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1. Abstract

We investigate three methods for simultaneous estimation of the 
Hurst parameter (H) and the standard deviation (σ) for a Hurst-
Kolmogorov stochastic process, namely the maximum likelihood 
method and two methods based on the variation of the standard 
deviation or of the variance with time scale. We show that the 
simultaneous estimation of the two parameters is important, albeit 
not given appropriate attention in the literature, because of the 
interdependence of the two parameter estimators. In addition, we
test the performance of the three methods for a range of sample 
sizes and H values, through a simulation study and we compare it 
with other known results for other estimators of the literature.



2. Definition of Hurst-Kolmogorov process
• Let Xi be a Gaussian stationary stochastic process with i = 1, 2, …

denoting discrete time. We form the vector of identically distributed 
variables Xn := (X1, …, Xn).

• The mean of the process is μ := E[Xi] and the variance of the process is 
σ2 := Var[Xi].

• Let k be an integer that represents a timescale larger than 1, the original 
time scale of the process Xi. The mean aggregated stochastic process on 
that timescale is:

• The following equation defines the Hurst-Kolmogorov process (HKp)

• The autocorrelation function of the mean aggregated stochastic process 
for any aggregated timescale k is independent of k and given by the 
following equation
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3. The maximum likelihood (ML) estimator

∆H = mean of estimated H’s − true H

∆σ = mean of estimated σ’s − true σ

true H = 0.6

true H = 0.9

true H = 0.95

Mean of estimated H’s 
or σ’s minus the true 
value and 
corresponding Monte 
Carlo confidence 
intervals

The following equations are the ML 
estimates of the HKp parameters

where e is a nx1 vector with all its 
elements equal to 1, R is the 
autocorrelation matrix which is a 
function of H (“^” denotes estimate); the 
ML estimate of H is obtained by 
maximizing the one-variable function
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4. The Least Squares based on Standard Deviation 
(LSSD) estimator
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∆H = mean of estimated H’s − true H

∆σ = mean of estimated σ’s − true σ

true H = 0.6

true H = 0.9

true H = 0.95

Mean of estimated H’s 
or σ’s minus the true 
value and 
corresponding Monte 
Carlo confidence 
intervals

LSSD estimates of the HKp parameters 
σ and H are given by minimizing the 
following two variables function

where

e
2
(σ, H) := ∑

k = 1

k'

 
[lnσ + H · lnk + lnck(H) – lns(k)]2

k
p  + 

Hq+1

q+1
 

ck(H) := 
n/k − (n/k)

2H − 1

n/k − 1/2
 

See details about the LSSD method in Koutsoyiannis, D. (2003) Climate change, the Hurst phenomenon, and 
hydrological statistics. Hydrol. Sci. J. 48(1), 3-24.

5. The Least Squares based on Variance (LSV) 
estimator
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∆H = mean of estimated H’s − true H

∆σ = mean of estimated σ’s − true σ

true H = 0.6

true H = 0.95

true H = 0.9

Mean of estimated H’s 
or σ’s minus the true 
value and 
corresponding Monte 
Carlo confidence 
intervals

The LSV σ estimate of the HKp is given 
by the following equations

where

The H estimate is given by minimizing 
the function

σ̂ = α12(Ĥ)/α11(Ĥ) 

α12(H) := ∑
k = 1
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, 0 < Η < 1 

See details about the LSV method in Tyralis, H. and Koutsoyiannis D. (2010) Simultaneous estimation of the Hurst-
Kolmogorov parameters. Stoch. Environ. Res. Risk Assess. In review.
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6. Comparison of all three estimators

true H = 0.6

true H = 0.95

true H = 0.9

Monte Carlo RMSE for 
the three different 
methods versus the 
sample size

Performance of the three estimators in 
terms of RMSE where

The ML estimator has the lowest RMSE

RMSE := 
1

K
 ∑
k = 1

K

 (Hk − H)
2
 

RMSE of H estimation RMSE of σ estimation

7. Comparison between ML, LSSD, LSV and 
alternative methods

.895.800.700.599Least Squares Variance.854.784.706.619HR/S

.055

.027

.896

.046

.888

.059

.849
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.864

.057

.850

0.9

Least Squares Standard Deviation

Maximum Likelihood

Local Whittle

Modified Periodogram

Periodogram

Estimation method

.009

.011

.599

.008

.599

.023

.601

.051

.565

.024

.604

0.6

True H

.008

.012

.699

.007

.700

.023

.700

.054

.661

.024

.708

0.7

.011

.015

.799

.008

.799

.023

.804

.060

.752

.026

.809

0.8

.015.035.033.036RMSE

.017.030.028.024RMSE

.892.801.702.600HVar. of Residuals

.007.040.029.028RMSE

.899.798.696.599HHiguchi

.021.038.031.029RMSE

.902.775.686.594HAbsolute

.063.073.076.080RMSE

.847.771.667.567HDiffVar

.027.036.030.027RMSE

.912.775.687.595HVariance

0.90.80.70.6

True HEstimation method

• In this table the mean of the estimated H’s and the corresponding RMSE for 
different estimation methods are shown. They were produced by a 
simulation study using 200 independent realizations 8 192 long.

• The three methods (ML, LSSD, LSV) seem to be unbiased for this size.
• They also seem to surpass the other methods in terms of RMSE.

Details about the above methods (excluding ML, LSSD, LSV) in Taqqu, M., Teverovsky, V. & Willinger, W. (1995) 
Estimators for long-range dependence: an empirical study. Fractals 3(4), 785-798.

Best
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Worst/
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8. Influence of H to the estimators’ performance
ML

LSV

LSSD

Monte Carlo RMSE 
for the three different 
methods versus the 
true Η value

Performance in terms of RMSE for 
different H values. An increase of H
results in higher errors when 
estimating σ.

RMSE of H estimation RMSE of σ estimation
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9. Interdependence between the H and σ estimators

true H = 0.8

true H = 0.6

Dependence between 
the estimated σ and 
the estimated H

The Fisher information matrix for the 
parameter vector θ is defined below

It is easily proved that

which shows the dependence between 
σ and H. This dependence increases for 
high values of H.

Iij(θ) := − E[
∂

2
ln[p(θ|xn)]

∂θi ∂θj
] 

θ := (θ1, θ2, θ3) ≡ (µ, σ, H) 

I12(θ) = I13(θ) = 0

I23(θ) = (1/σ) Tr(R
-1

 
∂R

∂H
) ≠ 0 



10. Conclusions
• Three estimators (ML, LSSD, LSV) relying on the structure of the HK 

stochastic process are used to estimate its parameters.

• These estimators have the advantage to be more accurate when 
compared to the usual estimators of the literature.

• The finite sample properties of these estimators are explored. 

• They seem to behave well for small samples but their performance
declines for large values of the Hurst parameter H.

• Their main advantage is they estimate simultaneously the Hurst 
parameter and the standard deviation σ of the stochastic process.

• This property is essential because of the dependence of the two 
parameters. For example, the estimate of σ given H, is not guaranteed to 
vary slowly with small changes of H.

• Some theoretical results concerning the asymptotic properties of the LSV 
estimator with respect to H and its bracketing in [0, 1] are also given.

11. Appendix – Theoretical results (1)
Derivation of the ML estimator

The likelihood function is

This function is maximized when

because R is a positive definite matrix and

After substituting this value of μ the ML estimates of σ is given after equating the 
partial derivative of the log-likelihood function to 0.

So we can obtain the estimate of σ from the following equation

and the H estimate from the minimization of the following function
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12. Appendix – Theoretical results (2)

Bracketing of H for the LSV estimator

This property is important since other estimators permit estimated  values of H higher 

than 1, for which a HKp cannot be defined.

Suppose that H2 > 1 and σ2 > 0 (It’s easy to prove that an estimated σ̂ > 0 always). Now for 

any H1 ∈ (0, 1) we can always find a σ1 > 0, such that ck(H1) k
2H1 σ

2

1 − s
2(k)

 < 0 for every k. For 

these values of H1 and σ1: | ck(H1) k
2·H1 σ

2

1 − s
2(k)

 | < | ck(H2) k
2·H2 σ

2

2 − s
2(k)

 | for every k. This 

proves that e
2
(σ1, H1) < e

2
(σ2, H2). So e

2
(σ, H) attains its minimum for H ≤ 1. 


