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Abstract  

Practical methods for the estimation of the Intensity-Duration-Frequency (IDF) curves 

are usually based on the observed annual maxima of the rainfall intensity I(d) in intervals 

of different duration d. Using these historical annual maxima, one estimates the IDF 

curves under the condition that the rainfall intensity in an interval of duration d with 

return period T is the product of a function a(T) of T and a function b(d) of d (separability 

condition). Various parametric or semi-parametric assumptions on a(T) and b(d) produce 

different specific methods. As alternatives, we develop IDF estimation procedures based 

on the marginal distribution of I(d). If the marginal distribution scales in a multifractal 

way with d, this condition can be incorporated. We also consider hybrid methods that 

estimate the IDF curves using both marginal and annual-maximum rainfall information. 

We find that the separability condition does not hold and that the marginal and hybrid 

methods perform better than the annual-maximum estimators in terms of accuracy and 

robustness relative to outlier rainfall events. This is especially true for long return periods 

and when the length of the available record is short. Marginal and hybrid methods 

produce accurate IDF estimates also when only a few years of continuous rainfall data are 

available.  

 

Keywords: rainfall extremes, IDF curves, rainfall scaling, multifractal processes 
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1. Introduction 

The estimation of rainfall extremes, as embodied in the Intensity-Duration-Frequency 

(IDF) curves, has been a central problem of hydrology since the early work of Sherman 

(1931) and Bernard (1932); see for example Eagleson (1970), Chow et al. (1988) and 

Singh (1992). The IDF curves are defined as follows. Let I(d) be the average rainfall 

intensity in a generic interval of duration d, Imax (d)  be the annual maximum of I(d), and 

imax (d,T)  be the value exceeded by Imax (d)  on average every T years. The IDF curves 

are plots of imax  against d for different values of T.  

 Standard IDF estimation methods make assumptions directly on the function 

imax (d,T)  and fit its parameters to the historical annual maxima; see Koutsoyiannis et al. 

(1998) for a review and Section 2 below for two specific methods. In most cases 

imax (d,T)  is taken to be a separable function of d and T,  

 imax (d,T) = a(T) ⋅ b(d) (1) 

where the functions a(T) and b(d) are assumed to have some parametric form. The 

methods are simple and widely used, , since they implicitly account for the yearly rainfall 

cycle, do not require continuous records, and allow one to consider the data as a sample 

of independent realizations of the same random variable, thus providing a rationale for 

choosing a probabilistic model based on extreme value theory (Gumbel, 1958; Coles, 

2001). 

 The drawbacks of the annual-maximum methods are also well known (Coles and 

Tawn, 1996; Coles et al., 2003): these methods make poor use of the data when 

continuous records are available, lack robustness when extrapolating to high return 

periods, and fit extreme value distributions to data that are still far from the asymptotic 
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regime. Another limitation comes from using Eq. 1, as there is evidence that this 

separability condition does not hold (see Section 4.1). 

 Many meteorological stations have replaced the old mechanical rain gauges with 

electronic gauges, which greatly facilitate the recording and storing of continuous rainfall 

data. This innovation poses the interesting new problem of how to use continuous data to 

refine the estimation of the IDF curves. A technique that addresses this problem is the 

“peaks over threshold” (POT) method (Davison and Smith, 1990; Rosbjerg and Madsen, 

1995; Madsen et al., 1997a; b). By using the values that exceed a sufficiently high 

threshold, the POT technique includes rainfall values that, although not themselves 

annual maxima, belong to the right tail of the distribution of rainfall intensity. The larger 

samples produce estimators of the IDF curves that are more accurate and robust than 

those from annual-maximum data alone; see Katz et al. (2002) and Madsen et al., 

(1997a, b) for a comparison.  

 Issues with the POT method are the selection of the threshold (Rosbjerg and Madsen, 

1992; Lang et al., 1999) and the fact that again only a fraction of the information in 

continuous rainfall records is used. Therefore, in spite of the increased accuracy of the 

POT procedure, the problem of fitting annual maximum distributions to continuous 

rainfall data cannot be considered completely solved. One possibility is to fit a stochastic 

rainfall model to the continuous rainfall record and estimate the IDF curves from the 

fitted model; see for example Chow et al. (1988), Singh (1992), Cowpertwait (1995, 

1998), and Willems (2000). However, this approach is more complex than direct IDF 

estimation from annual maxima and POT values: the number of parameters is larger, their 

estimation is often more laborious, and finding the IDF curves typically requires 
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extensive model simulation. A notable exception is when the rainfall model has 

multifractal scale invariance (Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 1995; 

Olsson, 1995; Veneziano and Iacobellis, 2002). The reason is that scale invariance 

reduces the number of parameters, simplifies model fitting, and makes it possible to 

obtain the distribution of Imax (d)  by semi-analytical methods (Veneziano et al., 2006; 

Langousis and Veneziano, 2007). Even simpler IDF estimation procedures based on 

scaling of the marginal moments of I(d) are introduced in Section 3.2. One objective of 

this study is to compare these simple multifractal methods to standard annual-maximum 

procedures for practicality, accuracy, robustness and data need. 

 The physical origin of scale invariance in rainfall is not well understood, although 

linkage is often made to the multifractality of atmospheric turbulence (Lovejoy and 

Schertzer, 1990; 1995). Multifractal scale invariance has been observed in both 

convective and stratiform rainfall, with small differences in the scaling parameters 

(Willems, 2000). In temperate climates, the scaling range may extend from about 1 hour 

to a few days (Burlando and Rosso, 1996; Willems, 2000; Veneziano and Iacobellis, 

2002; Koutsoyiannis, 2006), whereas in tropical climates and in general when diurnal 

convection dominates, the upper limit of the scaling range may reduce to just a few hours 

(the characteristic duration of such diurnal convective events); see for example the 

Yangambi, Binja and Ndjili records in Mohymont et al. (2004). Outside the scaling 

range, the fluctuations of rainfall intensity are generally smaller than under multifractality 

(Fraedrich and Larnder, 1993; Olsson, 1995; Onof et al., 1996; Menabde et al., 1997; de 

Lima and Grasman, 1999; Menabde and Sivapalan, 2000). This motivates our second 
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objective, which is to extend the multifractal IDF methods to durations d for which rain is 

non-scaling. Also this extension is based on the marginal moments of I(d). 

 Finally, we consider hybrid methods in which the distribution of Imax (d)  from 

marginal (scaling or non-scaling) analysis is corrected such that its mean value matches 

the average of the historical annual maxima. This is a practical way to utilize the 

information on both the marginal and extremal properties of rainfall while correcting the 

marginal methods for the effects of dependence of rainfall in different d intervals and the 

overlap of the d intervals themselves. 

 Numerical evaluations are made using historical records from Heathrow Airport 

(UK), Walnut Gulch (Arizona) and Florence (Italy), and one synthetic 1000-yr record 

generated by a rainfall simulator with known IDF curves. Basic characteristics of these 

records are as follows. 

 The Heathrow record is an hourly time series covering the period from 1949 to 2001. 

Two years, 1988 and 2001, are incomplete and are excluded from the analysis, which is 

therefore based on 51 years. The reduced time series includes two years, 1959 and 1970, 

when the maximum rainfall intensity for short durations was especially intense, not just at 

the Heathrow Airport but over most of Southern England; see 

http://www.personal.dundee.ac.uk/~taharley/1959_weather.htm and /1970_weather.htm). 

When assessing the sensitivity of different methods to “outlier years”, we have compared 

results with and without 1959 and 1970. 

 The Walnut Gulch time series refers to gage No. 42  of Watershed 63 (Walnut Gulch) 

and is available at http://www.tucson.ars.ag.gov/dap/DataCatalogueOld.htm. This site 

reports total rain depths during rainy periods of variable durations. For our analysis we 
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first disaggregated the historical record into 1-min values (assuming constant rainfall 

intensity in each reported rainy period) and then aggregated the record at the hourly scale. 

The total length of the record is 49 years, with no particular year recognized as an outlier. 

 The Florence record comprises 24 years, from 1962 to 1985, and has a 5-min nominal 

resolution (Becchi and Castelli, 1989). However, the values at this fine resolution have 

limited accuracy and for the present analysis the data have been aggregated at the hourly 

scale. One year, 1966, includes an event that caused a catastrophic flood in Florence. The 

flood is the most severe since 1173, the starting year of the Arno River flood record 

(Caporali et al., 2005). Our analysis (see Section 4.2) shows that for long durations the 

rainfall intensity during that event has a return period of about 500 years. Hence, when 

we analyze sensitivity to outlier years, we remove year 1966. Also other years display 

somewhat unusual rainfall patterns, with high maximum rainfall intensities at either short 

durations (1985) or very long durations (1973). Since these intensities have an estimated 

return period of about 100 years, they  cannot be characterized as outliers in a 24-year 

record and are never excluded. 

 The 1000-year synthetic record was obtained using a multifractal model of the beta-

lognormal type (“Model 3” of Langousis and Veneziano, 2007). The model is simply a 

sequence of independent multiplicative cascades with three parameters: the maximum 

temporal scale dmax  for which multifractality applies ( dmax  is on the order of 7-15 

days), and two parameters, Cβ  and CLN , that describe the scaling of rainfall inside each 

dmax  interval. Specifically, Cβ  controls the fractal dimension (1- Cβ ) of the rain support, 

whereas CLN  controls the amplitude of the intensity fluctuations when it rains. For 

additional details, see Langousis and Veneziano (2007). Using this model, each synthetic 
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year was constructed as a sequence of 38 independent and statistically identical cascade 

realizations with dmax = 9.56 days. Each cascade was developed to a maximum 

resolution of 3.36 min and then aggregated at the hourly level. The scaling parameters, 

Cβ = 0.46  and CLN = 0.06, were chosen by fitting the model to the 24-year Florence 

record. 

 Basic statistics of the actual and synthetic records are given in Tables 1 and 2. The 

rainfall climate of Walnut Gulch is much drier than those of Florence and Heathrow; see 

the mean rainfall intensity and the rainy fraction. However, the mean rainfall intensity 

during the rainy periods is maximum at Walnut Gulch, followed by Florence and finally 

Heathrow. This reflects the relative importance of convective rainfall at the three sites. 

These climatic features are reflected in the 1-hr and 24-hr statistics reported in Tables 2a 

and 2b, in particular the mean of the annual maxima. The skewness coefficient for 

Walnut Gulch is much lower than that for Florence and Heathrow, because for durations 

of 1 and 24 hours the historical annual maxima for Walnut Gulch display a short upper 

tail. Notice also the high sensitivity of the 24-hour annual maximum statistics for 

Florence to the inclusion/exclusion of the year 1966 and the somewhat lower sensitivity 

of the 1-hr annual maximum statistics for Heathrow to the inclusion/exclusion of years 

1959 and 1970. 

 The paper is organized as follows. Section 2 describes the annual-maximum 

approaches to IDF curve estimation considered in this study and Section 3 describes 

marginal multifractal, marginal non-scaling and hybrid alternatives. Section 4 makes a 

detailed comparison of the methods using the rainfall records mentioned above. 

Conclusions and practical recommendations are given in Section 5.  
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2. IDF Estimation Methods Based on Annual Maxima 

Direct approaches to IDF-curve estimation differ mainly in their parameterization of the 

functions a(T) and b(d) in Eq. 1. Some methods parameterize both functions, while others 

express dependence on T in a nonparametric or semi-parametric way. A representative 

method of each type is described below. For further details and variants of these 

procedures, see Demarée (1985) and Koutsoyiannis et al. (1998). 

2.1 Semi-Parametric Annual-Maximum Method 

Semi-parametric annual-maximum (SPM) procedures start by assuming a distribution 

type for the annual maximum intensity Imax (d), which is equivalent to specifying a 

parametric form for a(T) in Eq. 1. The most popular assumption is that Imax (d) has 

extreme-value distribution of the first or second type (EV1 or EV2), although other 

distributions have also been used (Koutsoyiannis et al., 1998). The EV1 and EV2 models 

are special cases of the Generalized Extreme Value (GEV) distribution 

 F(x) = exp − 1+ k
x −ψ
λ
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where k, ψ and λ are shape, location and scale parameters, respectively. For k = 0, Eq. 2 

reduces to the Gumbel (EV1) distribution F(x) = exp{−exp(−(x −ψ) /λ)} , whereas for 

positive and negative k the distribution is respectively Frechet (EV2) and Weibull (EV3). 

Since it is difficult to determine from theory to which extreme type the rainfall maxima 

are attracted, several recent studies have hypothesized that Imax (d) has GEV distribution 

and let all three parameters (including k) vary with d (Parrett, 1997; Asquith, 1998; 

Baillon et al., 2004; Mohymont et al., 2004; Trefry et al., 2005; Vaskova and Francis 

2000; Bessemoulin P., 2006, personal communication). This is also what we do here. 
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 Common estimation procedures for {k,ψ,λ} are the method of moments, the method 

of probability-weighted moments (PWM), and maximum likelihood. Here we use the 

PWM method, due to its higher robustness against outliers (Hosking, 1992; Vogel and 

Fennessey, 1993; Sankarasubramanian and Srinivasan, 1999). Using the parameters 

{k,ψ,λ} estimated for each duration d, a first estimate of the IDF curves imax (d,T)  is 

obtained as the (1-1/T)-quantile of F in Eq. 2. This gives 

imax (d,T) =

ψ +
λ
k

−ln 1−
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T
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The estimates in Eq. 3 depend in a non-smooth way on d and are highly variable, 

especially for long return periods T. In the final step, statistical variability is reduced by 

fitting a model of the type in Eq. 1 with parametric b(d) and nonparametric a(T) to the 

imax (d,T)  estimates. A popular choice for b(d) is the power function 

 b(d) =
1

(d + δ)η
 (4) 

where δ and η are non-negative parameters (Koutsoyiannis et al., 1998). Estimation of δ, 

η and a(T) (one a parameter for each T) is by least-squares fitting of the log[imax (d,T)] 

values in Eq. 3. The final IDF model is separable, parametric in d and nonparametric in T, 

although dependence on T reflects in part the initial assumption that Imax (d) has a GEV 

distribution.  
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2.2 Parametric Annual-Maximum Method 

Completely parametric annual-maximum (CPM) alternatives assume that both a(T) and 

b(d) in Eq. 1 are known except for a few parameters. Equation 4 is again the most 

frequent specification for b(d). The function a(T) is sometimes taken to have power or 

logarithmic form (Chow et al., 1988; Singh, 1992), but as Rossi and Villani (1994) and 

Koutsoyiannis et al. (1998) have argued, a better approach is to derive a(T) from an 

assumed distribution of the reduced annual maximum intensity Y = Imax (d) /b(d). Under 

Eq. 1, the distribution of Y does not depend on d and all observed values of Y can be 

pooled to estimate this distribution. As for Imax (d)  in the semi-parametric method, we 

assume that Y has a GEV distribution of the type in Eq. 2. Once this distribution F has 

been estimated, the function a(T) is obtained as a(T) = F
−1(1−1/T), which is the 

expression on the right hand side of Eq. 3. 

 Koutsoyiannis et al. (1998) describe two robust techniques for estimating the 

parameters of b(d) and a(T), which are referred to as the one-step and two-step 

procedures. We have found that results from the two methods are very similar and 

decided to retain the two-step approach for numerical analysis. This approach estimates 

first the parameters of b(d) and then the parameters of a(T). The first step is accomplished 

by minimizing the Kruskal-Wallis index for the samples of reduced annual maxima Y(d) 

and the second step fits a GEV distribution to the combined set of Y(d) values; for details 

see Koutsoyiannis et al. (1998).  

3. Marginal and Hybrid IDF Estimation Methods 

The main focus of this study is the use of marginal-distribution and hybrid alternatives to 

the annual-maximum methods described above. Marginal-distribution methods consist of 
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estimating the marginal distribution FI (d)  of the average rainfall intensity in d and then 

finding the distribution of the annual maximum Imax (d)  as  

 FImax (d)(i) = [FI (d )(i)]1/ d  (5) 

where d is in years. The IDF value imax (d,T)  is found as the (1-1/T)-quantile of Imax (d) . 

 Equation 5 makes the simplifying assumption that the maximum annual rainfall 

occurs in one of the 1/d non-overlapping intervals into which the year is partitioned and 

further assumes independence of rainfall in different intervals. Ways to correct for the 

bias from these simplifying assumptions are described in Section 3.3, where we also 

introduce hybrid methods.  

3.1 Marginal Method for Non-Scaling Rainfall 

What matters for the calculation of FImax (d)  through Eq. 5 is the accurate estimation of 

FI (d)  in the upper tail. As we show next, this upper tail is well approximated by a 

lognormal shape, as in distributions of the type 

 FI (d)(i) = P0 + (1− P0)Φ(
lni −m

σ
)  (6) 

where Φ is the standard normal CDF and ( 0 < P0 <1, m, σ > 0) are parameters that 

depend on d. According to Eq. 6, there is a probability P0 that a generic d interval is dry 

and the rainfall intensity in the wet intervals has lognormal distribution. At low 

intensities, the empirical distribution of [I(d) | I(d) > 0] usually differs from a lognormal 

distribution, but we emphasize that here Eq. 6 is used for its upper tail; hence P0 is just a 

parameter that controls the thickness of the upper tail and needs not agree with the 

empirical relative frequency of dry conditions. The moments of I(d) in Eq. 6 are 
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 µq,d = E[I(d)q ] = 1− P0( )exp{qm +
1

2
q

2σ 2} (7) 

For each given d, the parameters ( P0, m, σ 2  ) can be found by matching three empirical 

moments of I(d), chosen among those sensitive to the upper tail of the empirical 

distribution. Using the moments of order q = 1, 2 and 3, Eq. 7 gives 

  

P0 =1−µ3,d (
µ1,d

µ2,d

)3

m = ln[
µ2,d

4

µ3,d
3/2µ1,d

5/2
]

σ 2 = ln[
µ3,dµ1,d

µ2,d
2

]

 (8) 

The use of moments of order q ≥ 4 is not recommended due to their higher sampling 

variability. 

 Figure 1 uses the historical and synthetic records to show how Eq. 6 with parameters 

in Eq. 8 fits the upper tail of the empirical distribution of I(d). For each record and each 

of two durations (d = 1 hr and d = 24 hr), the theoretical exceedance probability from Eq. 

6 is plotted against the empirical exceedance probability. For convenience, both 

probabilities are divided by (1− P0,emp) , the empirical fraction of wet d intervals. The 

plots are constructed as follows. For each observed value of I(d) one finds the empirical 

exceedance probability Pemp  using Weibull’s plotting position and the theoretical 

exceedance probability Pth  using Eqs. 6 and 8. Figure 1 plots Pth /(1− P0,emp)  against 

Pemp /(1− P0,emp)  for Pemp /(1− P0,emp)  ≤ 0.25. The fact that the plots deviate little from 

the dashed 45-degree lines supports the assumption of a lognormal upper tail.  This is a 

significant finding, since the good fit is observed for different durations and different 
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rainfall climates. Figure 1 also shows that fitting Eq. 6 using the first three moments 

reproduces well the empirical distribution of I(d) in the range of the empirical annual 

maxima; see double-headed arrows. 

 When they are obtained directly from the sample, the moments µq,d  in Eq. 8 need not 

scale with or depend in any particular way on duration d. Therefore this marginal 

procedure can be used without any assumption of scaling of the rainfall process. We call 

this the local marginal (LM) method. While all the marginal-distribution analyses 

presented in this paper are based on the assumption of a lognormal upper tail, the 

approach can be readily adapted for cases when other distribution types are more 

appropriate. 

3.2 Multifractal Methods for Scaling Rainfall 

In the case when rainfall has multifractal scale invariance, the moments E[I(d)q] vary 

with d as 

E[I(d)q] = E[I(dmax )q] ⋅ (
d

dmax

)−K (q), d ≤ dmax   (9) 

where K(q) is a moment scaling function and dmax  is the upper limit of the scaling range. 

For multifractal models of temporal rainfall, see for example Schertzer and Lovejoy 

(1987), Lovejoy and Schertzer (1995), Olsson (1995), Menabde et al. (1997), Schmitt et 

al. (1998), de Lima and Grasman (1999), Menabde and Sivapalan (2000), Willems 

(2000), Veneziano and Iacobellis (2002), and Langousis and Veneziano (2007).. 

Technically, the scaling range cannot have a positive lower limit, but in practice one 

observes that Eq. 9 holds in good approximation for d above some positive value dmin . 
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The scaling range [dmin,dmax ] is found from log-log plots of the empirical moments of 

I(d) against d. 

 The moment-scaling property in Eq. 9 can be used in various ways to reduce the 

number of parameters and add robustness to the IDF estimation procedure described in 

Section 3.1. The simplest way is to obtain the moments needed in Eq. 8 by fitting straight 

log-log lines to the empirical moments of order 2 and 3 inside the scaling range. This 

operation produces smoother IDF curves than using the empirical moments for each 

duration d. We call this the multifractal marginal (MFM) method. 

 Figure 2 shows log-log plots of the normalized empirical moments E{[I(d) /I ]q} 

against d for q = 0, 1, 2, 3 and 4 for the four records. Normalization is by the empirical 

average rain rate I , the values of which are given in the figure. For each data set, the 

range over which the moments of order 2 and 3 scale is identified and power law 

functions are fitted using linear regression (solid lines). 

 The fitted normalized moments and the average intensities I  are used by the MFM 

method. The dashed lines in Figure 2 are obtained by inserting the fitted moments into 

Eq. 8 to obtain the parameters ( P0, m, σ 2  ) and then using Eq. 7 to calculate the 

moments of order 0 and 4. As one can see, the moments of order 4 of the historical 

records are slightly overpredicted (this is because the 4th order moments from relatively 

small samples tend to be lower than the corresponding theoretical moments). Also notice 

that for the same records the probability at 0 is overestimated, because the body and 

lower tail of the empirical distribution are thicker than those of the lognormal distribution 

fitted through Eq. 8. All moments of the synthetic record are accurately reproduced. 
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 The MFM procedure presented here is a simplified version of the multifractal IDF 

estimation methods proposed by Langousis and Veneziano (2007) and Langousis et al. 

(2007). The main difference is that here we ignore the fact that the so-called dressing 

factor prevents a multifractal process from having marginal distributions of the type in 

Eq. 6 with exponential upper tails. Rather, under multifractality, the marginal distribution 

of I(d) has a power-law upper tail. However, this power-law tail applies only to extreme 

quantiles, which are beyond the range that is typically of interest for IDF estimation 

(Langousis et al., 2007) and in practice Eq. 6 holds in very good approximation; see the 

excellent lognormal fits to the tails of I(d) for the synthetic record in Figure 1.   

3.3 Bias Corrections and Hybrid Methods 

As was mentioned at the beginning of Section 3, IDF estimates based on Eq. 5 are biased 

by the assumptions that: 1. the maximum annual rainfall occurs in one of the non-

overlapping d intervals and 2. rainfall amounts in different d intervals are independent. 

The classical way to eliminate the first source of bias is to multiply Imax (d) in Eq. 5 by a 

continuity correction factor Rcont (d). Several studies (Hershfield, 1961,Weiss, 1964; 

Young and McEnroe, 2003) have shown that Rcont (d) is about 1.13-1.15. Similarly, one 

may apply a correction factor Rdep(d) for dependence. 

 Figure 3 shows how, for each duration d, one can use a rainfall record to estimate 

Rcont  and Rdep  and the combined correction factor R = Rcont ⋅ Rdep . For method MFM, 

these factors are estimated as 
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Rcont =
I max,overlap

I max,no−overlap

Rdep =
I max,no−overlap

mImax,MFM

R = Rcont ⋅ Rdep =
I max,overlap

mImax,MFM

 (10) 

where I max,overlap  and I max,no−overlap are the empirical average annual maxima with and 

without d-interval overlapping, respectively, and mImax,MFM
 is the mean value of Imax (d) 

in Eq. 5 when FI (d)  is estimated by the MFM method. A similar procedure applies to the 

LM method. 

 The factor Rcont  in Figure 3 fluctuates around 1.13, as expected, whereas Rdep  is 

close to 1, indicating no significant bias from assuming independence. The latter result 

confirms the findings of Veneziano and Langousis (2005) for multifractal rainfall. When 

rainfall is multifractal, one can calculate the exact distribution of the annual maximum 

Imax (d) using a numerical procedure that accounts for dependence. Veneziano and 

Langousis (2005) compared the exact results with the approximation in Eq. 5 and 

concluded that the effect of dependence on the IDF curves is small, especially for long 

return periods T. Hence it is accurate to correct for all biases of the marginal LM and 

MFM methods by multiplying the IDF estimates from Eq. 5 by 1.13. 

 When the correction factor R(d) is not fixed but is estimated using Eq. 10 with 

I max,overlap (d)  from at-site annual maximum data, we refer to the corrected IDF estimates 

as hybrid LM/H or MFM/H estimates. The term hybrid indicates that the estimates are 

based on both marginal and annual-maximum information. Use of only the average value 

of the annual maxima is justified by the fact that, especially for short rainfall records, the 
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shape of the annual maximum distribution is better estimated from marginal information 

than from extreme value information, whereas the mean value can be reliably found from 

the annual maxima. One would expect the hybrid method to be superior to just fixing 

R(d) to 1.13 when long annual-maximum records are available, whereas the reverse 

should be true for short annual-maximum records. For a quantitative analysis, see Section 

4.3.  

4. Comparison of Annual-Maximum, Marginal and Hybrid IDF Estimates 

In this section we apply the two annual-maximum methods (semi-parametric SPM and 

completely parametric CPM), two marginal-moment methods (local LM and multifractal 

MFM, both with continuity correction factor 1.13), and the hybrid method MFM/H to the 

actual and synthetic records. We are especially interested in assessing the separability 

condition in Eq. 1, the sensitivity of each method to “outlier years”, and the stability of 

the results when only a few years of data are available.  

4.1 The Assumption of Separability 

The annual-maximum methods described in Section 2 assume that the IDF values are 

separable, in the sense that they are affected in an independent multiplicative way by the 

duration d and the return period T; see Eq. 1. On the other hand, multifractal analysis 

suggests that this is true only under the asymptotic conditions d → 0  or T →∞ , whereas 

for nonzero d and finite T the IDF values are more sensitive to T when d is small than 

when d is large (Veneziano and Furcolo, 2002; Langousis and Veneziano, 2007; 

Langousis et al., 2007). 

 There is convincing evidence that the separable IDF structure in Eq. 1 does not hold 

and the multifractal predictions are qualitatively correct. For example, one may consider 
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the shape parameter k of the GEV distribution in Eq. 2. Under the separability condition k 

is constant with d, whereas under the non-separability predicted by multifractal analysis k 

decreases as d increases. Figure 4 shows k(d) functions for the actual and synthetic 

records used here (dotted lines) and a few k(d) functions from the literature, chosen to be 

those based on larger data sets (solid lines). For Florence, the values of k for d ≥ 1 hr use 

47 years of annual maximum data (Caporali et al., 2006), whereas for d < 1 hr the data 

cover the 24-year period (1962-1985) used in the present study. For all the present 

records and most of the records in the literature, the k parameter was estimated using 

probability-weighted moments (Hosking, 1992). 

 In general, k peaks for d around 1-3 hr and decays for shorter and longer durations. 

The decay for longer durations agrees well with the trend produced by multifractal 

rainfall models (see results in Figure 4 for the synthetic record, which was generated 

using a multifractal model). For short durations d, multifractal rainfall models produce 

nearly constant k values; hence the decay observed in Figure 4 comes from lack of 

multifractality for aggregation times d shorter than about 1 hour. Evidence of such break 

in scaling can be found for example in Olsson (1995), Onof et al. (1996), Menabde et al. 

(1997), de Lima and Grasman (1999), Menabde and Sivapalan (2000) and Koutsoyiannis 

(2006). The dependence of k on d displayed in Figure 4 is especially significant for long 

return periods, since the tail of the maximum distribution is highly sensitive to k. 

 Our conclusion that the separability condition in Eq. 1 does not hold is consistent 

with findings by other authors on the dependence of the IDF values on duration d; see for 

example Alila (2000) and Brath et al. (2003). 
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 One could use annual-maximum methods in which either each duration is treated 

independently or a non-separable parametric model is specified. However these 

alternatives are unattractive due to either reduction of the effective sample size from non-

pooling of the data for different durations or the difficulty of specifying a non-separable 

dependence on d and T. The marginal and hybrid approaches have the advantage of a 

larger sample size and the multifractality condition implicitly generates non-separable 

IDF curves.  

4.2 IDF Curve Estimation and Sensitivity to Outliers 

The first three columns of Figure 5 show the empirical (solid) and estimated (dashed) 

IDF curves for the three historic rainfall records, when the entire record (i.e. including 

outlier years) is analyzed by different methods. The empirical return period of the ith 

ranking annual maximum value is calculated using Weibull’s (1939) formula 

Ti = (n +1) /i , where n is the number of years in each record. A similar comparison for 

the synthetic record is made in the last column of Figure 5, but in this case the empirical 

IDF curves are replaced with the theoretical ones. The theoretical curves were obtained 

using the analytical method of Langousis et al. (2007), corrected by the continuity factor 

1.13. 

 The return periods of the empirical curves are (2, 8, 25) years for Florence, (2, 8, 52) 

years for Heathrow Airport, and (2, 8, 50) years for Walnut Gulch. These are also the 

return periods of the lowest three estimated IDF curves, whereas the return periods of the 

upper three estimated curves are 100, 1 000, and 10 000 years. The return periods for the 

synthetic record (for both the theoretical and estimated IDF curves) are 2, 8, 100, 1 000, 

and 10 000 years. In all cases except Walnut Gulch, the range of d corresponds to the 
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scaling range. For Walnut Gulch, longer durations are included to illustrate the local 

marginal method (LM; dotted lines) in a non-scaling case. 

 Due to the separability assumption, the IDF curves for different T estimated by the 

annual-maximum methods (top two rows) are parallel. For long durations d, these 

estimates tend to be more widely spaced than the empirical ones. By contrast, the 

marginal and hybrid methods produce non-parallel IDF curves that more closely track the 

empirical ones. Within the scaling range, the LM and MFM methods produce almost 

identical results; see dashed and dotted lines in the plots in the third row. 

 Both the Heathrow Airport and Florence records include “outlier years” (1959 and 

1970 for Heathrow, 1966 for Florence). Figure 6 shows the sensitivity to outliers by 

plotting the ratio of the IDF values estimated with and without the outlier years for 

different estimation methods, durations d, and return periods T.  The annual-maximum 

methods CPM and SPM assume separability, as expressed by Eq. 1. In the CPM method, 

the function b(d) in Eq. 1 is insensitive to the outlier years, whereas the function a(T) is 

highly sensitive. In the SPM method both functions are sensitive to outliers. In either 

case, the IDF values are affected significantly by the inclusion or exclusion of outlier 

years. The marginal and hybrid methods (last three rows of Figure 6) are less sensitive, 

especially for durations d that during the outlier years did not experience exceptionally 

intense rainfalls; these are the small d values for Florence and the large d values for 

Heathrow.  

4.3  Estimation Bias and Variability for Short Records 

The bias and variability of the estimates when using short rainfall series is examined in 

Figure 7. For each (method, record) combination, this figure shows the bias and 
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variability of the 1-hr and 24-hr log10(IDF) estimates for T = 10, 100, 1 000 and 10 000 

years, when only 5 years of the empirical record or 25 years of the synthetic record are 

used. No outlier year has been removed. The 5-yr or 25-yr segments used in the analysis 

are consecutive and non-overlapping, except for the last segment, if the duration of the 

historical record is not an integer multiple of 5. The records are coded as F = Florence, H 

= Heathrow Airport, W = Walnut Gulch, and S = synthetic. Different return periods 

correspond to different bar shadings. 

 The deviations of the 5-yr log10(IDF) estimates from the whole-record estimates [for 

the synthetic record, the deviations of the 25-yr log10(IDF) estimates from the theoretical 

values] are used to estimate the mean b (bias), standard deviation σ, and root mean 

square RMS = b2 +σ 2  of the log10(IDF) estimation error. For example, in the case of 

Florence, five 5-yr segments are extracted from the 24-yr record (the last one has a 1-yr 

overlap with the 4th segment) and the IDF analysis is repeated for each segment using 

each method. The estimation errors are obtained by taking the log10 of the ratio of each 5-

yr IDF estimate and the corresponding 24-yr estimate from Figure 5. Therefore, for the 

actual records, (b, σ, and RMS) are measures of bias and accuracy relative to the results 

for the complete but still finite record, whereas for the synthetic data set the same 

quantities measure the bias and accuracy relative to the true IDF values. 

 The values of (b, σ, and RMS) for each IDF estimation method, data set, and return 

period are shown in Figure 7a for d = 1 hr and in Figure 7b for d = 24 hr. In addition to 

the SPM and CPM annual-maximum methods and the LM and MFM marginal-

distribution methods, two hybrid cases are considered. In one case (MFM/H1) the annual 

maximum rainfalls are assumed available only for the 5-yr or 25-yr segment of the 
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record, whereas in the other case (MFM/H2) the annual maximum rainfalls are assumed 

available for the entire duration of the record (24 years for Florence, 51 years for 

Heathrow, 49 years for Walnut Gulch, and 1000 years for the synthetic record). The 

reason for considering the estimator MFM/H2 is that it often happens that the annual 

maximum record extends back in time further than the continuous record. 

 As one would expect, method MFM/H2 performs best, but direct comparison of this 

method with MFM/H1 and the annual-maximum methods would be unfair because 

results are based on different lengths of the annual-maximum series. 

 The other methods can be directly compared. The annual-maximum methods perform 

rather poorly due to high bias, high variance, or both.  This is especially true when only 5 

years of data are available. In this case the prevalently negative bias is due to the fact 

that, with a small annual maximum data set, the shape parameter k of the GEV 

distribution tends to be underestimated. Hence also the high quantiles of the maximum 

distribution are underestimated. A small sample size makes the estimation of the GEV 

parameters (k in particular) rather erratic and sensitive to outliers; this is why the standard 

deviation of the error is also large. 

 On the other hand, the marginal methods and the first hybrid method are nearly 

unbiased and have moderate variance. When only 5 years of data are available (F, H and 

W records), the hybrid method performs slightly worse that either LM or MFM, because 

in this case it is better to correct the marginal estimates by the constant factor 1.13 rather 

than using the average of the 5 annual maximum values. When 25 years of data are 

available (S record), the hybrid method performs the best.  
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5. Conclusions 

The paper compares several estimators of the IDF curves that are simple enough to be 

routinely used in practice: currently favored parametric and semi-parametric estimators 

based on the historical annual maxima, new estimators based on the marginal distribution 

of rainfall intensity that assume or do not assume multifractal scale invariance, and new 

hybrid estimators that combine marginal and annual-maximum information. 

 The annual-maximum estimators are simple but make inappropriate assumptions on 

the shape of the IDF curves. In addition, their IDF estimates for long return periods are 

highly variable and sensitive to outlier rainfall events. This is especially true for the semi-

parametric method, which imposes loose constraints on the tail of the annual maximum 

distribution. By contrast, marginal-distribution and hybrid procedures are statistically 

more stable, more robust against outliers, and applicable also when the rainfall record is 

short. 

 A basic assumption that is common to most annual-maximum methods is that the IDF 

curves are separable in the duration d and the return period T. While separability greatly 

reduces the complexity of the IDF models and their fitting to data, we have found that in 

reality this condition does not hold. This conclusion is based on ample statistical evidence 

as well as analysis of multifractal rainfall models for which the exact IDF curves are 

theoretically known. Marginal-distribution and hybrid methods do not assume 

separability and are capable of modeling the interactions between d and T that are often 

observed in empirical IDF curves. 

 Like any other IDF estimation method, marginal distribution procedures present 

tradeoffs between bias from inappropriate parameterization and variance. For example, 
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multifractality constrains the way the marginal distribution varies with duration d. This 

scaling condition leads to robust IDF estimation procedures but may not accurately apply 

over a wide range of durations. Hence we have considered a marginal-distribution (LM) 

method that imposes no scaling condition on the moments. The LM method is very 

simple. For durations d in the scaling range, the LM results are only slightly more 

variable than those under the assumption of multifractality, and the LM method is 

accurate and robust also outside the scaling range. 

 The combined use of marginal and annual-maximum information from the rainfall 

record opens interesting new possibilities. It is intuitively clear that an approach based on 

marginal distributions is preferable for very short rainfall records, whereas the exclusive 

use of annual extremes is appropriate in the asymptotic case of infinitely long records. 

For records of intermediate length, say around 30 years, an effective use of the annual 

maxima is to correct for the bias of the marginal-distribution results due to the 

assumption of non-overlapping d intervals and independence (see bias and variance 

results in Figure 7, in particular those for the synthetic record). This idea is at the base of 

our hybrid method. 

 Again based on Figure 7, our recommendation is that for practical IDF curve 

estimation one should use the local LM method when the annual maximum series is 

shorter than about 20 years; otherwise one should use LM/H, the hybrid version of the 

LM method. 

 Future work might consider other types of hybrid estimators, in which characteristics 

of the annual maxima other than the historical average are used to calibrate the marginal-

distribution estimates. This may be appropriate when the record of annual maxima is far 
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longer than the available continuous rainfall record. In some cases historic reports or 

paleo-information constrain the return period of exceptionally intense rainfall events. For 

example, for durations d of about 1-4 days, the extreme event that produced the 

November 1966 flood in Florence is estimated from historical flood data to have a return 

period of 500-1000 years. This information can be used to constrain the IDF curves. In 

addition, comparison could be extended to include peaks over threshold (POT) methods. 

 Finally we mention the problem of regionalization, i.e. the problem of pooling rainfall 

data from different sites to refine the IDF estimates at any given geographic location. The 

marginal-distribution methods proposed in the present study depend on only the first 3 

moments of the rainfall intensity I(d). Under multifractality, these moments can be 

further reduced to the moments for a reference duration d* and a moment-scaling 

function K(q) that characterizes the dependence of the moment of order q on d. Hence 

regionalization requires the spatial mapping of the moments of I(d*) and the parameters 

of K(q). Regionalized extensions of the present methods will be considered in future 

studies. 
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Table 1: Basic statistics of actual and synthetic rainfall records used in the analysis..  

Basic statistics 
     

 
mean 

intensity 
rainy 

fraction 

mean 
positive  
intensity 

 n° years mm/hr % mm/hr 

Florence 24 0.0871 7.4 1.18 

Heathrow 51 0.0684 8.7 0.78 

Walnut Gulch 49 0.0357 2.3 1.53 

Synthetic 1000 0.1020 9.6 1.07 

 

 

Table 2: Statistics of 1-hour (a) and 24-hour (b) annual maxima records used in the 

analysis.The w and w/o columns refer to records with and without outlier years 

(1966 for Florence, 1959 and 1970 for Heathrow).  

 

(a) 1-hour annual maxima 
  

 µ CV skewness L-CV L-skewness 

 w w/o w w/o w w/o w w/o w w/o 

Florence 23.645 23.291 0.376 0.383 1.401 1.653 0.199 0.199 0.206 0.221 

Heathrow 14.014 12.902 0.547 0.401 2.439 1.511 0.256 0.209 0.395 0.276 

Walnut Gulch 21.930 - 0.428 - 0.803 - 0.236 - 0.135 - 

Synthetic 20.810 - 0.483 - 2.880 - 0.228 - 0.312 - 

 

 

(b) 24-hour annual maxima 
  

 µ CV skewness L-CV L-skewness 

 w w/o w w/o w w/o w w/o w w/o 

Florence 2.480 2.270 0.480 0.283 2.808 1.03 0.214 0.155 0.456 0.259 

Heathrow 1.670 1.630 0.328 0.319 0.709 0.766 0.185 0.180 0.182 0.187 

Walnut Gulch 1.570 - 0.302 - 0.531 - 0.172 - 0.163 - 

Synthetic 2.160 - 0.369 - 2.346 - 0.185 - 0.253 - 

 
 
 



 35 

Figure Captions 

 
Figure 1: Tail plots of the theoretical exceedance probabilities from Eq. 6 with 

parameters in Eq. 8 and the empirical exceedance probabilities for 1-hr and 24-

hr rainfall intensities.The dashed 45-degree lines indicate a perfect match. See 

text for details. 

Figure 2: Log-log plots of the normalized empirical moments E{[I(d) /I ]q} against d for 

q = 0, 1, 2, 3, 4. Solid lines indicate power-law fits to the moments of order 1, 

2 and 3. Dashed lines are the associated moments of order 0 and 4 from Eq. 7. 

Figure 3: Factors Rcont , Rdep  and R in Eq. 10 for the Florence, Heathrow, Walnut Gulch 

and Synthetic records as a function of duration d. The factors correct the IDF 

values predicted by the marginal distribution methods for continuity and 

dependence of rainfall intensity in different d intervals. 

Figure 4: Variation of the GEV shape parameter k with duration d for the records used in 

this study and similar results from the literature. 

Figure 5: Comparison of empirical IDF curves (solid lines) and estimated IDF curves 

(dashed lines). The estimates are based on the entire records including outlier 

years. For the synthetic record, the theoretical curves are used instead of the 

empirical ones. See text for details.  

Figure 6: Florence and Heathrow Airport records. Ratio of estimated IDF values when 

outlier years are included and excluded, as a function of duration d and return 

period T. 

Figure 7: Mean, standard deviation and RMS of the log10(IDF) estimation error when 

using 5-yr subsets of the actual record or 25-yr subsets of the simulated record. 
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(a) d = 1 hr and (b) d = 24 hr. Varied in a nested way along the horizontal axis 

are the estimation method, the rainfall record (F = Florence, H = Heathrow 

Airport, W = Walnut Gulch, and S = synthetic), and the return period (10, 100, 

1000 and 10000 years). 
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Figure 1: Tail plots of the theoretical exceedance probabilities from Eq. 6 with 
parameters in Eq. 8 and the empirical exceedance probabilities for 1-hr and 24-hr rainfall 
intensities.The dashed 45-degree lines indicate a perfect match. See text for details. 
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Figure 2: Log-log plots of the normalized empirical moments E{[I(d) /I ]q} against d for 

q = 0, 1, 2, 3, 4. Solid lines indicate power-law fits to the moments of order 1, 2 and 3. 
Dashed lines are the associated moments of order 0 and 4 from Eq. 7. 
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Figure 3: Factors Rcont , Rdep  and R in Eq. 10 for the Florence, Heathrow, Walnut Gulch 

and Synthetic records as a function of duration d. The factors correct the IDF values 
predicted by the marginal distribution methods for continuity and dependence of rainfall 
intensity in different d intervals. 
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Figure 4: Variation of the GEV shape parameter k with duration d for the records used in 
this study and similar results from the literature. 
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Figure 5: Comparison of empirical IDF curves (solid lines) and estimated IDF curves 
(dashed lines). The estimates are based on the entire records including outlier years. For 
the synthetic record, the theoretical curves are used instead of the empirical ones. See text 
for details. 
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Figure 6: Florence and Heathrow Airport records. Ratio of estimated IDF values when 
outlier years are included and excluded, as a function of duration d and return period T. 
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Figure 7: Mean, standard deviation and RMS of the log10(IDF) estimation error when 
using 5-yr subsets of the actual record or 25-yr subsets of the simulated record. (a) d = 1 
hr and (b) d = 24 hr. Varied in a nested way along the horizontal axis are the estimation 
method, the rainfall record (F = Florence, H = Heathrow Airport, W = Walnut Gulch, and 
S = synthetic), and the return period (10, 100, 1000 and 10000 years). 
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