StEMORS: A stochastic eco-hydrological model for optimal reservoir sizing

A. Koskinas, and A. Tegos, StEMORS: A stochastic eco-hydrological model for optimal reservoir sizing, Open Water Journal, 6 (1), 1, 2020.



Dams design and their operation cause strong environmental alteration and therefore a long-term debate is ongoing for the scale of these projects. At the same time, the concept of Environmental Flow Assessment (EFA) is a crucial element of modified ecosystems featuring large infrastructure such as dams and reservoirs for mitigating potential environmental degradation while they operate. Nowadays, integrated scientific frameworks are required to quantify the risks caused by large infrastructure. Through the use of stochastic analysis, it is possible to quantify these uncertainties, and present a solution that incorporates long-term persistence and environmental sustainability into a balanced reservoir simulation model. In this work, an attempt is made to determine a benchmark reservoir size incorporating hydrological and ecological criteria though stochastic analysis. The primary goal is to ensure the best possible conditions for the ecosystem, and then secondarily to allow a steady supply of water for other uses. Using a synthetic timeseries based on historical inputs, it is possible to determine and preserve essential statistical characteristics of a river’s streamflow, and use these to detect the optimal reservoir capacity that maximizes environmental and local water demand reliability.

PDF Full text (1256 KB)

See also:

Our works referenced by this work:

1. D. Koutsoyiannis, Reliability concepts in reservoir design, Water Encyclopedia, Vol. 4, Surface and Agricultural Water, edited by J. H. Lehr and J. Keeley, 259–265, doi:10.1002/047147844X.sw776, Wiley, New York, 2005.
2. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Water Science and Technology: Water Supply, 7 (1), 13–22, 2007.
3. D. Koutsoyiannis, Scale of water resources development and sustainability: Small is beautiful, large is great, Hydrological Sciences Journal, 56 (4), 553–575, doi:10.1080/02626667.2011.579076, 2011.
4. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
5. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.
6. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
7. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.
8. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
9. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
10. A. Tegos, W. Schlüter, N. Gibbons, Y. Katselis, and A. Efstratiadis, Assessment of environmental flows from complexity to parsimony - Lessons from Lesotho, Water, 10 (10), 1293, doi:10.3390/w10101293, 2018.
11. E. Zacharopoulou, I. Tsoukalas, A. Efstratiadis, and D. Koutsoyiannis, Impact of sample uncertainty of inflows to stochastic simulation of reservoirs, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-17233, European Geosciences Union, 2019.
12. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, S. Sigourou, N. D. Lagaros, and D. Koutsoyiannis, The development of the Athens water supply system and inferences for optimizing the scale of water infrastructures, Sustainability, 11 (9), 2657, doi:10.3390/su11092657, 2019.

Tagged under: Environment, Hydrosystems, Stochastics