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1. Problem motivating the study
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The Athens water supply system
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Back in 1990s – Some worries…

A similar «trend» in the 
rainfall time series

Explains the «trend» in 
runoff
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The historical time series of 
Boeoticos Kephisos runoff 
(Hydrological years 1907/08-
1986/87)

A multi-year «trend» is 
observed 0
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Next was a shocking drought

Intense and persistent: 
Mean flow less than half 
compared to historical 
average, duration 7 years
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Back in 1990s – Additional worries…

Some understood that water might be needed for 
the Athens Olympic Games (then in preparation)

2. Mottos motivating the presentation
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Motto 1: From Science Magazine
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Motto 2: From a blog
“Hydrologists' 
work is used by 
engineers to plan 
large-scale projects 
designed to last 
many decades. 
They can't play 
with models, 
especially models 
that so plainly 
diverge from 
reality.”

John Stodder in 
http://althouse.blogspot.c
om/2009/12/clark-hoyt-
nyt-public-editor-thinks-
nyt.html



D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty 9

Motto 3: From classical sources

«Αρχή σοφίας, ονοµάτων
επίσκεψις» (Αντισθένης)

“The start of wisdom is the 
visit (study) of names”
(Antisthenes) 

Antisthenes (c. 445-c. 365 BC), pupil of 
Socrates, founder of Cynic philosophy; 
image from wikipedia

3. Visiting names: stationarity and 
nonstationarity
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Finding invariant properties is essential in 
science

� Newton’s first law: Position changes but velocity is constant (in 
absence of an external force)

� u = dx/dt = ct 
A huge departure from the Aristotelian view that bodies tend to rest

� Newton’s second law: On presence of a constant force, the velocity 
changes but the acceleration is constant

� a = du/dt = F/m = ct

� For the weight W of a body a = g = W/m = ct

� Newton’s law of gravitation: The weight W (the attractive force 
exerted by a mass M) is not constant but inversely proportional to the 
square of distance; thus other constants emerge, i.e.,

� a r 2 = -G M = ct

� (dθ/dt) r 2 = ct (angular momentum per unit mass; θ = angle)
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The stationarity concept: Seeking invariant 
properties in complex systems 
� Complex natural systems are impossible to describe in full detail and 

predict their future evolution in detail and with precision
� The great scientific achievement is the materialization of macroscopic 

descriptions that need not model the details 
� Essentially this is done using probability theory (laws of large numbers, 

central limit theorem, principle of maximum entropy)
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Example 1:
50 terms of a synthetic 
time series (to be 
discussed later)

� Related concepts 
are: stochastic 
process, statistical 
parameters, 
stationarity, 
ergodicity
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What is stationarity and nonstationarity?

� Definitions copied from Papoulis (1991).

� Note 1: Definition of stationarity applies to a stochastic process

� Note 2: Processes that are not stationary are called nonstationarity; 
some of their statistical properties are deterministic functions of time
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Some notes about stationarity and 
nonstationarity 

Important consequences:

E.g. nonstationarity can hardly be 
dead

Abstract representation

Model

Ensemble (Gibbs idea): mental 
copies of natural system 

Stochastic process

Real world

Natural 
system

Unique 
evolution

Time series

Many different models 
can be constructed

Mental copies depend 
on model constructed

Can generate arbitrar-
ily many time series

Stationarity and 
nonstationarity 
apply here
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Does this example say that “stationarity is dead”?

Mean m (red line) of time series (blue line) is:

m = 1.8 for i < 70

m = 3.5 for i ≥ 70

Example 1 
extended up 
to time 100
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Reformulation of question:
Does the red line reflect a deterministic function?

� If the red line is a deterministic function of time: 
→ nonstationarity

� If the red line is a random function (realization of a stationary 
stochastic process) → stationarity
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Answer of the last question: the red line is a 
realization of a stochastic process

� The time series was constructed by superposition of

� A stochastic process with values mj ~ N(2, 0.5) each lasting a 
period τj exponentially distributed with E [τj] = 50 (red line);

� White noise N(0, 0.2).

� Nothing in the model is nonstationary

� The process of our example is stationary

Example 1 
extended up 
to time 1000
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The big 
difference of 
nonstationarity
and stationarity 
(1)

Unexplained variance 
(differences between 
blue and red line): 0.22

= 0.04 
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A mental copy 
generated by a 
nonstationary
model (assuming 
the red line is a 
deterministic 
function)

The initial 
time series
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The big 
difference of 
nonstationarity 
and stationarity
(2)

Unexplained variance 
(the “undecomposed”
time series): 0.38 (~10 
times greater)
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generated by a 
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(assuming the red 
line is a stationary 
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The initial 
time series
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Caution in using the term “nonstationarity”
� Stationary is not synonymous to static

� Nonstationary is not synonymous to changing

� In a nonstationary process the change is described by a deterministic 
function

� A deterministic description should be constructed by deduction (the 
Aristoteleian apodeixis), not by induction (direct use of data)

� To claim nonstationarity, we must :

1. Establish a causative relationship

2. Construct a quantitative model describing the change as a 
deterministic function of time

3. Ensure applicability of the deterministic model in future time

� Nonstationarity reduces uncertainty!!! (because it explains part of 
variability)

� Unjustified/inappropriate claim of nonstationarity results in 
underestimation of variability, uncertainty and risk!!!
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Do climate models enable a nonstationary 
approach?

� Do general circulation models (GCMs) provide credible 
deterministic predictions of the future climate evolution?

� Do GCMs provide good predictions, at least for 
temperature (and somewhat less good for precipitation)?

� Do GCMs provide good predictions at least for global and 
continental scales (and, after downscaling, for local 
scales)?

� Do GCMs provide good predictions for the distant future 
(albeit less good for the nearer future, e.g. for the next 10-
20 years—or for the next season or year)?

� Is climate predicable in deterministic terms?
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A related Aesop’s fable: The Braggart
A man who practised the pentathlon, but 
whom his fellow-citizens continually 
reproached for his unmanliness, went off 
one day to foreign parts. After some time 
he returned, and he went around 
boasting of having accomplished many 
extraordinary feats in various countries, 
but above all of having made such a 
jump when he was in Rhodes that not 
even an athlete crowned at the Olympic 
Games could possibly equal it. And he 
added that he would produce as 
witnesses of his exploit people who had 
actually seen it, if ever they came to his 
country. Then one of the bystanders 
spoke out: 'But if this is true, my friend, 
you have no need of witnesses: Rhodes 
is right here - make the jump.’
The fable shows that as long as one can 
prove something by doing, speculation is 
superfluous.

Aesop (Αἴσωπος; 620-560 BC), A slave renowned for his 
fables
English translation adapted from Temple et al., 1998.

Αυτοῦ γάρ καί ῾Ρόδος καί πήδηµα

Hic Rhodus, hic saltus! 

Rhodes is right here: make the 
jump.
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“Hic Rhodus” (i.e. 20th century), 
“hic saltus” (i.e. skill to reproduce reality)
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See also Koutsoyiannis et al. (2008).
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4. Change under stationarity and the 
Hurst-Kolmogorov dynamics 
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Change is tightly linked to dependence and 
long-term change to long-range dependence

� The typical autocorrelogram (autocorrelation vs. lag) is meaningful 
only for stationary processes

� Here the autocorrelogram suggests long-range dependence (to be 
contrasted with Markovian, short-range dependence)

� This dependence should not be interpreted as “long memory”; it is a 
result of “long-term change”

� This has been first pointed out by Klemes (1974) 

Autocorrelogram
of 1000 items of 
our example time 
series in 
comparison to 
that of a Markov 
process
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Change and frequency: The power spectrum 
� The power spectrum 

is the inverse finite 
Fourier transform of 
the autocorrelogram

� Again it is 
meaningful only for 
stationary processes

� The large values of 
spectral density for 
small frequencies 
(large periods or 
scale lengths) 
indicates dominance 
of the long-term 
variability

� The slope in a double logarithmic plot (here ~-1) is an indicator of the 
long-range dependence (or long-term persistence)—but its estimation 
is not accurate due to rough shape
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Change and scale: The climacogram
� This is simply a plot of standard deviation σ (k) at scale k vs. scale k; 

σ (k) can be calculated directly from the time averaged process

� It is a transformation of the autocorrelogram ρj (where j is lag), i.e.,
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� The asymptotic slope 
(high k) in a logarithmic 
plot is a characteristic 
defining the so-called 
Hurst coefficient: 
H = 1 + slope

� H values in the interval 
(0.5, 1) indicate long-
range dependence
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Properties of the 
HK process  

At an arbitrary 
observation scale  
k = 1 (e.g. annual) 

At any scale k 

Standard deviation σ ≡ σ (1)
 

σ (k) = k H – 1 σ   
(can serve as a definition of the 
HK process; H is the Hurst 
coefficient; 0.5 < H <1) 

Autocorrelation 
function (for lag j) ρj ≡ ρ

(1)

j  =ρ
(k)

j  ≈ H (2 H – 1) |j |2H – 2 

Power spectrum 
(for frequency ω) 

s(ω) ≡ s(1)(ω) ≈  

4 (1 – H) σ 2 (2 ω)1 – 2 H 
s(k)(ω) ≈  
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H 

 

The Hurst-Kolmogorov (HK) process and its multi-
scale stochastic properties

� Example 1 admits (irregular) fluctuations at two characteristic time 
scales: k1 = 1 and k2 = E [τj] = 50

� Assuming additional scales of fluctuation, k3, k4 … (although practically, 
three time scales of fluctuation suffice—Koutsoyiannis, 2002), we may 
construct a Hurst-Kolmogorov process, which has very simple properties

All equations 
are power 
laws of 
scale k, lag j, 
frequency ω
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Fluctuations at multiple temporal or spatial 
scales are common in Nature
� Example 2: 

turbulence in a 
hydraulic jump

� The energy 
associated with 
each scale 
increases with 
scale length (e.g. 
without the 
macroturbulence
of the hydraulic 
jump, the energy 
loss due to 
molecular motion 
and 
microturbulence
would be 
much lower) Molecular motion (not visible) 

+ microturbulence (visible)

Molecular motion (not visible) 
+ microturbulence (visible)
+ macroturbulence (manifest)

Photo from Chanson (2007)
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A historical note: 
Hurst & Kolmogorov

The recognition that real world 
processes behave differently from an 
ideal roulette wheel (where the 
differences mainly rely on long 
excursions of local averages from the 
global mean) is due to Hurst and 
Kolmogorov (see Koutsoyiannis and 
Cohn, 2008)

Kolmogorov (1940) studied the stochastic 
process that describes this behaviour 10 
years earlier than Hurst.

Hurst (1951) studied numerous geophysical 
time series and observed that: “Although in 
random events groups of high or low values 
do occur, their tendency to occur in natural 
events is greater. This is the main difference 
between natural and random events.”
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Example 3: 
Annual 
minimum 
water levels 
of the Nile

� The longest available 
instrumental hydroclimatic 
data set (813 years).

� Hurst coefficient H = 0.84.
� The same H is estimated 

from the simultaneous 
record of maximum water 
levels and from the modern 
record (131 years) of the 
Nile flows at Aswan.
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The classical statistical estimator 
of standard deviation was used, 
which however is biased for HK 
processes.
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The classical statistical estimator 
of standard deviation was used, 
which however is biased for HK 
processes.

Roda
Nilometer
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Real-world processes vs. simplified random 
processes
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Real-world or “Hurst-
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Example 3:
A “roulette” process

Each value is the minimum of m = 36 
roulette wheel outcomes. The value of m
was chosen so that the standard deviation 
be equal to the Nilometer series
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Example 4: The lower 
tropospheric temperature

Suggests an HK behaviour
with a very high Hurst 
coefficient: H = 0.99

Data: 1979-2009, from 
http://vortex.nsstc.uah.edu/publi
c/msu/t2lt/tltglhmam_5.2
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True values →  Mean, µ Standard deviation, σ Autocorrelation ρl for lag l 

Standard estimator x– := 
1
n ∑

i = 1

n

 xi s := 
1

n – 1
  ∑

i = 1

n

  (xi – x–)2 

rl := 
1

(n – 1)s2 · 

∑
i = 1

n – l

 (xi – x–)(xi + l – x–) 

Relative bias of 
estimation, CS 

0 ≈ 0 ≈ 0 

Relative bias of 
estimation, HKS 

0 ≈ 1 − 
1
n΄

 − 1 ≈ − 
1

2n΄
  (–22%) ≈ – 

1/ρl − 1
n΄− 1    (–79%) 

Standard deviation 
of estimator, CS 

σ
n
    (0.1)  ≈ 

σ
2(n – 1)

  (0.071)  

Standard deviation 
of estimator, HKS 

σ
n΄

   (0.63) 
≈ 

σ (0.1 n + 0.8)λ(H)(1 –n2H − 2)

2(n – 1)
  

where λ(H) := 0.088 (4H 2 – 1)2  (0.093) 

 

Note: n΄ := n 2 – 2H is the “equivalent” or “effective” sample size: a sample with size n΄ in CS results in the 
same uncertainty of the mean as a sample with size n in HKS.  

The numbers in parentheses are numerical examples for n = 100, σ = 1, H = 0.90 and l = 10, so that n΄ = 2.5.  

 

Impacts to statistical estimation: Hurst-Kolmogorov 
statistics (HKS) vs. classical statistics (CS)
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Example 5: The Monthly 
Atlantic Multidecadal
Oscillation (AMO) Index

Suggests an HK 
behaviour with a very 
high Hurst 
coefficient: H = 0.99

Data: 1856-2009, from NOAA, 
http://www.esrl.noaa.gov/psd/dat
a/timeseries/AMO/

B
ia

s
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Example 6: The Greenland temperature proxy 
during the Holocene

Reconstructed from the GISP2 Ice Core (Alley, 2000, 2004). Data from: 
ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt
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Example 6 (cont.): The Greenland temperature 
proxy on multi-millennial time scales
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Example 6 
(cont.): The 
Greenland 
temperature 
proxy on all 
scales

All three periods suggest 
an HK behaviour with a 
very high Hurst 
coefficient

Here an H ≈ 0.94 was 
used for all three 
periods, assuming 
different standard 
deviation in each one 

Estimation bias and 95% 
prediction limits were determined 
by Monte Carlo simulation (200 
simulations with length equal to 
the historical series)

Reproduced from Koutsoyiannis et al.
(2009)



5. Implications in engineering design 
and water resources management
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Example 7: Back in the Athens water supply system

A similar «trend» in the 
rainfall time series

Explains the «trend» in 
runoff
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Classical statistics: Return period of the 
persistent drought
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Emprirically expected

� At the annual scale, 
the drought was a 
record minimum but 
with typical 
magnitude

� Aggregated at larger 
scales, it appeared 
something 
extraordinary

� Similar behaviour was 
observed for maxima 
et aggregate scales
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The complete Nilometer
series
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Hurst-Kolmogorov 
modelling of the 
Boeoticos Kephisos
hydrological processes
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Suggests an HK 
behaviour with Hurst 
coefficient H = 0.79 
in runoff 
(also H > 0.5 in 
temperature and 
precipitation)
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Back to return period of the persistent drought
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� The persistent 
drought is not 
extraordinary; it is 
a natural and 
expected behaviour

� Also, the trend is a 
natural and usual 
behaviour
(Another 
“naturally trendy”
process) 

{1}
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Perception and quantification of uncertainty with HK statistics

Classical model (cf. common definition 
of climate)
Climate is what we expect
Weather is what we get

HK model
Weather is what we get … immediately
Climate is what we get 

… if you keep expecting for a long time

200270HK

30-year scaleAnnual scale

Statistical model

50200Classical

Total uncertainty in runoff 
(due to variability and 
parameter estimation)

% of average

1 year

30 years

Boeoticos Kephisos River runoff (close to 
Athens, Greece); H = 0.84; 
from Koutsoyiannis et al. (2007)
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Methodology 
implementation 
in the Athens 
water supply 
system

See theoretical and 
practical justification 
of the approach in 
Koutsoyiannis (2000, 
2001) and 
Koutsoyiannis and 
Efstratiadis (2001)

Castalia: Multivariate 
stochastic simulator
for generalized HK 
processes
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Methodology implementation in the 
Athens water supply system (2)

See theoretical and 
practical justification  
of the approach in 
Koutsoyiannis and 
Economou (2003); 
Koutsoyiannis et al.
(2002, 2003); and 
Efstratiadis et al.
(2004) 

Hydronomeas: A 
decision support 
system implementing 
a methodology 
termed 
parameterization-
simulation-
optimization
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Alternative approach 1: Nonstationary, trend 
based
� The flows would disappear at about 2050…

� The trend reduces uncertainty (because it “explains” part of variability): 
The initial standard deviation of 70 mm decreases to 55 mm 

� In contrast, in the HK approach the standard deviation increases to 
75 mm 
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Conclusion: It is 
absurd to use 
such simplistic 
methods as trend 
projection

Boeoticos
Kephisos
runoff and 
projected 
trend
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Alternative approach 2: Nonstationary, GCM based
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� Outputs from three GCMs for two scenarios were used
� The original GCM outputs (not shown) had no relation to reality (highly 

negative efficiencies at the annual time scale and above) 
� After adaptations (also known as “downscaling”) the GCM outputs improved 

with respect to reality (to about zero efficiencies at the annual time scale)
� For the past, despite adaptations, the proximity of models with reality is not 

satisfactory
� For the future the runoff obtained by adapted GCM outputs is too stable

Conclusion: It is dangerous 
(too risky) to use GCM future 
projections

Boeoticos Kephisos
runoff produced with 
downscaled GCM 
outputs, superimposed 
to confidence zones 
produced with HK 
statistics under 
stationarity
(Koutsoyiannis et al., 2007)
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HK and extremes: 
Timing of flood peaks

Example 8: Annual maximum 
floods of the Danube at Vienna for 
73 years (100 000 km2 catchment 
area): 
“Five of the six largest floods have
occurred in the last two decades”

(Blöschl and Montanari, 2010)

Entire record, 1828–2008
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HK and extremes: Distribution tails
Assumptions:
1. Probability density function of xi

(gamma—exponential tail):

fi(x|αi) = αi
θ x θ – 1 e –αi x /Γ(θ)

2. The scale parameter αi changes in 
time (e.g. due to overdecadal
climatic fluctuation) with probability 
density function (gamma):

g(αi) = βτ αi
τ – 1 e –β αi /Γ(τ)

Result:
Unconditional density function of x :

f (x) = [1/ β B(θ + τ)] (y/β)θ – 1/ (1 + y/β)τ + θ

F(x) = [Bx/(x + β) (θ, τ) / B (θ, τ)]n

(Beta distribution of the second kind—
power tail)

Conclusion:

Exponential distribution tails may become 
power type (Koutsoyiannis, 2004)

Example 9: Demonstration of the shift 
from exponential to power tail of 
distribution: gamma distribution with 
shape parameter θ = 1 and scale 
parameter either constant α = 0.1 
(initial) or randomly varying following a 
gamma distribution with τ = 2 and β = 
10 (final); both have mean = 10

6. Final remarks



D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty 53

Advantages (or disadvantages?) of the “new”
HK approach
� HK is old-fashioned—not “trendy” (despite admitting that natural 

processes are “naturally trendy”…)

� Is as old as Kolmogorov (1940) and Hurst (1951)

� Involves nothing like “artificial intelligence”, “neural networks”, 
“fuzzy logic”, “chaotic attractors”, “global circulation models”, etc. 

� HK is stationary—not nonstationary

� Demonstrates how stationarity can coexist with change at all time 
scales

� HK is linear—not nonlinear

� Deterministic dynamics need to be nonlinear to produce realistic
trajectories—stochastic dynamics need not 

� HK is simple, parsimonious, and inexpensive —not complicated, 
inflationary and expensive

� HK is honest—not deceitful

� Does not hide uncertainty

� Does not pretend to predict the distant future
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Concluding remarks
� Change is Nature’s style 

� Change occurs at all time scales

� Change is not nonstationarity

� Hurst-Kolmogorov dynamics is the key to perceive multi-
scale change and model the implied uncertainty and risk

� In general, the Hurst-Kolmogorov approach can 
incorporate deterministic descriptions of future changes, if 
available

� In absence of credible predictions of the future, Hurst-
Kolmogorov dynamics admits stationarity

Long live stationarity!!!
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