step 2, we can now replace the
constant mean p of the process M, with a varying mean, represented
by another stochastic process N; with mean u and lag 1 autocorrelation
pr>pY>p

* In this manner we can construct a chain of processes, each member of
which represents the mean of the previous process

* By construction, the lag 1 autocorrelations of these processes form a

monotonically increasing sequence, i.e. ....>pN>pM>p
* The scale of change or fluctuation of each process of the chain is a
monotonically increasing sequence, i.e. .... > gV >gM > g, where

g := (-In p)7L; the scale of fluctuation represents the time required for
the process to decorrelate down to an autocorrelation 1/e

* The (unconditional) mean of all processes is the same, u

¢ All moments except the first form an increasing sequence as we
proceed through the chain; higher moments increase more

* Analytical handling of the marginal distribution and the dependence
structure is very difficult

* However we can easily inspect the idea using Monte Carlo simulation

A demonstration using a chain with three processes

e Simulation of a Markovian process with exponential distribution is
easy and precise — a special case of the Gamma autoregressive
model (GAR; Lawrance and Lewis, 1981; Lawrance, 1982; Fernadez
and Salas, 1991) for shape parameter equal to 1 (will be denoted
EAR)

e Simulations with a length 10 000 were performed for the following
cases (for comparison)

Case| 1 EAR 2 EAR 3 EAR
Process L M L N M L
Processes | Mean 1 1 - 1 - -

in chain Lag 1 autocorrelation | 0.47 09 |025] 099 | 0.85 0.2

Scale of fluctuation 1.33 95 | 0.72 | 995 6.2 0.62

Final Mean 1 1 1

process Standard deviation 1 1.73 2.75

Lag 1 autocorrelation | 0.47 0.47 0.47
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Simulation results — distribution function
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As the number of processes in the chain increases, the distribution
tail moves toward higher “rainfall intensity” values and its shape
changes from exponential type to power type
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Simulation results — dependence structure

o ] +« 1EAR
! i o 2EAR
. . 0.1+
Logarithmic 1
plot of
autocorrelation
coefficient p; ’ v * %o
. (m}
vs. lag j ] \\0 e g, .
* o A *
0.01 : : — \\ 4 : o ""’?‘HQD‘
1 10 100

As the number of processes in the chain increases, the shape of the
autocorrelation function changes from Markovian (exponential decay —
short range dependence) to power type (long range dependence)

The latter type is a characteristic of the Hurst phenomenon, which can be
represented by a simple scaling stochastic process (SSS process)
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0.5

Simulation results — variation of the aggregated process

Logarithmic
plot of
standard
deviation o®
of the process
aggregated at
scale k, vs.
scale k

-0.5

log k

The slope of the logarithmic plot (as k —o) is H — 1 where H is the Hurst
exponent

The slope in the “1 EAR” case is 0.5, i.e. H = 0.5, meaning no Hurst behaviour
The slope in “3 EAR” is —0.22, i.e. H = 0.78, suggesting a Hurst behaviour
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Simulation .
results —
general
behaviour

Plots of parts of the
generated time Xi
series (selected so as

to include the
maximum over

10 000 generated
values)

As the number of
processes in the x;
chain increases the
general shape
changes:

From monotony to
rich patterns

From steadiness to
intermittency
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Paradoxes of the classical entropic framework and
required adaptations

* The classical entropy maximization theory cannot produce a

stochastic process that is a realistic representation of rainfall in a
single optimization

Despite the fact that the compound processes resulting from 2, 3,
... chain processes have greater variance (and uncertainty) than
a single EAR process, the classical definition of entropy assigns
to the former a lower value of entropy

Despite the fact that the long-range dependence implies higher
uncertainty than short-range dependence, the classical definition
of entropy assigns to the former a lower value of entropy

The tirst paradox can be remedied by generalizing the entropy
definition

The second paradox can be remedied using a multi-scale setting
of the entropy maximization
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The Tsallis entropy and long distribution tails

A generalization of the Boltzmann-Gibbs-Shannon entropy has been
proposed by Tsallis (1998, 2004)

1—j(f(x))q dx

S, =—=

q

qg-—1
with g =1 corresponding to the Boltzmann-Gibbs-Shannon entropy
Maximization of Tsallis entropy with known u and o2 yields

fo)=[1+E Mg+ A x+ A, 23]V x20 (2)

where A, A, A, and £ are parameters; it can be shown that (2) is
mathematically equivalent to the so-called Tsallis distribution (Tsallis
et al., 1995; Prato and Tsallis, 1999)

Clearly, this has an over-exponential (power-type) distribution tail

An alternative approach is to assume a normalizing nonlinear
transformation z = g(x) (based on (2)) and then apply the classical
definition of entropy on z
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The principle of maximum entropy on a multivariate
setting, and the long autocorrelation tails

Maximum entropy + Dominance of a single time scale - Time
independence

Maximum entropy + Time dependence + Dominance of a single
time scale - Markovian (short-range) time dependence

Maximum entropy + Time dependence + Equal importance of
time scales — Time scaling (long-range dependence / Hurst
phenomenon)

As there is no reason that nature would choose a specific time
scale for entropy maximization, long autocorrelation tails are
reasonable

The omnipresence of long autocorrelation tails in numerous long
hydrologic time series, validates the applicability of the ME
principle

For details see Koutsoyiannis (2005b)
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Part 2: Testing of the theoretical framework
based on a high temporal resolution rainfall
data set




Premise

* An high resolution data set has been obtained by the Hydrometeorology
Laboratory at the University of lowa using devices that are capable of high
sampling rates, once every 5 or 10 seconds (Georgakakos et al., 1994)

* The data set offers a basis for fundamental investigations that could provide
insights for the characterization and mathematical modeling of the rainfall

process

* A first target of this study is to investigate whether the data verify or falsify
the applicability of the maximum entropy hypothesis, i.e., whether or not

— the coefficient of variation (0/u) at fine scale is greater than 1

— the marginal distribution has long (power type) tail

— the autocorrelation function has a long (power type) tail
* A second target is to investigate whether or not all events, despite large

differences among them, could be regarded as outcomes (sample functions) of

a single stochastic process

e The overall question is: Could a single stochastic process based on maximum

entropy considerations produce a plethora of different types of events
statistically resembling the actual events?
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The original data

120

PlOt Of the high g Event 1 Event 2 Event3 |Event4 |Event5 Event6 Ev7
resolution data set .
(consisting of seven é %]
storms occurred in 3
Iowa in 1990-91 5
40 4
Statistics of the seven w0l
storms and the compound Jm N WM m "
I'eCOI'd Of all Storms ° E) 5000 J 10:)?;0 - 15600 20600 ] 25600 30000
Event # 1 2 3 4 5 6 7 All
Sample size 9697 4379 4211 3539 3345 3331 1034 29536
Average (mm/h) 3.89 050 038 1.14 303 274 270 2.29
St. deviation (mm/h) 6.16 097 055 119 339 220 2.00 411
Coefficient of variation 1.58 195 145 104 112 081 0.74 1.79
Skewness 4.84 9.23 501 207 395 147 0.52 6.54
Kurtosis 4712 11024 3738 552 2734 291 -059 91.00
Hurst Exponent 0.94 076 092 095 090 087 097 094
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Scaling in state

1 - F(x), where F(x)

Logarithmic g ‘
plots of rainfall 3 guope =03
intensity (x) vs. x 2 = —
empirically 3

estimated (by the 1]

Weibull formula)

exceedence .

probability (F*(x) =

o o o o Event 1 ‘ Event 2
is the distribution -1 Event 3 Evont 4
function) for the Event 5 Event 6
seven events 5 Event 7 —— All events
0 1 2 3 4 5
-Log F*(x)

The probability plot of the compound record of all events seems to justity a
long distribution tail, which in a double logarithmic plot is depicted as a
constant nonzero slope of the empirical distribution (or an asymptotic
relationship of the form x ~ [1/F*(x)]* for large x).

In five of the seven events (1 to 5 — those with the largest durations) the
variation o/ is higher than 1, which suggests a power type tail even for a
single event
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: : : : H = 0.92 (Ev:ent 3)
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Log k

Each of the events separately indicates a Hurst behaviour (a straight line
arrangement of points corresponding to different time scales) with Hurst
exponent ranging form 0.76 to 0.97

The Hurst behaviour is very clear in the compound record of all events, with
Hurst exponent 0.94
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A normalizing transformation

* Asthe normal distribution is very convenient in
building a stochastic model, a normalizing
transformation Z = g(X) has been applied to the
variable X (rainfall intensity), instead of using the

non-normal distribution (2).
e The transformation

z=(ax™ +ﬁ)[y/+\/(l+£jln(/c(x—y/)2 +1)J

effectively transforms the observed data to normal, Zscores

also being consistent with the Tsallis distribution

(implies a power type tail for X)

¢ The parameters of the transformation were
estimated by minimizing the square error (SE) of
the model and the empirical distribution function
e The inverse transformation X = g'1(Z), necessary

for de-normalizing the synthetic normal series, has
been handled numerically, due to lack of

analytical solution
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Transformed rainfall intensity (mm/h)
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intensity (mmvh)

4
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The principle of maximum entropy and the
linearity in multivariate distribution

The maximum entropy principle, implies linear relationships in consecutive

items of a Gaussian stochastic process

Specifically, provided that a specific transformation of a process has normal
marginal distribution, application of the maximum entropy principle produces
multivariate normal distribution for any number of variables (Papoulis, 1991)

Multivariate normal distribution entails linear relationships among variables;

the following figures verify the theory

Normalized rainfall intensity at time t (mm/h)

Normalized rainfall intensity at time ¢-7 (mm/h)

Normalized rainfall intensity at time t (mm/h)

Normalized rainfall intensity at time ¢-70 (mm/h)
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Part 3: Models and simulation results

Model 1 — with long-range dependence (M1)

e A generahzed autocovariance structure (GAS) is adopted: y;=y, (1 + apj) ¥,
where 7, is the lag j autocovariance and a and f are constants (Koutsoyiannis,
2000); clearly, the case > 0 corresponds to power type tail

Approximation of a process with GAS can be obtained using a condition-wise
chain of Markovian processes as in Part 1

In a Gaussian setting, the condition-wise chain can be replaced by a sum of
independent AR(1) processes (see details in Koutsoyiannis, 2002)

Three to four such chained processes are enough to obtain good
approximation of GAS for lags 1000-10 000

With four AR(1) processes, the approximate model M1 and its autocovariance
function (ACF) for lag j are

4

4 .
_ _ j
W, = 11 Y, Vi 2 :,:1 CPi

where p; is the lag one autocorrelation coefficient of the ith AR(1) process and
¢; are constants (summing up to 1)

Each of the four AR(1) processesis Y;,=p;Y;,;+V,, where V,, are
mdependent identically distributed, random variables with mean (1 - p;)u
and variance (1 — p2)c;y,.
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Fitting of model 1

o GAS was fitted . 1

to the empirical <

ACEF of the 08

transformed data

by minimizing  os

the square error

¢ The transformed ,,

data ~N(0,1), so
u=0and y,=1

* The parameters
of the model M1,
(c; and p, totally
7) were evaluated

0.2 1

by minimizing the square error of y,, ; and the fitted GAS

* The figure suggests satisfactory approximation of the empirical
ACF for lags up to 3 000
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Model 2 — with short-range dependence

¢ For comparison, an ARMA(2,2) model was also examined, namely
Zi=ayZ; 20 X; 5+ Dby

1

deviation o,

¢ The model was fitted so as 1
to reproduce the variance

and the first four

autocovariances of the

transformed process
* Despite the fact that

ARMA(2,2) is a short-
range dependence model,
the figure shows that it is

can have positive

autocorrelation values for

lags as high as 500

V.

<

i—1+

b, V;

where g, b, are the model coefficients and V, are independent,
identically distributed random variables with mean p, and standard

0.8

0.6

0.4

0.2 4

ARMA(2,2) ACF
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O Empirical ACF
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Simulation procedure

Normalizing
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Synthetic series of the long range dependence model
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Synthetic series of the ARMA(2,2) model
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Simulation results: Mean and standard deviation

Mean rainfall intensit (mm/h)

Box plots of the estimated mean rainfall .

intensity of the synthetic series
produced by models M1 and M2 for
sample sizes L1, L2 and L3; blue dots
represent the observed means

70

Box plots of the estimated standard
deviation of the rainfall intensity of the
synthetic series produced by models
M1 and M2 for sample sizes L1, L2 and
L3; blue dots represent the observed
standard deviations

Standard deviation of rainfall intensity (mm/h)

JL 10
= 0
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Simulation results: Coefficient of skewness and

Hurst exponents

* Box plots of the estimated coefficient of ¢ Box plots of the estimated Hurst
skewness of rainfall intensity of the exponents of rainfall intensity of the
synthetic series produced by models M1 synthetic series produced by models
and M2 for sample sizes L1, L2 and L3; M1 and M2 for sample sizes L1, L2 and
blue dots represent the observed ones L3; blue dots represent the observed

ones
20 1F T

g g 5 &l = T : l

£ :

% : : E g 08} l» ! E

k) : g H i

2 10 ; : - g EE ; : ! .

- ? S I N T R T T

3 1 | i £ o7 i é : ! z

: + ; S . |

g . | | E E :

E . 06 |

L a
0 ’ 05 - “ o
MiL1 MeL1 MiL2 MeL2 MiIL3 MeL3 MiL1 Lt MiL2 MeL2 MiL3 M2L3
33

Simulation results: Confidence bands of autocorrelation

o Empirical ACF of event 1
== 99% confidence bands of M1L1

99% confidence bands of M2L1

e Empirical autocorrelation function of h
rainfall events and 99% Monte Carlo
confidence bands of ACF for the two
models
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Conclusions and discussion

The principle of maximum entropy provides a sound theoretical basis for
studying the rainfall process

A single and rather simple stochastic model based on this principle can
represent all rainfall events and all rich patterns appearing in each one
making them look very different one another

From a practical view point, such a model is characterized by high
autocorrelation at fine scales, slowly decreasing with lag, as well as by
distribution tails slowly decreasing with rainfall intensity

Both these long tails entail high uncertainty (high entropy)

Whether the tails are power type is difficult to conclude because both the
power-law functions are by definition asymptotic properties; thus merely
empirical studies (necessarily implying finite sample sizes) are not enough to
verity this behaviour

It is important that the empirical evidence presented in the current study does
not falsify the hypothesis that both tails are long; this hypothesis is
strengthened by the principle of maximum entropy and the fact that the M1
(long-range) model had performance superior to the M2 (short-range) model

In fact the uncertainty/entropy should be higher than demonstrated here
because only seven events, despite their high resolution, cannot be
representative of the entire rainfall process
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