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Abstract 

The areal reduction factor (ARF) η is a key quantity in the design against hydrologic extremes. 

For a basin of area a and a duration d, η(a, d, T) is the ratio between the average rainfall intensity 

in a and d with return period T and the average rainfall intensity at a point for the same d and T. 

Empirical ARF charts often display scaling behavior. For example, for large ( a/d) ratios and 

given T, the ARF tends to behave like ( a/d)-α for some α. Here we obtain scaling properties of 

the ARF under the condition that space-time rainfall has multifractal scale invariance. The 

scaling exponents of the ARF are related in a simple way to the multifractal properties of the 

parent rainfall process. We consider regular and highly elongated basins, quantify the effect of 

rainfall advection, and investigate the bias from estimating the ARF using sparse raingauge 

networks. We also study the effects of departure of rainfall from exact multifractality. The results 

explain many features of empirical ARF charts while suggesting dependencies on advection, 

basin shape, and return period that are difficult to quantify empirically. The theoretical scaling 

relations may be used to extrapolate the ARF beyond the empirical range of a, d and T. 

 

Index Terms  

1833 Hydroclimatology; 1854 Precipitation (3354); 1869 Stochastic processes; 3250 Fractals and 

multifractals 
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1. Introduction 

In hydrological risk analysis and design, one is often interested in the rainfall intensity averaged 

over a region of area a and duration d, with return period T. Plotting such extreme rainfall 

intensity I(a, d, T) against d for given a and T produces so-called Intensity Duration Area 

Frequency (IDAF) curves. For a → 0 (precipitation at a point), the IDAF curves reduce to the 

familiar Intensity Duration Frequency (IDF) curves; see for example Singh (1992), p. 905-908. 

While various definitions of T are in use, the one that makes best sense for many hydrologic 

applications and is easiest to handle analytically is the reciprocal of the exceedance rate (e.g. 

Willems, 2000; Veneziano and Furcolo, 2002a). Accordingly, I(a, d, T) is the intensity i that 

satisfies  

  P[I(a, d) > i] = 
d
T  (1) 

where I(a, d) is the average intensity in (t, t + d). 

 Direct estimation of the IDAF curves from rainfall data requires very long records from 

spatially dense raingauge networks or radar, which are seldom available. A common strategy to 

avoid direct estimation is to express I(a, d, T) as the product of the IDF value I(d, T) and the 

areal reduction factor (ARF) η(a, d, T) = 
I(a, d, T)
I(d, T) . Advantages of this factored approach are that 

the IDF values can be found using long records from single pluviometric stations (which are 

available at many locations) and, if the ARF does not vary much in space, the function η(a, d, T)  

needs be estimated just once. In the literature, two different types of ARFs are found: the storm 

centered ARF and the fixed area ARF (Hershfield, 1962; Omolayo, 1993). The storm centered 

ARF is associated with rainfall intensity within the isohyets of specific storm events, and does 

not have a precise return-period interpretation. By contrast the fixed area ARF is obtained as the 
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ratio of return-period rainfall intensities over a fixed area and at a point. Hence the fixed-area 

definition of the ARF is better suited for hydrologic risk analysis, and is the one used throughout 

this paper. 

 General properties of empirical η(a, d, T) functions are that (1) η increases as a decreases or 

d increases approaching unity as a → 0 or d → ∞ and (2) for large a and small d, η depends on a 

and d through a/d; see NERC (1975) Vol. II, p. 40. Whether and how η depends on the return 

period T is less clear. NERC (1975) reports a weak dependence, whereas Bell (1976), Asquith 

and Famiglietti (2000), and De Michele et al. (2001) found that η decreases significantly as T 

increases. ARF charts for routine hydrologic design (e.g. Leclerc and Schaake, 1972; NERC, 

1975; Koutsoyiannis, 1997) typically give η as a function of only a and d.  

 An alternative to empirical IDF, IDAF and ARF estimation is to use theoretical analysis 

based on a random-process representation of rainfall. Some studies have derived properties of the 

IDAF curves and the ARFs using non-scaling representations of rainfall. An early attempt in this 

direction was made by Roche (1966) who developed a theoretical approach to point and areal 

rainfall based on the correlation structure of intense storms. Rodriguez-Iturbe and Mejia (1974) 

extended Roche’s (1966) approach by assuming that the rainfall field is a zero mean stationary 

Gaussian process. A different approach to ARF estimation, based on crossing properties of 

random fields, was proposed by Bacchi and Ranzi (1996). . Properties of extremes of random 

functions were used also by Sivapalan and Blöschl (1998). Finally, Asquith and Famiglietti 

(2000) derived the ARF as the catchment average of the ratio between the T-year rainfall depths 

at distance r from the centroid of the storm and at the centroid itself.  

 Several other studies have assumed that rainfall intensity has scale invariance and used 

multifractal analysis to derive scaling properties of the IDF curves and ARFs with a, d and T. De 
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Michele et al. (2001) have argued directly that the annual maximum value of I(d, a) could scale 

in a self similar or multifractal way with d and a. They then focus on the self similar case and 

specify the form of I(a, d, T) by reasoning on the limiting behavior when a → 0 and a or d → ∞. 

By contrast, Hubert et al. (1998) and Veneziano and Furcolo (2002a) derive scaling properties of 

the IDF curves with d and T from the condition that rainfall has multifractal scale invariance. In a 

recent study, Castro et al. (2004) developed a multiftractal approach to explain how the IDAF 

values scale with a, d and T. Although not explicitly stated, the analysis of Castro et al. (2004) is 

valid only for large values of T; see Langousis (2004). 

 Multifractal models are attractive for studying rainfall scaling since they provide 

parsimonious representations of space-time rainfall fields (Lovejoy and Schertzer, 1995; Gupta 

and Waymire, 1993; Deidda, 2000), and possess scaling properties that likely determine the 

power-law behaviors of empirical IDF, IDAF curves and ARFs. However, several studies (e.g. 

Fraedrich and Larnder, 1993; Olsson et al., 1993; Olsson, 1995; Menabde et al., 1997) have 

shown that temporal rainfall ceases to be multifractal for aggregation periods larger than about 2 

weeks or smaller than several minutes. Also the analysis of rainfall fields in space and space-

time reveals systematic deviations from exact multifractality (Veneziano et al., 2005). 

 In this paper, we study the behavior of the IDAF curves and the areal reduction factor η 

under exact and approximate multifractality. We also analyze how these quantities depend on 

basin shape and rainfall advection and quantify the distortions in ARF scaling caused by the 

common practice of estimating area rainfall from sparse pluviometric networks. Finally, we 

show how the theoretical results explain many features of empirical ARFs.  

 Since in certain limiting cases to be considered later (such as sampling along a line segment) 

the basin has finite extent but zero area, it is convenient to parameterize the basin through its 
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shape S and largest linear dimension l rather than area a. For example, a basin could have in 

approximation the shape S of a disc, a square or a rectangle with a given aspect ratio. Together, S 

and l define the planar geometry of the basin (except for rigid translation, rotation, or reflection). 

Accordingly, we use the notation I(S, l, d, T) and η(S, l, d, T) in place of the less descriptive 

Ι(a, d, T) and η(a, d, T). 

 In hydrologic applications, the averaging duration d is often related to the response time of 

the basin, for example the concentration time, but in general the region of interest needs not be a 

river basin and d needs not refer to the travel time of water particles. While hydrologic extremes 

remain the main practical focus of our analysis and consequently we refer to the geographical 

region as a “basin”, results hold beyond this application context. 

2. IDAF and ARF Scaling under Multifractal Rainfall 

Veneziano and Furcolo (2002a) analyzed the IDF curves when temporal rainfall is a stationary 

multifractal process. Multifractality means that, for any given duration d and scaling factor r ≥ 1,  

  I(t|d) =
d
   Br I(rt|rd) (2) 

where I(t|d) is the mean rainfall intensity in [t, t + d], Br is a non-negative random variable with 

mean value 1 whose distribution depends on r, and =d  denotes equality of all n-dimensional 

distributions (statistical equivalence of the two processes); see for example Gupta and Waymire 

(1990) or Veneziano (1999). The distribution of Br, which determines the scaling properties of 

the rainfall process, can be characterized by the moment-scaling function K(q) = logr(E[Br
q]). For 

example, if Br has lognormal distribution, then K(q) = C1(q2 - q) where C1 = 1
2

Var[logr(Br)] is a 

parameter. Equation (2) expresses the property of multifractal scale invariance. Due to 

stationarity, I(t|d) is also invariant with respect to shifts of the time parameter. 
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 Hubert et al. (1998) and Veneziano and Furcolo (2002a) found that, under equation (2), the 

IDF function I(d, T) has the following asymptotic properties: 

  I(d, T) ∝ 



  d 

-γ1 T 
1
q1  , for any finite T and d → 0

 d 
-1 T  

1
q1*  , for any finite d and T → ∞

 (3) 

The constants γ1, q1 and q1* in equation (3) can be found from the function K(q) as shown in 

Figure 1: γ1 is the slope of the tangent to K(q) with Y-intercept equal to –1, q1 is the value of q at 

the point of tangency, and q1* is the order above which the moments of I(t|d) diverge (q1* can be 

found as the value of q > 1 such that K(q) = q – 1). For example, in the case of a lognormal 

multifractal process with parameter C1, these constants are γ1 = 2 C1 - C1, q1 = 1/ C1, and 

q1* = 1/C1. 

 Next we extend the analysis of Veneziano and Furcolo (2002a) from point to spatially 

averaged rainfall. While the extension is in many ways straightforward, new elements to be 

considered are that the scaling of the IDAF values depends on the linear size l and shape S of the 

basin and the rainfall advection velocity vad.  

2.1 Lagrangian Scaling of Multifractal Space-time Rainfall 

The case of no advection corresponds to working in a Lagrangian reference that moves with the 

rainfall field. In that reference, rainfall is assumed to be a stationary random measure with 

isotropic multifractality in space and time. In analogy with equation (2), this means that for any 

basin (S, l), duration d and scaling factor r ≥ 1,  

 

  I(t|S, l, d) =
d
   Br I(rt|S, rl, rd) (4) 

where I(t|S, l, d) is the mean rainfall intensity inside the basin (S, l) during [t, t + d] and all other 

notation is as in equation (2).  
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 Multifractal scaling applies below some maximum region size lmax and duration dmax, which 

might represent the size and duration of the largest organized rainfall features at the synoptic 

scale. It is then convenient to use lmax and dmax to render all length and time variables 

dimensionless. For example, L = l/lmax and D = d/dmax are the dimensionless basin size and 

averaging duration. When using such dimensionless quantities, equation (4) becomes 

  I(t|S, L, D) =
d
   Br I(rt|S, rL, rD) (5) 

To further discuss the scaling properties of space-time rainfall, we introduce two quantities with 

the physical dimension of velocity [length/time]. One is the “rainfall evolution rate” vrain = 

lrain/drain, where lrain and drain are the linear size and lifetime of organized rainfall features such as 

convective cells, cell clusters or mesoscale precipitation regions. For what follows, it is not 

important to specify which of these features lrain and drain refer to, because what matters is the 

ratio vrain = lrain/drain and, under isotropic multifractality, vrain is the same for all such features. In 

particular, vrain = lmax/dmax. 

 The other quantity is the “response velocity” vres = l/d, where l and d are the maximum linear 

size of the basin and the duration of rainfall averaging (as stated in the Introduction, d is a 

duration of interest, which may or may not correspond to the hydrologic response time of the 

basin). What matters for the analysis that follows is the relative magnitude of vrain and vres, as 

expressed by the dimensionless “response velocity parameter” ures = vres/vrain = 
l/d 

 lmax/dmax
= 

l/lmax
d/dmax

= L/D, where L and D are the normalized quantities introduced above. The parameter ures 

indicates whether the response of the basin is faster (ures > 1) or slower (ures < 1) than the 

evolution rate of the rainfall features. For example, if d is set equal to the concentration time of 

the basin (on the concentration time, see for example Viessman and Lewis (2003), p. 265), then 

vres ranges approximately between 3 and 8 Km/h depending mainly on the average slope of the 
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basin; for a detailed analysis see Langousis (2004). On the other hand, the rainfall evolution rate 

vrain ranges from about 5 to 20 Km/h; see for example Austin and Houze (1972), Orlanski (1975) 

and the review in Langousis (2004).  Hence ures may be either smaller or larger than 1. 

   We now return to the multifractal scaling property in equation (5). That property can be 

represented graphically by noting that rainfall intensity has “Br multifractal scaling” along 45o 

lines on the [ln(L), ln(D)] plane; see Figure 2a. Each 45o line in Figure 2a is characterized by one 

value of the response velocity parameter ures = L/D. The line with ures = 1, denoted by U1, 

corresponds to square regions on the (L, D) plane and has special importance. Below U1 is the 

“fast response region” where ures > 1 and above U1 is the “slow response region” where ures < 1. 

The regions where ures >> 1 (in practice, ures larger than about 5) and ures << 1 (ures smaller than 

about 1/5) will be referred to as the very fast and very slow response regions, respectively. In 

Figure 2, we have made use of rectangles with side lengths L and D to visually illustrate the 

relative value of these quantities and conditions when ures = L/D is smaller or larger than 1. 

 Multifractality is expressed by the scale invariance property in equation (5). It is important to 

notice that in the right hand side of that equation L and D are stretched by the same factor r 

(hence also the physical length l = Llmax and physical averaging duration d = Ddmax are both 

stretched by r). However, more general scaling relations hold in good approximation in the very 

fast and very slow response regions. When ures >> 1, the temporal process I(rt|S, rL, rD) in 

equation (5) is insensitive to D, provided that D remains much smaller than L (see Veneziano 

and Furcolo, 2002b). The basic reason is that for D << L the temporal correlation of rainfall 

intensity within an interval of duration d = Ddmax is much closer to 1 than the spatial correlation 

along a spatial segment of length l = Llmax. Using this property and equation (5), one obtains   

  I(t|S, L, D) =
d
   BrL

 I(rLt|S, rLL, rDD) ,  rL ≥ 1;  ures >> 1  (6) 
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The scaling factor rD in equation (6) is arbitrary, provided that (rLL)/(rDD) >> 1.  

 For ures  << 1, L is much smaller than D and a similar argument gives the following scaling 

relation, which is symmetrical to equation (6): 

  I(t|S, L, D) =
d
    BrD

 I(rDt|S, rLL, rDD) ,  rD ≥ 1;  ures << 1  (7) 

In this case rL is arbitrary, provided that (rLL)/(rDD) << 1.  

 The scaling relations in equations (6) and (7) are shown schematically in Figure 2b. What is 

given along each arrow in the figure is the scaling factor in each transformation of L and D (“1” 

means that the distribution is unchanged by the transformation). For example, raingauge records 

have minimal area coverage; hence scaling in time is of the BrD
 multifractal type, as given by 

equation (7) and shown at the top left of Figure 2b. In the region around the U1 line (for ures in 

the approximate range [1/5, 5]), equations (6) and (7) do not apply. Rather, there are complicated 

transformations TD,r and TL,r in the directions of the log(D) and log(L) axes, which in 

combination produce Br multifractal scaling along 45-degree lines; see dashed triangle in Figure 

2b. 

 Next we derive the scaling properties of the IDAF curves and ARFs in the very fast and very 

slow response regions. We start with two limiting basin shapes, a square (or disc) and a line 

segment, and then discuss the case of general rectangular regions. Section 2.2 assumes no 

advection and Section 2.3 extends the results to vad ≠ 0.  

2.2 IDAF and ARF Scaling: No Rainfall Advection 

In the very slow response region equation (7) holds and recalling equation (3) one finds that, for 

basins of given shape S, 
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  I(S, L, D, T) ∝ 



D

-γ1 T 
1
q1       , for T finite and D→0

 D
-1 T  

1
qn*

     ,  for D finite and T→∞

,  ures << 1 (8) 

Notice that equation (3) holds for temporal rainfall (in this case the Euclidean space dimension is 

n = 1 and the critical moment order is q1*), whereas equation (8) is for space-time regions of any 

Euclidean dimension n (e.g. n = 2 if rainfall is observed along a line segment and n = 3 if rainfall 

is observed inside a region with positive area). In the latter case, the order of moment divergence 

qn* is the value of q > 1 such that K(q) = n(q - 1); see Figure 1. For example, in the case of 

lognormal multifractal rainfall, qn* = n/C1. The reason why the right hand side of equation (8) 

does not contain L is that, for ures << 1, I is insensitive to the size of the basin. 

 In the very fast response region equation (6) holds and, in analogy with equation (8), 

  I(S, L, D, T) ∝ 



L

-γ1 T 
1
q1       , for T finite and L→0

 L
-1 T  

1
qn*

     ,  for L finite and T→∞

,  ures >> 1 (9) 

In this case, I is insensitive to the averaging duration. Equations (8) and (9) give asymptotic 

scaling properties for the IDAF values. Next we use these properties and the time-only results in 

equation (3) to derive scaling relations for η(S, L, D, T) = 
I(S, L, D, T)

I(D, T) .  

 In the very slow response region (for L/D small), equations (3) and (8) give 

  η(S, L, D, T) = 


≈1                  ,  for T finite and D→0

∝ T  
1

qn* - 
1

q1*
   ,  for D finite and T→∞

,                    ures << 1 (10) 

whereas in the very fast response region (for L/D large), equations (3) and (9) give 
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 η(S, L, D, T) ∝ 





 




L

D
-γ1

                            , for T finite and L→0





L

D
-1

 T  
1

qn* - 
1

q1*
   ,  for L finite and T→∞

,                  ures >> 1 (11)  

Equations (10) and (11) show that η depends on the response velocity L/D, the return period T 

and, through n in qn*, the shape of the observation region. Notice that, when the response 

velocity parameter ures = L/D is small, the ARF does not depend on L and D and is close to 1. If 

on the other hand ures is high, the ARF becomes a power function of L/D, whose exponent 

depends on T. These properties correspond to features typically observed in empirical ARFs; see 

for example NERC (1975), Koutsoyiannis (1997), Asquith and Famiglietti (2000), and De 

Michele et al. (2001). 

 Before we include advection, we briefly mention two issues related to the algebraic tail of the 

rainfall intensity distribution and its implications on how η behaves for large T. Consider a 

generic rectangular space-time region (L1xL2xD) with L1 ≥ L2. If rainfall is a fully developed 

multifractal process and q3* < ∞, then for L2 > 0 the marginal distribution of I(t|L1, L2 ,D) has a 

“q3* upper tail” of the type P[I(t|L1, L2, D) > i]  ~ i -q3*. Hence the asymptotic scaling results for 

square regions [n = 3 in equations (8)-(11)] hold also for general rectangular regions. However, 

the upper tail of the average rainfall intensity in a rectangular region may include first a range 

with algebraic q1* behavior, followed by a range with q2* behavior and finally by the extreme 

q3* tail, as illustrated in Figure 3. A limited q1* tail develops if one of the three dimensions (L1, 

L2, or D) clearly dominates over the other two and a limited q2* tail develops if one of the three 

dimensions is much smaller than the other two. For example, a sequence of q1*, q2*, and q3* tail 

regimes exists if L1 >> L2 >> D. Similar considerations apply when observing rainfall on a line 
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segment. In this case, if L >> D or L << D, there is a non-extreme q1* tail that precedes the 

extreme q2* tail. 

 The second issue is that fully-developed multifractal processes like those we have considered 

up to now have singularities that cannot exist in nature. The singularities are due to oscillations 

at sub-observation scales which, when continued to infinite resolution, cause divergence of the 

moments of I(t|S, L, D) of order q ≥ qn*. More plausible models of rainfall are multiplicative 

cascades developed to a finite resolution or, as we shall consider later, “bounded” cascades in 

which the fluctuations at finer scales have decreasing amplitudes (Menabde et al., 1997). In 

either case, the distribution of I(t|S, L, D) does not have an algebraic upper tail and for T → ∞ the 

IDAF and ARF values do not have (an exact) power-law dependence on T. 

 The main conclusion from these considerations is that the scaling relation η ∝ T  
1

qn* - 
1

q1*  with 

n > 1, which is predicted by theory for T → ∞, may not apply in reality or may occur for return 

periods that are too large to be of practical interest. 

2.3 The Effect of Advection 

To our knowledge, the effect of rainfall advection on the IDAF curves and the ARF values has 

not been previously studied. This effect largely depends on the “advection velocity parameter” 

uad, defined as the dimensionless ratio uad = vad/vrain between the advection velocity vad and the 

rainfall evolution rate vrain. As before, we assume that in a Lagrangian reference that tracks the 

rainfall motion, rainfall intensity satisfies the multifractal scale invariance condition in equation 

(5). To determine the effect of vad on the IDAF and ARF values, one must find how advection 

changes the shape and size of the rainfall averaging regions from a Eulerian (fixed) to a 

Lagrangian (moving) reference frame and then use results from Section 2.2 for the Lagrangian 

regions. Here we do so for rainfall observed at a geographical point, along a line segment, or 
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over a disc. Primed symbols denote quantities in the Lagrangian reference. We work with 

dimensionless length L and duration D, but analogous relations hold for the un-normalized 

quantities l and d.  

(a) Observation of Rainfall at a Point 

As shown in Figure 4a, when averaging advected rain during a period D, the averaging segment 

in the Lagrangian reference has length D΄ = D2 + D2 (uad)2 = D 1+ uad
2. Next we will show 

that the Lagrangian return period T΄ that corresponds to the Eulerian T is T΄ = T 1+ uad
2. 

 Consider rainfall intensity at a fixed geographical point, averaged in an interval of duration d. 

In T units of time, there are n = T/d such intervals; hence I(d, T) is the intensity i such that 

P[I(d) > i] = 1/n = d/T. In the case when uad > 0, I(d) is the average of the Lagrangian rainfall 

intensity field over a segment of length d΄= d (1+uad
2) (see Figure 4a). In T units of time, the 

sampling point in the Lagrangian reference covers a segment of length T΄= nd΄=
Td΄
d

 = T (1+uad
2). Therefore, I(d, T |uad) = I(d (1+uad

2), T (1+uad
2) |uad = 0).  

 As a consequence of this analysis, if for uad = 0 the IDF value varies with D and T as D-α Tβ, 

then for uad ≠ 0 the IDF values must be multiplied by (1+uad
2)½(β−α). Since α > β (see equation 

(3)), this factor is smaller than 1. 

(b) Averaging Rainfall along a Line Segment 

Suppose now that rainfall is observed along a line segment of length L parallel to the y-axis 

during a period D. In this case the Lagrangian space-time averaging region is a parallelogram 

with side lengths L΄ = L and D΄ = D 1+ uad
2; see Figure 4b. The Lagrangian return period is 

T΄ = T 1+ uad
2, as in the case of sampling at a point. To understand the implications of these 

transformations on the IDAF curves and the ARF values, we consider the limiting cases when 



 

 15

ures  >> 1 (very fast basin response relative to the rainfall evolution rate) and ures << 1 (very slow 

basin response) and denote by uad,x and uad,y the components of the normalized advection velocity 

vector in the x and y directions, respectively.  

 For ures >> 1, the Lagrangian observation parallelogram is highly elongated in the spatial 

direction and is approximated well by a rectangle with side lengths L΄ = L and D΄ = D 1+ uad,x
2, 

as shown in Figure 5a. For ures << 1 the parallelogram is highly elongated in the temporal 

direction and is approximated well by a rectangle with side lengths L΄ = L/ 1+ uad,y
2 and D΄ = D 

1+ uad
2; see Figure 5b. In summary, the parameter transformations from a Eulerian to a 

Lagrangian coordinate system are  

  

   ures >> 1  





  L΄ = L 

  D΄= D 1+ uad,x
2 

  T΄= T 1+ uad,x
2

ures << 1  





  L΄ = L/ 1+ uad,y
2 

  D΄= D 1+ uad
2 

  T΄= T 1+ uad
2

 (12) 

Notice that, when sampling along a line segment, the effective parameters depend not only on 

the magnitude but also on the direction of rainfall advection relative to the sampling line.  

(c) Averaging Rainfall over a Disc 

When sampling over a disc of diameter L, the direction of rainfall advection does not matter; see 

Figure 4c. In this case the effect of advection is to change L, D and T to L΄, D΄, and T΄ given by 
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   ures >> 1  


  L΄ = L
  D΄= D
  T΄= T

ures << 1  





 (L΄)2 = L2/ 1+ uad
2

  D΄= D 1+ uad
2

  T΄= T 1+ uad
2

 (13) 

Notice that when ures << 1 the averaging Lagrangian region is approximated as a cylinder with 

circular basis of area  a΄ = a/ 1+ uad
2. Scaling results for IDAF and ARF including advection are 

obtained by replacing L, D and T on the right hand sides of equations (8)-(11) with the 

expressions for the effective parameters L΄, D΄ and T΄ in equations (12) and (13). The final 

results are summarized in Table 1 for very elongated basins (approximated as line segments) and 

Table 2 for regular basins (approximated as discs).  

 Tables 1 and 2 show that advection does not change the asymptotic algebraic behaviors of 

the ARF with D, L, and T. However, advection affects the prefactors of those asymptotic 

relations. To appreciate the practical importance of this effect, consider typical ranges of the 

velocity parameters vrain and vad. As mentioned earlier, vrain varies approximately from 5 to 20 

Km/h. The advection velocity vad usually takes values between 30 and 50 Km/h at small scales (a 

few kilometers) and between 20 and 40 Km/h at large scales (100 or more kilometers); see for 

example Martin and Schreiner (1981), Kawamura et al. (1996), Deidda (2000) and the review in 

Langousis (2004). One concludes that uad varies from 0 to almost 5, and thus the effect of 

advection may be as large as a factor of 2 on the ARF.     

2.4 Numerical Validation  

We conclude this section by numerically validating the theoretical results on the ARF, first for 

vad = 0 and then for vad ≠ 0. For the case without advection we use a binary cascade 
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representation of rainfall in two spatial dimensions plus time. The model has lognormal 

generator Br and moment-scaling function K(q) = C1(q2 - q) with parameter C1 = 0.1. The outer 

scale of multifractal behavior is fixed to 29 cascade cells in each spatial and temporal direction. 

Hence dmax = lmax = 29. Simulation is limited to the parallelepiped with spatial dimensions 26 × 26 

and temporal dimension 29, and the basin is assumed to be a square with side length at most 25 

cells. Similarly temporal averaging is over at most 25 cells. This means that L and D range from 

2-9 to 2-4. The 26×26×29 parallelepiped might represent the rainy season of one year. While this is 

a highly idealized representation of rainfall, it should suffice for the purpose of validating the 

theoretical results.  

 Numerical estimation of the ARF requires calculation of average rainfall intensities at the 

catchment and rain-gauge scales, the latter assimilated to a point. To obtain these averages, the 

cascade is generated down to unit space-time cells and then differently “dressed” to produce 

areal average and point values, as described below. 

 Denote by Ib(x, y, t) the “bare” rainfall intensity in the unit tile centered at (x, y, t). This is the 

rainfall intensity obtained at level 9 of the cascade construction procedure. The actual 

(“dressed”) rainfall intensity at that unit scale is obtained as 

  Id,3(x, y, t) = Z3 Ib(x, y, t)  (14) 

where the subscripts b and d stand for bare and dressed, respectively, and Z3 is the dressing 

factor for the 3-dimensional cascade.  

 Consider now a raingauge inside this tile, for example at location (x, y). During the unit time 

interval centered at t, the average rainfall intensity Id,1(x, y, t) measured by the raingauge is 

  Id,1(x, y, t) = Z1 Ib(x, y, t)  (15) 
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Equation (15) is analogous to equation (14), except that Z1 is the dressing factor of a 1-

dimensional cascade with the same cascade generator as the three-dimensional cascade. 

 For each simulated season, one can numerically estimate the ARF values for different L and 

D as the ratio between the maximum average rainfall inside the basin and at a point. Figure 6a 

shows the iso-ARF lines obtained by averaging the rainfall maxima for different L and D over 10 

independently simulated seasons. These values have a return period T of about one season (or 

one year).  

 In Figure 6a one observes that the iso-lines are essentially straight with a 45-degree slope, as 

predicted by theory. Also the theoretical scaling relation for large L/D (with exponent 

γ1 = 0.532), is very closely matched by the simulation results; see Figure 6b. An equally good 

correspondence between simulation and theoretical results has been obtained using more general 

beta-lognormal cascades, which are able to represent the alternation of rainy and dry space-time 

regions (Langousis, 2004). 

  The validation of results with nonzero advection is computationally more demanding 

because the simulation region must be large enough to include the slanted rainfall observation 

region in the Lagrangian reference. To reduce the numerical effort, we consider the case when 

rainfall is observed along a line segment of length L and advection is parallel to that segment. 

The rainfall model is a 2-dimensional (one space dimension plus one time dimension) binary 

lognormal cascade and simulation is in a 210 × 210 Lagrangian region. Hence dmax = lmax = 210. 

Except for the different size of the simulation region and the lower dimensions (2 rather than 3), 

the rainfall model is identical to that for no advection. 

 In analogy with equations (14) and (15), the dressed measures Id,2(y, t) and Id,1(y, t) needed to 

calculate the ARF are obtained as 
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                         Id,1(x, y, t) = Z1 Ib(x, y, t) ,         Id,2(x, y, t) = Z2 Ib(x, y, t) (16) 

Empirical estimates of the ARF have been obtained by averaging extreme rainfalls over 20 

independently simulated seasons. Figure 7 compares results for vad = 0 (no advection, lower 

curve), vad = 4 space units per unit time, and vad = 8 space units per unit time. The theoretical 

effects of advection can be found from Table 1 for the case uad,x = 0. For C1 = 0.1, one obtains 

γ1 = 2 C1 – C1 = 0.532 and q1 = 1/ C1 = 3.162. Moreover, for ures >> 1, T finite and L → 0, 

Table 1 gives the advection correction factor (1+uad
2)0.108. Hence the curves for uad = 4 and the uad 

= 8 in Figure 7 should be shifted upwards by 0.44 and 0.65, respectively, relative to the uad = 0 

case. The numerical results agree very well with these theoretical predictions. 

3. Deviations from Multifractality 

Stationary multifractal fields result from cascade constructions in which non-negative 

fluctuations Yj(x, y, t) at different scales sj = s0 r -j are multiplied. Here s0 > 0 and r > 1 are 

constants and j = 1, 2, … is the cascade level. A necessary condition for scale invariance is that 

the fluctuations Yj(x, y, t) be statistically identical to Y(r j x, r j y, r j t), where Y(x, y, t) is some 

non-negative mean-1 stationary process called the generator of the cascade.  

 Several studies have found that rainfall may indeed be represented by a multiplicative 

cascade, but the amplitude of the fluctuation Yj decreases as the cascade level j increases; see for 

example Perica and Foufoula-Georgiou (1996), Menabde et al. (1997), Menabde and Sivapalan 

(2000), and Veneziano et al. (2004).  

 Models that in different ways capture this feature include the wavelet representation of Perica 

and Foufoula-Georgiou (1996), the bounded cascades of Menabde et al. (1997) and Menabde 

and Sivapalan (2000), and the universal multifractal processes of Schertzer and Lovejoy (1987), 
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the latter when the fractional integration parameter H is nonzero. Here we use a bounded cascade 

model to assess how departure from multifractality affects the ARF.  

  The construction of a bounded cascade is identical to that of a multifractal cascade, except 

that the standard deviation of the generator σy (or some other dispersion measure like the C1 

coefficient) decreases as the cascade level j increases. To illustrate the effect on the ARF, we 

assume that rainfall is a lognormal bounded cascade in space and time, with multiplicity 2 in all 

three coordinate directions and a generator Bj that varies with the cascade level j as  

  ln(Bj) ∼ N



-

σ2(j)
2  ,σ2(j)     (17) 

where N(µ, σ2) is the normal distribution with mean value µ and variance σ2. The standard 

deviation σ(j) decays linearly with j as shown in Figure 8a. This is similar to the decay found by 

Menabde and Sivapalan (2000) and Perica and Foufoula-Georgiou (1996); see Langousis (2004). 

Except for this change, the numerical simulation procedure is the same as in Section 2.4.  

 Figure 8b shows how the ARF varies with L and D. This figure should be compared with 

Figure 6a, which displays similar results under multifractality. Notice that σB(0) = 0.385 

corresponds to C1 = 0.1; hence the two cascade models have the same variability at the largest 

scale; see Figure 8a. Relative to Figure 6a, the contour lines in Figure 8b are displaced upwards 

because the bounded-cascade process is smoother than the multifractal process. Therefore, for 

small L, spatially averaged rainfalls in the bounded cascade are nearly identical to point rainfalls.  

A second important effect is that the contour lines in Figure 8b are not straight, reflecting lack of 

scale invariance of the bounded cascade. In particular, for large L and small D the lines are very 

flat (since further reducing D does not affect much the rainfall averages) and their slope 

increases towards 1 as L decreases or D increases.  
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4. The Effect of Sparse Spatial Sampling 

When the ARF is estimated from raingauge measurements, as is typically done in practice, the 

rainfall intensity in a region is estimated as the average (or weighted average) of raingauge 

measurements at points inside the region. Unless the raingauge spacing varies proportionally to 

the size L of the region, this operation destroys any scaling property the ARFs might have. 

 Sparse point sampling can be easily simulated. Suppose that the resolution of the cascade 

simulation is such that at most one raingauge site falls inside each cascade tile. Then the only 

difference with the procedure described in Section 2.4 is that one must multiply the “bare” 

rainfall intensity in the cascade tile that hosts a raingauge by the 1-dimensional random dressing 

factor Z1 instead of the three-dimensional factor Z3.  

 To illustrate the effect of sparse spatial sampling, we use again the 3-dimensional lognormal 

cascade model of Figure 6a. Figure 9 shows ARF results when the raingauge stations are 

arranged on a regular square grid with a density of 1 station per four cascade tiles. Comparison 

with Figure 6a shows that for large L the ARF values are not influenced by sparse sampling. 

However, significant differences are evident for small L. In the limiting case when L equals the 

inter-station distance (this happens here for log2(L) = 1), the spatially averaged rainfall is 

estimated as the rainfall at the only station inside the region. This is why the ARF in Figure 9 is 

identically 1 along the lower boundary.  The contour lines of the ARF, which have a 45-degree 

slope for large L, must necessarily bend to remain above this horizontal ARF = 1 line. It is 

emphasized that in this case the curvature of the ARF contour lines is due to lack of scaling of 

the observation grid not lack of scaling of the rainfall field. Hence the differences between 

Figures 6a and 9 reflect bias due to sparse sampling. 
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5. Interpretation of Empirical Areal Reduction Factors 

To conclude, we examine features of empirical ARFs in the light of previous model-based 

results. For this purpose, we use the ARF data of the Natural Environmental Research Council 

(NERC, 1975). The data comprise ARF estimates from thirteen basins in the United Kingdom, 

with areas ranging from 10 to 18 000 Km2 and durations from 2 minutes to 25 days; see Table 3. 

According to NERC, these ARFs refer to rainfall events with return periods of 2-3 years. 

 NERC (1975) interpolated and extrapolated the original ARF values to produce charts that 

cover a wider range of catchment areas (from 1 to 30 000 Km2) and averaging durations (from 1 

minute to 25 days). The interpolated values fit well the original data for some but not all 

combinations of a and d. To more faithfully reflect the original data, we have re-interpolated the 

original values in Table 3 using 1st order triangulation. The results are shown in Figure 10.  

 One may distinguish four regions in Figure 10 where the ARF contour lines have different 

behaviors. Region 1 displays simple scaling of the ARF with a and d. Specifically, the ARF is 

constant for d ∝ a (for d ∝ l, considering that basin shape is essentially independent of basin 

size). This agrees with results obtained in Sections 2.1 and 2.2 under the assumption that rainfall 

is multifractal in space and time. 

 In Region 2, the contour lines become flatter as a or d decreases. This is also what happens 

if, at small space-time scales, rainfall behaves like a bounded cascade; see Section 3. In Region 

3, the contour lines have higher curvature and become nearly parallel to the d-axis for small a 

and d. Sparse spatial sampling produces a similar effect, as l approaches the inter-station 

distance; see Section 4. Finally, in Region 4 where d/ a is large, the contour lines are more 

widely spaced than under exact multifractality. Langousis (2004) has shown that this feature 

could be due to high lacunarity of the rain support at synoptic and meso-scales. However this is 
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only a tentative conclusion, since the behavior of the ARF in Region 4 is poorly constrained by 

the data. 

 Next we show how the results in Figure 10 can be quantitatively reproduced. To reduce the 

computational effort, we focus on the region with a in the range 30-1 000 Km2 and d in the range 

15 min-6 hours. This includes the various sub-regions mentioned above except Region 1, where 

the ARF behaves consistently with multifractal cascades and need no further confirmation.     

 For Regions 2 and 3, we use a bounded Log-Normal (LN) cascade representation of rainfall 

in two spatial dimensions plus time. The cascade has multiplicity 2 in all directions. The cascade 

generator Bj satisfies equation (17), where σ(j)2 varies with the cascade level j according to 

Figure 11a. Figure 11a approximates the empirical findings of Menabde and Sivapalan (2000) 

for temporal rainfall. For durations longer than those in Menabde and Sivapalan (2000), we 

assume that the distribution of the generator is the same as that at the largest scale available. 

 The numerical simulation procedure is the same as in Sections 2 and 3, with tiles at the 

highest resolution representing space-time regions of area 1Km2 and duration ¼ hours. To model 

sparse spatial sampling, we calculate area intensities as averages at geographical points with 

regular spacing and a density of 1 raingauge per 4 Km2. This is comparable to the average 

density in the NERC data; see NERC (1975), Vol. IV, p. 24.  

 Figure 11b shows ARF results averaged over 10 independently simulated seasons. The 

contour lines in Regions 2 and 3 are in good agreement with Figure 10. Notice in particular the 

high curvature in Region 3, which is caused primarily by sparse sampling. In Region 4, the 

agreement is not as good. As noted above, better agreement in this region can be achieved 

through the inclusion of large-scale lacunarity (Langousis, 2004). However, in Region 4 the ARF 
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is close to 1. Hence its accurate determination is not critical in practice and the simple bounded 

lognormal model illustrated in Figure 11 should suffice. 

6. Conclusions 

We have analyzed the scaling properties of the areal reduction factor (ARF) under the condition 

that space-time rainfall has exact or approximate multifractal scale invariance. We have 

considered regular and highly elongated basins, quantified the effect of rainfall advection, and 

investigated the bias when estimating the ARF from sparse raingauge networks.  

 We have found that under perfect multifractality the ARF has asymptotic scaling behaviors 

with L/D and T, where L is the largest linear size of the region of rainfall averaging, D is the 

duration of averaging, and T is the return period. Specifically, ARF ~ (L/D)-α T-β for (L/D) → ∞, 

(L/D) → 0, or T → ∞. The non-negative constants α and β depend somewhat on the geometry of 

the region (regular or highly elongated) and differ in the three limiting cases above, but are 

independent of rainfall advection and can be found easily from the multifractal properties of 

rainfall. The behavior for (L/D) → 0 is simply ARF → 1, whereas the other two limiting cases 

are non-trivial.  

 The ARF depends on T in two ways: through the term T-β and through α , which has different 

values for T finite and T → ∞. The latter is usually the dominant influence. The effect of T on the 

ARF may be numerically important. This confirms qualitatively the findings of Bell (1976), 

Asquith and Famiglietti (2000) and De Michele et al. (2001). A reason why empirical studies 

like NERC (1975) failed to detect significant T dependence is that available space-time rainfall 

records allow ARF estimation over only a small range of return periods. 

 For (L/D) → ∞ or T → ∞, the above scaling relationships have prefactors that depend on the 

rainfall advection velocity parameter uad and to a lesser extent the shape of the basin. For non-
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extremely elongated basins this prefactor is of the type (1+uad
2)c, where c is a positive constant 

with typical values between 0.1 and 0.5. Hence, depending on uad (see Section 2.3), the effect of 

advection on the ARF may be as large as 2. To our knowledge, this is the first time that this 

effect has been quantified. Of course, advection is implicitly included in empirical estimates of 

the ARF, but its effect should be added when the ARF is theoretically estimated from non-

advecting rainfall models. 

 We have studied the effect of basin shape by considering two limiting cases: basins with 

nearly circular or square shape and highly elongated basins that can be approximated as line 

segments. Basin shape affects the exponent β when T→ ∞ and the prefactor in the case of 

advecting rainfall. These effects are generally small (that on β is important for T beyond the 

typical range of return periods encountered in practice). Also, very highly elongated basins are 

rare. Hence, for most applications, one may use the results for regularly shaped regions. 

 Rainfall has been observed to deviate from perfect multifractality. The main deviation is that 

local intensity fluctuations are smaller than required for scale invariance. We have modeled this 

behavior by using “bounded cascades”, in which the fluctuations at smaller scales are 

progressively reduced in amplitude. As a result of this reduction, the ARF is closer to 1 and the 

scaling properties mentioned above are lost. In particular, the ARF no longer depends on L and D 

through the ratio L/D and its contour lines on the (log(L), log(D))-plane are no longer straight, 

becoming flatter as L and D decrease. A curvature of this type is often noted in empirical ARF 

charts. 

 Another reason for the curvature of empirical contour lines is the bias induced by estimating 

area rainfalls from point (raingauge) data. As L approaches the inter-station distance, only one 

station is used to estimate area rainfall and the ARF is consequently calculated as 1. This 
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saturation causes the ARF contours to bend in a way similar to the case of bounded cascades. We 

have found that both deviations from multifractality and sparse sampling bias affect NERC’s 

(1975) empirical ARF charts.   

 Although this study covers a wide range of factors affecting the ARF, some issues remain 

unexplored. One is the existence and effect of anisotropic scaling of rainfall in space and time 

(see for example Venugopal et al., 1999). Qualitatively, anisotropic scaling changes the 45o slope 

of the contour lines on the (log(L), log(D))-plane. No such tilt was observed in NERC’s (1975) 

ARF results. However, the absence of scaling anisotropy (and other aspects of rainfall and ARF 

modeling discussed in the paper) should be confirmed through additional rainfall data analysis.  

 Sparseness of the NERC (1975) data set did not allow us to adequately investigate the ARF 

behavior for large D/L ratios. While also this issue could be resolved by using more extensive 

data sets, the fact that for large D/L the ARF is close to 1 makes its resolution less critical for 

practical applications. 
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Figure Captions 

Figure 1: Moment scaling function K(q) and parameters γ1, q1 and qn*.  

Figure 2: Multifractal scaling of rainfall in space and time. 

Figure 3: Illustration of multiple ranges of algebraic tail behavior for I(t|L1,L2,D). 

Figure 4: The effect of advection for sampling at a point, along a line segment and inside a disc, 

over duration D. 

Figure 5: Observation of rainfall along a line segment (see Figure 4b). Approximation of the 

averaging regions in a Lagrangian reference. 

Figure 6: (a) ARF scaling behavior with L and D, and the associated fast- (i.e. L/D > 5) and 

slow-response (i.e. L/D < 5) regions. Rainfall is a lognormal multifractal process in 

space and time with coefficient C1=0.1 and associated γ1 = 0.532. (b) Cross-section 

along -45o lines, showing dependence of the ARF on L/D. 

Figure 7: ARF dependence on L/D for different advection velocities. The indicated slope γ1 and 

shifts are theoretical values. 

Figure 8: (a) Standard deviation of the generator Bj of a bounded cascade model of rainfall. (b) 

 Contour plot of the ARF for the bounded cascade model in (a) and T = 1. 

Figure 9: Contour plot of the ARF in the case of sparse sampling. The rainfall model is the same 

as in Figure 6a. Raingauge stations are arranged on a square grid with a density of 1 

station per four cascade tiles. 

Figure 10: Interpolation of ARF values in Table 3. The square region corresponds to the ranges 

of area and duration in Figure 11. 

Figure 11: (a) Standard deviation of the bounded cascade generator used to produce the ARF 

values in (b). Rainfall is measured at points on a square grid with density of 1 

raingauge per 4 Km2. 
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Table 1: Scaling of the IDAF curves and the ARFs for very elongated basins of dimensionless 

 length L. The effect of advection is included through the parameter uad ≠ 0).  
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Table 2: Scaling of the IDAF curves and the ARFs for regularly shaped basins, assimilated to 

 discs of dimensionless diameter L. The effect of advection is included through the 

 parameter uad. 
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  Area (sq. km) 
Duration 10 100 1000 1500 5000 8000 10000 18000 

2 min 0.67 - - - - - - - 
4 min 0.74 - - - - - - - 
10 min 0.85 - - - - - - - 
15 min - 0.62 0.39 - - - - - 
30 min 0.88 0.73 0.51 - - - - - 
60 min 0.9 0.77 0.62 - - 0.47 - 0.4 
2 hours - 0.84 0.75 - - 0.57 - 0.51 
3 hours - - - - - 0.64 - 0.57 
6 hours - - - - - 0.74 - 0.67 
1 day - 0.94 - 0.89 0.84 0.83 0.82 0.81 

2 days - 0.97 - 0.91 0.85 0.85 0.83 0.83 
4 days - 0.97 - 0.92 0.88 0.87 0.87 0.84 
8 days - 0.97 - 0.93 0.89 0.91 0.89 0.87 
25 days - 0.99 - 0.97 0.94 0.95 0.94 0.93  

Table 3: ARF values used in NERC (1975).
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Figure 1: Moment scaling function K(q) and parameters γ1, q1 and qn*. 
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Figure 2: Multifractal scaling of rainfall in space and time. 
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Figure 3: Illustration of multiple ranges of algebraic tail behavior for I(t|L1,L2,D). 
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Figure 4: The effect of advection for sampling at a point, along a line segment and inside a disc, 

over duration D. 
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Figure 5: Observation of rainfall along a line segment (see Figure 4b). Approximation of the 

averaging regions in a Lagrangian reference.   
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Figure 6: (a) ARF scaling behavior with L and D, and the associated fast- (i.e. L/D > 5) and 

slow-response (i.e. L/D < 5) regions. Rainfall is a lognormal multifractal process in 

space and time with coefficient C1=0.1 and associated γ1 = 0.532. (b) Cross-section 

along -45o lines, showing dependence of the ARF on L/D.  
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Figure 7: ARF dependence on L/D for different advection velocities. The indicated slope γ1 and 

shifts are theoretical values.  

 uad =0 

0.44 0.65 

log2(L/D)
 lo

g 2
(A

RF
) 

 uad =4 
 uad =8 



 

 41

 

Figure 8: (a) Standard deviation of the generator Bj of a bounded cascade model of rainfall. (b) 
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Figure 9: Contour plot of the ARF in the case of sparse sampling. The rainfall model is the same 

as in Figure 6a. Raingauge stations are arranged on a square grid with a density of 1 

station per four cascade tiles.  
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Figure 10: Interpolation of ARF values in Table 3. The square region corresponds to the ranges 

of area and duration in Figure 11. 
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Figure 11: (a) Standard deviation of the bounded cascade generator used to produce the ARF 

values in (b). Rainfall is measured at points on a square grid with density of 1 

raingauge per 4 Km2. 


