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1. Problem motivating the study
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| Back in 1990s — Some worries...
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Back in 1990s — Additional worries
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2. Mottos motivating the presentation




| Motto 1: From Science Magazine

CLIMATE CHANGE

tationarity Is Dead:
Whither Water Management?

P.C. D. Milly,"™ Julio Betancourt,2 Malin Falkenmark,? Robert M. Hirsch,* Zbigniew W.
Kundzewicz,® Dennis P. Lettenmaier’ Ronald J. Stouffer’

ystems for management of water

throughout the developed world have

been designed and operated under the
assumption of stationarity. Stationarity—the
idea that natural systems fluctuate within an
unchanging envelope of variability—is a
foundational concept that permeates training
and practice in water-resource engineering. It
implies that any variable (¢.g., annual stream-
flow or annual flood peak) has a time-invari-
ant (or 1-year—periodic) probability density
function (pdf), whose properties can be esti-
mated from the instrument record. Under sta-
tionarity, pdf estimation errors are acknowl-
edged, but have been assumed to be reducible
by additional observations, more efficient
estimators, or regional or paleohydrologic
data. The pdfs, in turn, are used to evaluate
and manage risks to water supplies, water-
works, and floodplains; annual global invest-

An uncertain future challenges water planners.

POLICYFORUM |

Climate change undermines a basic assumption
that historically has facilitated management of
water supplies, demands, and risks.

that has emerged from climate models (see
figure, p. 574).

Why now? That anthropogenic climate
change affects the water cycle (9) and water
supply (/1) is not anew finding. Nevertheless,
sensible objections to discarding stationarity
have been raised. Fora time, hydroclimate had
not demonstrably exited the envelope of natu-
ral variability and/or the effective range of
optimally operated infrastructure (17, 12).
Accounting for the substantial uncertainties
of climatic parameters estimated from short
records (13) effectively hedged against small
climate changes. Additionally, climate projec-
tions were not considered credible (12, 14).

Recent developments have led us to the
opinion that the time has come to move
beyond the wait-and-see approach. Pro-
Jjections of runoft changes are bolstered by the
recently demonstrated retrodictive skill of cli-
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| Motto 2: From a blog

(@) Aithouse: Clark Hoyt, the NYT "public” editor, thinks the NYT has handled the Climategate story “appropriately.” - Mozilla Firefox  |s=0|/ =1 S
file Edit View Hisiory Bookmarks Tools Help

c #3 (A hiip/ialthouse blogspot.comi2008/ 2iclark-hoyt-nyt-public BY 77 = | | W - Wikis
A Althouse: Clark Hoyt, the NYT _ X | \X/ Ann Althouse - Wikipedia, the free .. 3 | =
B[ Q) RepotAbuse NextBlogs Create Blag  Sign In

(@) Create: creats: Snpi

Althouse

"THE STUPIDITY ON DISPLAY HERE IS VERY DIFFICULT TO FATHOM AND IMPOSSIBLE TO DESCRIBE."

SUNDAY, DECEMBER 06, 2009

Clark Hoyt, the NYT "public" editor, thinks the NYT
has handled the Climategate story "appropriately.”

ABOUT ME

ke

ANN
ALTHOUSE

- MADISON,
Iunderstand why the Times preferred to link to the database on somebody else's ﬁ;: WISCONSIN,
.y UNITED

site instead of hosting it: They're afraid of being sued for copyrightinfringement
(though I think if it were anti-war material they'd take the risk and argue fair use).
But I can't accept the core of Hoyt's defense of his employer:

STATES

VIEW MY COMPLETE PROFILE

12/7/09 12:21 AM

3 John Stodder said...

One thing I noticed.....you guys NEVER dispute the validity of the "little graph"
where it plots the slight cooling years. Any source then is sacred!

What a dumb point!

In fact, if you read what I posted earlier about "hide the decline,” the fact T am
embracing is that temperatures DID rise from 1961 onward. The decline is the

decline in temperatures the tree-ring data from that year forward showed was

“Hydrologists'
work is used by
engineers to plan
large-scale projects
designed to last
many decades.
They can't play
with models,
especially models
that so plainly
diverge from
reality.”

John Stodder in
http://althouse.blogspot.c
om/2009/12/clark-hoyt-
nyt-public-editor-thinks-
nyt.html
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Motto 3: From classical sources

«Apxn cogpiac, ovouaTwv
eniokewic» (AvTioBEVNC)

“The start of wisdom is the
visit (study) of names”
(Antisthenes)

Antisthenes (c. 445-c. 365 BC), pupil of
Socrates, founder of Cynic philosophy;
image from wikipedia
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3. Visiting names: stationarity and
nonstationarity




Finding invariant properties is essential in
science

= Newton’s first law: Position changes but velocity is constant (in
absence of an external force)
o U=dx/dt=ct
A huge departure from the Aristotelian view that bodies tend to rest

= Newton’s second law: On presence of a constant force, the velocity
changes but the acceleration is constant

o a=dydt= Am=ct
o For the weight Wof abody a=g= W/m = ct

= Newton’s law of gravitation: The weight W (the attractive force
exerted by a mass M) is not constant but inversely proportional to the
square of distance; thus other constants emerge, i.e.,

o arr=-GM=ct
o (dg/df) r? = ct (angular momentum per unit mass; 8 = angle)
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The stationarity concept: Seeking invariant
properties in complex systems

= Complex natural systems are impossible to describe in full detail and
predict their future evolution in detail and with precision

= The great scientific achievement is the materialization of macroscopic
descriptions that need not model the details

= Essentially this is done using probability theory (laws of large numbers,
central limit theorem, principle of maximum entropy)

= Related concepts 25
are: stochastic
process, statistical | ;
parameters, 200V /\ |

stationarity, W}
ergodicity

1.5

——Time series

——Local average

0 10 20 30 40 50

Time, i
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What is stationarity and nonstationarity?

Stationary Processes

A stochastic process x(¢) is called strict-sense stationary {(abbreviated SSS) if its
statistical properties are invariant to a shift of the origin. This means that the
processes x(z) and x(¢ + ¢) have the same statistics for any c.

WIDE SENSE. A stochastic process x(¢) is called wide-sense stationary (abbrevia-
ted WSS) if its mean is constant

E{x(1)} =7 (10-41)
and its autocorrelation depends only on 7 = ¢; — t,:
E{x(t + 7)x*(1)} = R(7) (10-42)

= Definitions copied from Papoulis (1991).
= Note 1: Definition of stationarity applies to a stochastic process

= Note 2: Processes that are not stationary are called nonstationarity;
some of their statistical properties are deterministic functions of time
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Some notes about stationarity and
nonstationarity

Important consequences:

E.g. nonstationarity can hardly be
dead
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Does this example say that “stationarity is dead”?

4.5
41 ——Time series
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Mean m (red line) of time series (blue line) is:
m=18for /i< 70
m=3.5for /=70
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Reformulation of question:
Does the red line reflect a deterministic function?

4.5
41 ——Time series

ie | l—localawmge| N A g
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sl
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= If the red line is a deterministic function of time:
— nonstationarity

= If the red line is a random function (realization of a stationary
stochastic process) — stationarity
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Answer of the last question: the red line is a
realization of a stochastic process
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= The time series was constructed by superposition of Time, i

o A stochastic process with values m, ~ M2, 0.5) each lasting a
period 7; exponentially distributed with £ [7] = 50 (red line);

o White noise M0, 0.2).
= Nothing in the model is nonstationary
= The process of our example is stationary
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Caution in using the term “nonstationarity”

= Stationary is not synonymous to static
= Nonstationary is not synonymous to changing

= In a nonstationary process the change is described by a deterministic
function

= A deterministic description should be constructed by deduction (the
Aristoteleian apodeixis), not by induction (direct use of data)

= To claim nonstationarity, we must :
1. Establish a causative relationship

2. Construct a quantitative model describing the change as a
deterministic function of time

3. Ensure applicability of the deterministic model in future time

= Nonstationarity reduces uncertainty!!! (because it explains part of
variability)

= Unjustified/inappropriate claim of nonstationarity results in
underestimation of variability, uncertainty and risk!!!
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Do climate models enable a nonstationary
approach?

= Do general circulation models (GCMs) provide credible
deterministic predictions of the future climate evolution?

= Do GCMs provide good predictions, at least for
temperature (and somewhat less good for precipitation)?

= Do GCMs provide good predictions at least for global and
continental scales (and, after downscaling, for local
scales)?

= Do GCMs provide good predictions for the distant future
(albeit less good for the nearer future, e.g. for the next 10-
20 years—or for the next season or year)?

= Is climate predicable in deterministic terms?
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A related Aesop’s fable: The Braggart

A man who practised the pentathlon, but

(0 VC 1 ‘Pé I Ar whom his fellow-citizens continually
AuTou yap kai Poéoq Kai nnénpa reproached for his unmanliness, went off

Hic Rhodus. hic saltus! one day to foreign parts. After some time
! ) he returned, and he went around

ic i . boasting of having accomplished many
RhOdeS IS I‘Ight here: make the extraordinary feats in various countries,
jump. but above all of having made such a
jump when he was in Rhodes that not
39 [51) even an athlete crowned at the Olympic
Games could possibly equal it. And he
added that he would produce as
Aviip névtaBlog émi avavdpia éxdotote ino tov mongy - Witnesses of his exploit people who had
overdr{opevog, anodnuncag MoTé Kai pera ypovov Emavel- aCtua"y seen it, if ever they came to his
O, dAalovevopevos EXeyev ¢ modda kai év dAAaig méle- country. Then one Of the byStanders
spoke out: 'But if this is true, my friend,
you have no need of witnesses: Rhodes
is right here - make the jump.’

The fable shows that as long as one can

] o prove something by doing, speculation is
avtov' «AA, & obrog, i Touto dAnbég éott, oUbEV Sei cot superfluous.

AVilp KOpnactng

o avépayabricag, év i Pobw towutov fidato niénpa og
pndéva 1ov ‘Odvpmovikey &pusécbar’ kai touTou pdprupag
&paoke napélecbar tovc maparetuynkorag, dv dpa noré

émébnpriowot. Tov 6¢ mapoviwy g vmotuxwv &pn npog

HapTipwv altou ydp Kai Pédog Kai midnpa.»

‘0 Adyog bnlot &1t v mpdyeipog 11 1" Epywv nelpa,  Aesop (Aiownog; 620-560 BC), A slave renowned for his

_ . - fables
fIEpt TOVTOV Iag A0Yog MEPITTOg £ott English translation adapted from Temple et a/., 1998.
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Hic Rhodus” (i.e. 20t century),
hic saltus” (i.e. skill to reproduce reality)
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‘ 4. Change under stationarity and the
Hurst-Kolmogorov dynamics




Change is tightly linked to dependence and
long-term change to long-range dependence

1

Empirical

084N Markov

Autocorrelation

064
0.4

0.2

0 : e : ‘ ‘ ‘
0O 10 20 30 40 5 60 70 80 90 100

Lag

= The typical autocorrelogram (autocorrelation vs. lag) is meaningful
only for stationary processes

= Here the autocorrelogram suggests long-range dependence (to be
contrasted with Markovian, short-range dependence)

= This dependence should not be interpreted as “long memory”; it is a
result of “long-term change”

= This has been first pointed out by Klemes (1974)
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Change and frequency: The power spectrum

100
= Againitis

10 I S}rﬁp‘-@ =y l
| V '““
meaningful only for

stationary processes 01 4

= The large values of
spectral density for 0.01 |
small frequencies — Empirical
(Iarge periods or —— Power law approximation
scale lengths) 0.001 | ‘
indicates dominance 0.001 0.01 01 1
of the long-term Frequency
variability

= The slope in a double logarithmic plot (here ~-1) is an indicator of the
long-range dependence (or long-term persistence)—but its estimation
is not accurate due to rough shape

= The power spectrum
is the inverse finite
Fourier transform of
the autocorrelogram

Spectral density
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Change and scale: The climacogram

= This is simply a plot of standard deviation o(® at scale kvs. scale &;
0¥ can be calculated directly from the time averaged process

= Itis a transformation of the autocorrelogram p; (where j is lag), i.e.,

4 <(, J j+1 -l
:ﬁ@, ak=1+22(1—szj<_>pj= > ocj+1—joc_j+7aj_1

Jj=1

1

= The asymptotic slope c |
(high 4) in a logarithmic % \ | Slope -
plot is a characteristic § I R——
defining the so-called g NG § TNy,
Hurst coefficient: & IS 4 |
H=1+ Slope Empirical \\\‘4:\\\

= Hvalues in the interval e LN
(0.5, 1) indicate long- o1 | o0
range dependence 1 10 e 1O
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| The Hurst-Kolmogorov (HK) process and its multi-

scale stochastic properties

= Example 1 admits (irregular) fluctuations at two characteristic time
scales: K = 1and k, = £[1] = 50

= Assuming additional scales of fluctuation, 4; £, ... (although practically,
three time scales of fluctuation sufﬁce—Koutsoylannls 2002), we may
construct a Hurst-Kolmogorov process, which has very simple properties

At an arbitrary
observation scale At any scale &
k=1 (e.g. annual)

Properties of the
HK process

oW =kl""1g
(can serve as a definition of the
HK process; His the Hurst
coefficient; 0.5 < H<1)

Standard deviation | o= o™

Autocorrelation O K2
function (for lag ) p=p;=p ~ H(2 H-1)
Power spectrum | S(w) = s(w) ~ M w) ~

(for frequency w) |4 (1 - H) 0% (2 w)! %" |4(1 - H) 0* kK*72 2 w)* 2"
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Fluctuations at multiple temporal or spatial
scales are common in Nature

= Example 2:
turbulence in a
hydraulic jump

= The energy
associated with
each scale
increases with
scale Ien%th (e.q.
without the
macroturbulence
of the hydraulic
jump, the energy
oss due to
molecular motion
and
microturbulence
would be
much lower)

Photo from Chanson (2007)
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A historical note:
Hurst & Kolmogorov

The recognition that real world
processes behave differently from an
ideal roulette wheel (where the
differences mainly rely on long
excursions of local averages from the
global mean) is due to Hurst and
Kolmogorov (see Koutsoyiannis and
Cohn, 2008)

Comptes Rendus (Doklady) de 1’Académie des Seiences de 'URSS
1940. Volume XXVI, N 2

MATHEMATIK

‘WIENERSCHE SPIRALEN UND EINIGE ANDERE INTERESSANTE
KURVEN IM HILBERTSCHEN RAUM

Von A. N. KOLMOGOROFF, Mitglied der Akademie

Wir werden hier einige Sonderfille von Kurven betrachten, denen
meine vorhergehende Note «Kurven im Hilbertschen Raum, die gegeniiber
einer einparametrigen Gruppe von Bewegungen invariant sind» () gewid-
met, ist. » . . .

Unter einer Ahnlichkeitstpansformation
Ranm H werden wir ei inki

o Punkte, die auf derselben

T, ubergeht. 5
Satz 6. Die Funktion Bi(s,,,), die der Funktion &(t) der Klasse %
entspricht, kann in der Form
Be(sp sy =cl|n | w ' —|n—mll

115

AMERICAN SOCIETY OF CIVIL ENGINEERS
: Founded November 5, 1852

TRANSACTIONS

" Paper No. 2447

LONG-TERM STORAGE CAPACITY
OF RESERVOIRS

By H. E. HURST*

‘Wite Discussion By VEn Te Crow, HEnrt MitLERET, Louis M. LausHEY,
anp H. E, HorsT.

SyNopsis

A solution of the problem of determining the reservoir storage required on a
given stream, to guarantee a given draft, is presented in this paper. For ex-
ample, if a long-time record of annual total discharges from the stream is avail-
able, the storage required to yield the BVErAEE flow, each year, is obtained by
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Real-world processes VS. S|mpI|f|ed random
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Monthly

12-month running average
3-year running average
—— =All data average

Example 4: The lower g "

tropospheric temperature  § ™
Suggests an HK behaviour el
with a very high Hurst o {13
coefficient: /= 0.99 0z |

]
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I
J
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1.24 e [P [
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| Impacts to statistical estimation: Hurst-Kolmogorov
statistics (HKS) vs. classical statistics (CS)

True values — Mean, v Standard deviation, o Autocorrelation p; for lag /
= 1.
_ 12 1 n _ AGERES

Standard estimator |x:= X X |[s:=1\|,_7 Y (x-® n=i _ _

=1 =1 ._Zl(z(,-—x)(zm— X)
Relative bias of . ~
estimation, CS 0 ~0 0
Relative bias of . 1 L1 . Yp-1
estimation, HKS 0 s\/1-p-1%-7, (=22%) |~ =~ 71 (-79%)
Standard deviation g g
of estimator, CS \[n O f= \N2(n-1) (0.071)

- _0\(0.1 n+0.8Y(1 -77"?)

Standard deviation |_o_ ©0.63)|* \/Z(n— )

of estimator, HKS

where A(H) := 0.088 (4H4%*-1)* (0.093)

Note: n' := n?~%"is the “equivalent” or “effective” sample size: a sample with size 7" in CS results in the
same uncertainty of the mean as a sample with size 7in HKS.

The numbers in parentheses are numerical examples for 7= 100, =1, #=0.90 and /=10, so that n" = 2.5.
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Example 5: The Monthly R
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Example 6: The Greenland temperature proxy
during the Holocene

Minoan climate | [Roman climate| | Medieval
35 T Ty | optimum 1optimum warm period

Temperature departure (°C)

ol oA Y L
\} —— 20-year scale (interpolated) |
! ! ' | = 500-year average
| | | | ==2000-year average Little ice age
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Example 6 (cont.): The Greenland temperature

proxy on multi-millenni

al time scales

g ° - 86-year sc‘ale (inter‘polated)f Last glacia:I i Transient i Interé;lacial
2 —— 2000-year average } :
E_ 0 —8900-year average j — ‘ ;
S | | | | L i |
e 51 N S ppp— N A | A
=2 \ ! ' |Abrupt warming (17°C) | | ) :
g ! } : ]‘ ’ \ 1
§ 10+ IO N [ A ‘l) [Abrupt cooling |
= : 0 1 | | [(180C)

i |

/

-15 Ry L -
W '!“"‘wi "

Younger Dryas cool
period (The Big Freeze)
T

-25 f f f f T f \ \ i
50000 45000 40000 35000 30000 25000 20000

15000 10000 5000 0

Years before present

D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty 37

Example 6

(cont.): The :
Greenland g
temperature 8
proxy on all g
scales

All three periods suggest
an HK behaviour with a
very high Hurst
coefficient

Here an H = 0.94 was
used for all three
periods, assuming
different standard
deviation in each one
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‘ 5. Implications in engineering design
and water resources management

Example 7: Back in the Athens water supply system
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Classical statistics: Return period of the
persistent drought
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400

Comparisons with even longer series
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Back to return period of the persistent drought
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Perception and quantification of uncertainty with HK statistics

Probability of nonexceedence
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Methodology

implementation zlixr e/EE=mmm)y| .|
in the Athens
water supply
system
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| Methodology implementation in the
Athens water supply system (2)
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Alternative approach 1: Nonstationary, trend

based

= The flows would disappear at about 2050...

= The trend reduces uncertainty (because it “explains” part of variability):
The initial standard deviation of 70 mm decreases to 55 mm

= In contrast, in the HK approach the standard deviation increases to
75 mm 400
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Alternative approach 2: Nonstationary, GCM based

= Outputs from three GCMs for two scenarios were used

= The original GCM outputs (not shown) had no relation to reality (highly
negative efficiencies at the annual time scale and above)

= After adaptations (also known as “downscaling”) the GCM outputs improved
with respect to reality (to about zero efficiencies at the annual time scale)

= For the past, despite adaptations, the proximity of models with reality is not

satisfactory

= For the future the runoff obtained by adapted GCM outputs is too stable
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HK and extremes: Distribution tails

Assumptions:
1. Probability density function of x;
(gamma—exponential tail):

fiXla) = af xo~1 e~ax[/(6)

2. The scale parameter a;changes in

time (e.g. due to overdecadal

Value, x

climatic fluctuation) with probability

density function (gamma):
ga)=pgar-te#alNn

Result:
Unconditional density function of x:
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Conclusion:

Exponential distribution tails may become

power type (Koutsoyiannis, 2004)
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6. Final remarks




Advantages (or disadvantages?) of the “new”
HK approach

HK is old-fashioned—not “trendy” (despite admitting that natural
processes are “naturally trendy”...)
o Is as old as Kolmogorov (1940) and Hurst (1951)

o Involves nothing like “artificial intelligence”, “neural networks”,
“fuzzy logic”, “chaotic attractors”, “global circulation models”, etc.

= HKis stationary—not nonstationary

o Demonstrates how stationarity can coexist with change at all time
scales

» HK is linear—not nonlinear

o Deterministic dynamics need to be nonlinear to produce realistic
trajectories—stochastic dynamics need not

= HK is simple, parsimonious, and inexpensive —not complicated,
inflationary and expensive

= HK is honest—not deceitful
o Does not hide uncertainty
o Does not pretend to predict the distant future
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Concluding remarks

= Change is Nature's style
= Change occurs at all time scales
= Change is not nonstationarity

= Hurst-Kolmogorov dynamics is the key to perceive multi-
scale change and model the implied uncertainty and risk

= In general, the Hurst-Kolmogorov approach can
incorporate deterministic descriptions of future changes, if
available

= In absence of credible predictions of the future, Hurst-
Kolmogorov dynamics admits stationarity
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