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Abstract 32 

We develop a methodology for the frequency of extreme rainfall intensities caused by tropical 33 

cyclones (TCs) in coastal areas. The model does not account for landfall effects. This makes the 34 

developed framework best suited for open-water sites and coastal areas with flat topography. The 35 

mean rainfall field associated with a TC with maximum tangential wind speed Vmax, radius of 36 

maximum winds Rmax, and translation speed Vt is obtained using a physically-based model 37 

(Langousis and Veneziano, 2008), whereas rainfall variability at both large scales (from storm to 38 

storm) and small scales (due to rainbands and local convection) is modeled statistically. The 39 

statistical component is estimated using precipitation radar (PR) data from the TRMM mission. 40 

Taylor’s hypothesis is used to convert spatial rainfall intensity fluctuations to temporal 41 

fluctuations at a given location A. The combined physical-statistical model gives the distribution 42 

of the maximum rainfall intensity at A during an averaging period D for a TC with 43 

characteristics (Vmax, Rmax, Vt) that passes at a given distance from A. To illustrate the use of the 44 

model for long-term rainfall risk analysis, we formulate a recurrence model for tropical cyclones 45 

in the Gulf of Mexico that make landfall between longitudes 85
o
-95

o
W. We then use the rainfall 46 

and recurrence models to assess the rainfall risk for New Orleans. For return periods of 100 years 47 

or more and long averaging durations (D around 12-24 hours), tropical cyclones dominate over 48 

other rainfall event types, whereas the reverse is true for shorter return periods or shorter 49 

averaging durations.  50 

 51 

Keywords: Rainfall Extremes, IDF Curves, Tropical Cyclones, Tropical Meteorology, Floods. 52 

 53 

 54 
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1. Introduction 55 

The quantification of long-term rainfall risk is a basic problem of stochastic hydrology (e.g. 56 

Chow et al., 1988; Singh, 1992). Our specific interest is in the risk of extreme rainfall posed at 57 

coastal sites by tropical cyclones (TCs). These events are relatively rare, but in combination with 58 

wind, surge and waves, high rainfall intensities may have devastating consequences (Herbert et 59 

al., 1997; Rappaport, 2000). 60 

 For ordinary rainfall, standard risk analysis techniques use historical annual-maximum data 61 

(e.g. Koutsoyiannis et al., 1998) or peak-over-threshold (PoT) information (e.g. Madsen et al., 62 

1997). The episodic and spatially localized nature of tropical cyclones prevents one from using 63 

these standard techniques. For example, the annual maximum and PoT rainfall statistics due to 64 

tropical cyclones are very sensitive to whether the site is “hit” by one or more TCs during a year 65 

and therefore are highly erratic. For this reason, the risk is best assessed parametrically, by 66 

combining a probabilistic model of the maximum rainfall due to a TC with given characteristics 67 

θ = [θ1,…,θr] with the rate at which those events occur. For coastal sites, the vector θ might 68 

include the intensity and size of the storm, the location and translational velocity at landfall, and 69 

possibly other parameters related to atmospheric conditions, the radial profile of the tangential 70 

winds, etc. Parametric approaches of this type have been used to assess the risk posed by tropical 71 

cyclones for wind, surge and waves (Myers, 1975; Ho and Myers, 1975; Ho et al., 1987; Powell 72 

et al., 2005; IPET, 2006, 2008), but not rain. Here we develop a parametric approach to calculate 73 

peak rainfall intensities from tropical cyclones, and use this approach to study the importance of 74 

TCs relative to other storm types and determine the TC characteristics that dominate different 75 

levels of risk. 76 
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 The main problem for rainfall is to evaluate the extreme precipitation intensities caused by a 77 

TC with given characteristics θ. The historical data are too sparse and the potentially important 78 

TC parameters are too many to infer such extreme rainfalls from empirical observations alone. 79 

For example, current empirical approaches (Lonfat et al., 2004, 2007; Tuleya et al., 2007) 80 

classify storms into three coarse intensity categories and use microwave imager (TMI) data from 81 

TRMM (Simpson et al. 1988) to calculate the ensemble-average rainrate for each category as a 82 

function of distance from the TC center.  83 

 The alternative we pursue here is to use a physical model to assess the dependence of the 84 

mean rainfall field on θ and statistical analysis to quantify the fluctuations of rainfall intensity 85 

around this mean field. The physical model is that developed by Langousis et al. (2008) and 86 

Langousis and Veneziano (2008). Langousis et al. (2008) proposed a theoretical method to 87 

estimate the large-scale horizontal and vertical winds inside TCs (the vertical winds are largely 88 

responsible for rain). The model is an extension of Smith’s (1968) formulation and is referred to 89 

here as the Modified Smith (MS) model. Characteristics of the TC that are explicitly considered 90 

by the model are the maximum tangential wind speed Vmax, the radius of maximum winds Rmax, 91 

the parameter B that controls the shape of the radial profile of the tangential wind speed 92 

(Holland, 1980), the storm translation velocity Vt, the surface drag coefficient Cd, and the vertical 93 

diffusion coefficient K. When Vt = 0, the wind field is symmetric around the storm center, 94 

whereas when the TC translates in the Northern (Southern) hemisphere the field is asymmetric, 95 

with stronger horizontal and vertical winds right-front (left-front) of the storm. The model does 96 

not resolve rainbands, local convection and turbulent phenomena and therefore produces smooth 97 

wind fields. 98 
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 Langousis and Veneziano (2008) extended the MS model to predict TC rain, assuming that 99 

the upward moisture flux at the top of the TC boundary layer is all converted into rainfall. The 100 

vertical moisture flux is evaluated from the vertical winds generated by the MS model and two 101 

additional parameters: the average temperature T̄
 
 and average saturation ratio Q̄

 
 inside the TC 102 

boundary layer. We call this the modified-Smith-for-rainfall (MSR) model. The MSR model 103 

should prove useful for climatologic studies, but for hazard analysis it has the limitation of 104 

ignoring the inter-storm and intra-storm variations of rainfall intensity. These variations are 105 

highly significant for the assessment of risk. For example, Lonfat et al. (2004) found that, also 106 

within a given TC strength category, the average of the positive rainfall intensity inside annular 107 

regions of 10 km width may deviate from the median value by more than one order of 108 

magnitude.  109 

 Our main objectives are: (1) Extend the MSR model to obtain the probability distribution of 110 

the maximum rainfall intensity in an averaging time interval of given duration D at a fixed 111 

geographical location during the passage of a tropical cyclone with given characteristics θ, and 112 

(2) Combine this maximum rainfall model with a TC recurrence model to quantify rainfall risk in 113 

the form of intensity-duration-frequency (IDF) curves. For the first objective, we consider a site 114 

A at some distance y to the right (y < 0) or left (y > 0) of the moving TC center, as shown in 115 

Figure 1. As the storm passes, the rainfall intensity at A fluctuates as a random process I(t). Our 116 

interest is in ID(t), the moving average of I(t) for an averaging duration D, and more specifically 117 

in the distribution of ID,max(y,θ), the maximum of ID(t) during the storm.  118 

 Section 2 presents our general approach to calculate the distribution of ID,max(y,θ). This 119 

distribution is obtained in Section 3 and validated in Section 4. Section 4 also shows how the 120 

distribution depends on various storm characteristics, the standardized distance y/Rmax from the 121 



 6 

center of the storm, and the averaging duration D. Section 5 uses the model of ID,max(y,θ) and a 122 

recurrence relation for hurricanes in the Gulf of Mexico to obtain IDF curves for New Orleans 123 

and compares these curves with published IDF values for all rainstorms (TCs and non-TCs) 124 

combined. Conclusions are stated in Section 6.  125 

2. A Framework for the Estimation of Extreme TC Rainfall 126 

Our first objective is to relate the distribution of the maximum rainfall intensity ID,max(y,θ) to the 127 

smooth rainfall intensities produced by the MSR model of Langousis and Veneziano (2008). The 128 

storm parameters are θ = [Vmax, Rmax, Vt]. The analysis uses a Cartesian reference frame (x,y), 129 

translated and rotated such that the center of the storm O moves to the right along the x axis; see 130 

Figure 1. In this reference, the ordinate y of A is also the closest (signed) distance of A from the 131 

storm center. 132 

 To estimate this relationship, we use precipitation radar (PR) data from the TRMM mission 133 

(Simpson et al. 1988; Kummerow et al., 1998; Lee et al., 2002). These data are in the form of 134 

swaths about 200km wide with a spatial resolution of approximately 5 km and have been 135 

validated against ground-based radar and rain gauge measurements (Bolen and Chandrasekar, 136 

2000; Liao et al., 2001; Wolff et al., 2005). Due to their long inter-frame time (about 12 hours), 137 

the PR snapshots cannot be interpolated to produce the rainfall intensities in continuous time that 138 

are needed to estimate rainfall maxima. A common way to overcome this limitation is to use 139 

Taylor’s frozen turbulence hypothesis (Taylor, 1921, 1938). Under this hypothesis, the temporal 140 

variability of rainfall at a fixed location A is statistically the same as the variability that results 141 

from translating the frozen-in-time rainfield over A with the storm velocity Vt.  For example, 142 

Vicente et al. (1998), Scofield and Kuligowski (2003), Kidder et al. (2005) and Ferraro et al. 143 
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(2005) used Taylor’s hypothesis to obtain rainfall totals at fixed locations from satellite and radar 144 

rainfall snapshots.  145 

 It follows from Taylor’s hypothesis that ID,max(y,θ) has the same distribution as Il,max(y,θ), the 146 

maximum of the rainfall intensity averaged in a spatial window of length l along cross-section C 147 

in Figure 1, for l = DVt. As an example, Figure 2 shows moving-average rainfall intensities from 148 

Hurricane Katrina (2005) along a cross-section at distance y = 100 km from the storm center, for 149 

averaging lengths l = 6 km (dashed line) and l = 24 km (solid line). The cross-section extends 150 

over L = 384 km and is symmetrical relative to the storm center.  151 

 The intensity labeled IL in Figure 2 is the average PR rainrate in L, whereas IL,MSR is the 152 

estimate of that average rainrate produced by the MSR model. These average intensities play an 153 

important role in our analysis. For any given (y,θ) combination, the model estimate IL,MSR is 154 

fixed, whereas IL is regarded as a random variable with different values for different tropical 155 

cyclones. We model this storm-to-storm variability by expressing IL(y,θ) as  156 

  IL(y,θ) = IL,MSR(y,θ) βL(y,θ) (1)   157 

where βL is a random variable.  158 

 Figure 2 also shows significant amplification of the rainfall intensity when one considers the 159 

maximum over lengths l < L. One may express the maximum in l, Il,max, as 160 

  Il,max (y,θ) = IL,MSR(y,θ) βl,max(y,θ) = IL,MSR(y,θ) βL(y,θ) γl,max(y,θ)  (2)   161 

where the total factor relative to IL,MSR, βl,max, is the product of βL in equation (1) and a random 162 

amplification factor γl,max for the change of scale from L to l. The next section uses PR/TRMM 163 

data from 8 tropical cyclones (a total of 38 frames) to derive the distributions of βL and γl,max. The 164 

selected frames (see Table 1) cover a wide range of TC intensities, from tropical storms to CAT5 165 

systems, under pre-landfall conditions. This makes our model best suited for open-water sites, 166 
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but it should also be accurate in coastal areas with a flat topography. For example, Marks et al. 167 

(2002) (see also Tuleya et al., 2007) used TMI rainfall products for TCs over water to predict 168 

rainfall rates at inland locations. For sites close to the shore, the predictions had low bias relative 169 

to raingauge measurements. 170 

 Due to the limited lateral coverage of the PR instrument, an additional requirement for 171 

selecting the frames was to cover regions close to the hurricane core (with radial distance less 172 

than 300 km from the storm center), as these are the regions that are most critical for rainfall. 173 

3. Distribution of βL and γl,max 174 

Equation (2) relates the maximum rainfall intensity in l to the average intensity in L produced by 175 

the MSR model using two random factors: a factor βL to obtain the average rainfall in L, and a 176 

factor γl,max to obtain the maximum average intensity at a smaller scale l. Sections 3.1 and 3.2 177 

obtain the distribution of these factors using the rainfall information in Table 1 and MSR model 178 

simulations. 179 

3.1 Distribution of βL 180 

The factor βL is given by  181 

  βL(y,θ) = 
IL(y,θ)

IL,MSR(y,θ)
  (3)   182 

where IL and IL,MSR are the same as in equation (1). The distribution of βL generally depends on 183 

the distance y from the TC center and the vector θ = [Vmax, Rmax, Vt] of storm characteristics, but 184 

as we show next, a simple parameterization in terms of the standardized distance y′ = |y/Rmax| and 185 

the large-scale MSR rainfall intensity IL,MSR suffices. Of course, IL,MSR is itself a function of θ. 186 

 Figure 3 shows statistics of βL as a function of y′ and IL,MSR for the TRMM frames in Table 1. 187 

For each frame, the IL,MSR intensities at different distances y from the center of the storm were 188 
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calculated using the MSR model and the values of Vmax, Rmax, and Vt in the extended best track 189 

record (M. DeMaria, 2008; personal communication; Demuth et al., 2006); see Table 1. In 190 

addition to Vmax, Rmax, and Vt, the MSR model requires specification of the vertical diffusion 191 

coefficient K, the surface drag coefficient Cd, the vertically averaged temperature T̄
 
 and 192 

saturation ratio Q̄
 
 inside the boundary layer (BL), Holland’s B parameter for the profile of 193 

gradient winds, the sloping angle ψ0 and height H0 of the wall updraft, and the temporal scale tr 194 

for azimuthal re-distribution of rainfall by the cyclonic circulation; see Langousis and Veneziano 195 

(2008) for details. In our simulations we have set K = 50 m
2
/s, Cd  = 0.002, T̄

 
 = 22

o
C, Q̄

 
 = 0.8, 196 

B = 1, ψ0 = 50
o
, H0 = 6 km and tr  = 60 min. Langousis and Veneziano (2008) recommend these 197 

settings as representative of tropical cyclones in the North Atlantic and as values that reproduce 198 

well the TRMM/PR rainfall fields in an ensemble-average sense. 199 

 Figures 3.a and 3.b show smooth contour plots of the log-mean mlnβL
 and log-standard 200 

deviation σlnβL
 of βL as a function of the standardized distance y′= |y/Rmax| and the MSR rainfall 201 

intensity IL,MSR for the 38 frames in Table 1. For each frame, a regular spacing ∆y = 10 km was 202 

maintained between adjacent transects, producing a total of 789 points; see Figure 3.a. In all 203 

cases, averaging is over segments of length L = 384 km, symmetric relative to the storm center. 204 

This value of L encompasses more than 95% of the total rainfall volume along each transect; see 205 

for example Figure 2. Smooth estimates of the mean value and variance of lnβL were obtained 206 

using an isotropic Gaussian kernel with standard deviation 0.5 in the [ln(IL,MSR), ln(y′)]-plane. 207 

Hence, if g(x) denotes this kernel, local estimates of mlnβL
(x0) and σ

2
lnβL

(x0) around a given point 208 

x0 = [ln(IL,MSR), ln(y′)] are given by 209 
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  mlnβL
(x0) = 

∑
i

 

  lnβL(xi) g(xi-x0)

∑
i

 

 g(xi-x0)

  ,       σ
2
lnβL

(x0) = 

∑
i

 

  [lnβL(xi) - mlnβL
(xi)]

2
 g(xi-x0)

∑
i

 

 g(xi-x0)

 (4)   210 

where xi is the generic [ln(IL,MSR), ln(y′)] combination for which a value of βL is available. To use 211 

values of βL at locations close to the center of the storm where ln(y′) diverges, 59 points with 212 

|y| < 0.5 Rmax where moved to y = 0.5 Rmax. 213 

 The overall mean value of βL is 1.02, indicating that on average the MSR model produces 214 

unbiased large-scale estimates of the PR rainrates. The dashed lines in Figure 3.b delimit the 215 

region of high data density and are generally oriented along the gradient of σlnβL
. Figure 3.c 216 

shows plots of mlnβL
 and σlnβL

 as a function of the transformed variable ω = ln(y′) - 0.4ln(IL,MSR) 217 

along the dashed-dotted line in Figure 3.b. The log-mean mlnβL
 is approximately constant and 218 

equal to -0.5, whereas σlnβL
 increases as the standardized distance y′ increases or the large-scale 219 

mean rainfall intensity IL,MSR decreases. This higher log variability in regions of lower intensity is 220 

expected due to the more episodic nature of rainfall in those regions. This is also in qualitative 221 

agreement with the findings of Lonfat et al. (2004) and Molinari et al. (1994). The solid lines in 222 

Figure 3.c are least-squares fits for the mean and standard deviation of lnβL. For y close to zero, 223 

the fitted standard deviation becomes very small or negative. To avoid this inconsistency, we 224 

have imposed a lower bound of 0.5 to the fitted standard deviation. 225 

 To investigate the distribution type, we standardize the empirical values of lnβL by removing 226 

the parametrically fitted mean -0.5 and dividing by the parametrically fitted standard deviation 227 

0.25ω + 0.87. Figure 3.d shows a histogram of these standardized quantities and suggests that 228 

lnβL has near-normal distribution. To check for possible lack of fit and possible dependence of 229 
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lnβL on other parameters, we generated histograms of the type in Figure 3.d separately for 230 

different ranges of y, IL,MSR, Rmax and Vmax; see Langousis (2008). As none of these analyses 231 

reveals significant dependence, we use the fits in Figure 3.c and model lnβL as a normal variable 232 

with parameters  233 

  
mlnβL

(ω) = -0.5                       

σlnβL
(ω) = max{0.5, 0.25ω + 0.87}         

 (5)   234 

where ω = ln(y′) - 0.4ln(IL,MSR). 235 

3.2 Distribution of γl,max  236 

Next we consider the amplification factor γl,max in equation (2). The distribution of this factor can 237 

be found by a variety of methods, from the direct use of data on γl,max from the frames in Table 1 238 

to theoretical analysis of the maximum of the moving-average processes Il(x) illustrated in Figure 239 

2. Langousis (2008) compared several such approaches and found similar results. Here we 240 

follow the empirical approach, which is the simpler and more transparent method. We start by 241 

calculating the empirical ratio  242 

  γl,max = 
Il,max

IL
   ,  l ≤ L (6)  243 

where IL is the average PR rainrate along a cross section C of fixed length L = 384 km and Il,max 244 

is the maximum rainfall intensity when the same cross section is continuously scanned using an 245 

averaging window of length l; see Figures 1 and 2 and Section 2. Ideally, the cross section C 246 

should be in the direction of the storm motion, but since the TRMM swaths are not always 247 

aligned with that direction, we calculate the factor γl,max using cross-sections parallel to the swath 248 

track. Hence, the resulting factor γl,max does not depend on the orientation of C relative to the 249 

storm motion. Langousis (2008) verified that γl,max is insensitive to this orientation by dividing 250 
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the swaths into two groups: those that are generally aligned with the storm trajectory and those 251 

that are not. The distribution of γl,max is similar in the two cases.  252 

 Langousis (2008) also studied the dependence of the distribution of γl,max on Rmax. Dependence 253 

is expected because smaller values of Rmax produce more picked radial rainfall profiles and hence 254 

higher rainfall maxima. The finding is that for small spatial scales (l ≤ 12 km) the mean value 255 

and standard deviation of γl,max increase somewhat with decreasing Rmax, whereas at larger spatial 256 

scales the increase is modest. Based on these results, we ignore the dependence of γl,max on Rmax 257 

and use a simple parameterization in terms of the averaging length l and the large-scale average 258 

intensity IL. The latter quantity depends significantly on both the storm intensity Vmax and the 259 

distance y from the storm center; see Langousis and Veneziano (2008).   260 

 Figure 4 shows log-log plots of E[γl,max] and Var[γl,max] against l after classifying the 789 261 

cross-sections in Figure 3.a into 12 equally-sized IL bins. As expected, Var[γl,max] increases with 262 

decreasing spatial scale l. A less obvious finding is that the variability of γl,max increases as the 263 

large-scale intensity IL decreases. Considering that lower values of IL are generally found at 264 

larger distances y from the storm center, Figure 4 shows that the outer TC environment exhibits 265 

higher (multiplicative) variability relative to the inner region. The higher variability inside low-IL 266 

regions is due for the most part to an increase in the dry area fraction (Langousis, 2008) and has 267 

been noted also in other studies (Molinari et al., 1994; Lonfat et al., 2004). This feature is also 268 

commonly observed in extra-tropical rainfall (e.g. Over and Gupta, 1996; Deidda et al., 2006; 269 

Veneziano et al., 2006a; Gebremichael et al., 2006). 270 

 For each intensity category IL, we use least squares to fit linear and quadratic expressions for 271 

the log-mean and log-variance of γl,max, 272 

  
lnE[γl,max] = a1 lnl+ a2                        

lnVar[γl,max] = a3 (lnl)
2
+ a4 lnl + a5 

 (7)  273 
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where l ≤ L is in km and a1-a5 are parameters. Figure 5 shows how the parameters a1-a5 in 274 

equation (7) vary with the large-scale rainfall intensity IL. The solid lines in Figure 5 are smooth 275 

least-squares estimates of ai (i=1,…5). Use of the smooth estimates reproduces well the 276 

empirical moments of γl,max; see solid lines in Figure 4.  277 

 The amplification factor γl,max has values between 1 and L/l. The lower bound corresponds to a 278 

uniform distribution of rainfall inside L, whereas the upper bound is attained when all the rainfall 279 

in L is concentrated in a single l interval. We model γl,max using a beta distribution with moments 280 

in equation (7). One may write this cumulative distribution as      281 

  Fγl,max
(γ) = FX






γ-1

L/l-1
   ,  γ ≥1   (8)  282 

where FX is the beta distribution in [0,1] with parameters  283 

  E[X] = 
E[γl,max]-1

L/l-1
   , Var[X]= 

Var[γl,max]

(L/l-1)
2   (9)  284 

Figure 6 compares the empirical distribution of γl,max at spatial scales l = 96 and 6 km for 285 

different large-scale average intensities IL with theoretical distributions from equations (8) and 286 

(9). The moments E[γl,max] and Var[γl,max] in equation (9) are calculated using equation (7) with 287 

parameters a1-a5 in Figure 5. Equally good fits are obtained for other window sizes l; see 288 

Langousis (2008).  289 

4. Validation of Maximum Rainfall Model and Sensitivity Analysis 290 

For a tropical cyclone with parameters θ = [Vmax, Rmax, Vt] and a given distance y from the storm 291 

center, one may use equation (2) and the distributions of βL and γl,max in Section 3 to obtain the 292 

distribution of the maximum rainfall intensity Il,max as  293 
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  P[Il,max(y,θ) ≤ i] = ⌡⌠
0

∞

  fIL|y,θ(u) Fγl,max|IL=u(i/u) du  (10)  294 

where fIL|y,θ is the probability density function of IL = IL,MSR βL given (y,θ) and Fγl,max|IL
 is the 295 

cumulative distribution function of γl,max given IL. To assess the validity of the probabilities 296 

generated by equation (10), we compare them with observed relative frequencies, as follows. For 297 

each of the 789 transects extracted from the PR data in Table 1, 298 

1. We calculate the maximum intensity Il,max over segments of different length l; 299 

2. We use (Vmax, Rmax, Vt) from Table 1 and the distance y of the transect from the TC center 300 

to obtain model estimates of the large-scale mean rainfall intensity IL,MSR(y,θ) for L= 301 

384 km. All other MSR model parameters are fixed to the values in Section 3.1.  302 

3. We use equation (10) and the parametric expressions in equations (5) and (7) and Figure 303 

5 to find the distribution of Il,max and the probability P with which the observed value 304 

from step (1) is not exceeded.  305 

If the model is correct, the probabilities P from step (3) have uniform distribution between 0 and 306 

1. Figure 7 shows histograms of P for different l. One sees that the histograms differ somewhat 307 

from a uniform density (the chi-square goodness of fit test applied to the bins shown in Figure 7 308 

passes at a level of significance around 0.005-0.01 depending on the scale of averaging l). We 309 

have investigated this issue in some detail (Langousis, 2008) and found that the biases are due 310 

mainly to dependence of the amplification factor γl,max on the radius of maximum winds Rmax; see 311 

Section 3.2. Although a parameterization of γl,max, that includes Rmax as an independent variable 312 

would improve the goodness of fit, here we retain the simpler model.  313 

 The distribution of Il,max in equation (10) depends critically on the amplification factor βl,max in 314 

equation (2). Figure 8 shows how the distribution of βl,max depends on l, Vmax, and y' = |y/Rmax|. 315 
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The effect of the translation velocity Vt is modest and is not displayed. Also, for given Vmax and 316 

y' = |y/Rmax|, βl,max is insensitive to Rmax. The dispersion of βl,max increases as l decreases. It also 317 

increases for smaller Vmax and larger y′. The latter effects are related to the increased spatial 318 

variability of the rainfall intensity in regions of lower average precipitation.  319 

5. Long-term Rainfall Risk for New Orleans 320 

To assess rainfall risk at a given location A, one must find the rate λID,max > i of tropical cyclones 321 

for which ID,max, the maximum rainfall intensity at A for a given averaging duration D, exceeds 322 

different threshold levels i. This rate is given by  323 

  λID,max > i = λ P[ID,max > i] = λ ⌡⌠
all (y,θ)

 

 P[ID,max(y,θ) > i] fy,θ(y,θ) dy dθ  (11)  324 

where λ is the rate of TCs in the region, P[ID,max(y,θ) > i] is the probability that, for a storm with 325 

characteristics θ, ID,max at distance y from the storm center exceeds i, and  fy,θ is the joint density 326 

of (y,θ). The joint density fy,θ and the rate λ are region-specific and define the TC recurrence 327 

model. Under Taylor’s hypothesis, P[ID,max(y,θ) > i] is obtained by setting l =DVt  in equation 328 

(10). 329 

 To exemplify, we use equation (11) and a recurrence model for an appropriate coastal region 330 

of the Gulf of Mexico to obtain intensity-duration-frequency (IDF) relationships for New 331 

Orleans. We select this location because: 1) the site is close to the coast and has a flat 332 

topography; hence our pre-landfall model should produce accurate results, 2) a number of studies 333 

have developed TC recurrence models for the Louisiana coast, and 3) one can compare the TC 334 

rainfall results with available IDF curves from continuous rainfall records in the region.  335 

5.1 TC recurrence model for the northern Gulf of Mexico 336 
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We start by specifying the distribution of the distance y between the center of the storm and the 337 

city of New Orleans (point A), which is located at approximately (90
o
W, 30

o
N). Then we 338 

consider the distribution of θ = [Vmax, Rmax, Vt]. The joint model for Vmax and Rmax is specified 339 

through the distribution of the maximum pressure deficit ∆Pmax and the conditional distributions 340 

of [Vmax|∆Pmax] and [Rmax|∆Pmax]. Finally we specify the TC rate λ. To keep the model simple, we 341 

approximate the coastline by a line segment with constant latitude 30
o
N and longitudinal range 342 

85
o
-95

o
W (≈ 960 km), centered at A.  343 

 Let z be the location (positive eastward) of landfall relative to A. Assuming a straight storm 344 

path, the closest distance of the storm center from the site is 345 

  y = - z cos(α)  (12)  346 

where α is the azimuth of the storm track at landfall, positive clockwise. The distribution of y 347 

can be obtained numerically from equation (12) and the distributions of α and z, assumed here to 348 

be independent. For z we use a uniform distribution in the interval [85
o
W, 95

o
W]. The 349 

distribution of the angle α in the region is usually found to be normal or the mixture of two 350 

normal distributions, one for easterly storms and the other for westerly storms (Vickery and 351 

Twisdale, 1995; IPET, 2006, 2008). Here we model α using a single normal distribution with 352 

mean value mα = -5.4
o
 and standard deviation σα = 34.9

o
. This distribution was obtained by IPET 353 

(2006) using NOAA’s HURDAT data set (Jarvinen et al., 1984) and found to describe well 354 

storms with central pressure deficit ∆Pmax > 34 hPa that make landfall in the longitudinal range 355 

85
o
-95

o
W. 356 

 Several studies (Holland, 1980; Atkinson and Holiday, 1977; Willoughby and Rahn, 2004) 357 

have used theoretical arguments and pressure-wind observations to relate Vmax to ∆Pmax. The 358 

relationships are typically of the power-law type  359 
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    Vmax = c (∆Pmax)
g
 (13)  360 

where c and g are positive constants. Using flight level data from 23 hurricane seasons, 361 

Willoughby and Rahn (2004) found c = 4.8 and g = 0.559 for Vmax in m/s and ∆Pmax in hPa. 362 

Based on these and other findings of Willoughby and Rahn (2004), we model [Vmax |∆Pmax] as a 363 

lognormal variable with mean value 4.8(∆Pmax)
0.559

 and coefficient of variation 0.15.  364 

 Empirical evidence (Vickery and Twisdale, 1995; Vickery et al., 2000; Willoughby and Rahn, 365 

2004; Powell et al., 2005; IPET, 2008) and theoretical arguments (Shen, 2006) show that Rmax 366 

increases when the hurricane intensity ∆Pmax decreases or the latitude φ increases. Here we 367 

assume that (lnRmax |∆Pmax) has the normal distribution proposed by Vickery et al. (2000), which 368 

for the region of New Orleans (φ ≈ 30
ο
Ν) has parameters   369 

    

mlnRmax|∆Pmax
 = 3.962 - 0.00567∆Pmax

 σlnRmax|∆Pmax
 = 0.313

 (14)  370 

where Rmax is in km and  ∆Pmax is in hPa.  371 

 The translational speed Vt has weak dependence on the intensity of the TC (Chen et al., 2006; 372 

IPET, 2008) and is usually modeled as a lognormal variable with mean value around 6 m/s and 373 

standard deviation around 2.5 m/s; see Vickery and Twisdale (1995), Vickery et al. (2000), and 374 

Chen et al. (2006). The former two studies report a slight dependence of Vt on the approach 375 

angle α. To keep the TC recurrence model simple, we use for Vt a lognormal distribution with 376 

the above mean value and standard deviation and assume that Vt and α are independent. 377 

 Different studies have concluded that the pressure deficit ∆Pmax has lognormal, Weibull or 378 

Gumbel distribution. The Weibull distribution gives better fits when all tropical cyclones are 379 

considered, whereas the lognormal distribution is more appropriate for storms in the hurricane 380 

intensity range; see Vickery and Twisdale (1995), Chouinard et al. (1997) and IPET (2006). The 381 
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Gumbel distribution has been suggested by IPET (2008) for storms in the CAT35 range (∆Pmax> 382 

58 hPa). While the Gumbel distribution is appropriate for the analysis of surges, winds and 383 

waves (for which the long-term risk is dominated by intense storms), significant rainfall is 384 

contributed by less intense slow-moving systems; see Section 5.2 below. For this reason we 385 

model ∆Pmax using the lognormal distribution suggested by IPET (2006). This study shows that 386 

for TCs with ∆Pmax > 34 hPa that made landfall in the longitudinal range 85
o
-95

o
W, ∆Pmax is 387 

accurately described by a shifted lognormal distribution with shift parameter 18 hPa, log-mean 388 

3.15 and log-standard deviation 0.68. 389 

 Finally, we set λ = 0.57 events/year, which is the rate found by IPET (2006) for TCs with 390 

∆Pmax > 34 hPa making landfall between 85
o
-95

o
W along the Gulf of Mexico coast.  391 

5.2 IDF curves for TC-rainfall and comparison with other storms  392 

Next we use equation (11) with the recurrence model in Section 5.1 to estimate the intensity-393 

duration-frequency (IDF) curves for New Orleans associated with tropical cyclones. The model 394 

explicitly accounts for variability in y, Vmax, Rmax and Vt.  All other input parameters to the MSR 395 

model are fixed to the values used in Sections 3 and 4. The joint density of {y, Vmax, Rmax, Vt} for 396 

a TC that makes landfall between longitudes 85
o
-95

o
W, fy,θ, is obtained by first calculating the 397 

joint density conditional on the pressure deficit ∆Pmax under the assumption that the variables y, 398 

[Vmax |∆Pmax], [Rmax |∆Pmax] and Vt are independent and then averaging the conditional density 399 

with respect to ∆Pmax.  400 

 Figure 9.a shows the calculated IDF curves as plots of rainfall intensity i against the averaging 401 

duration D for different return periods T. For averaging durations below about 12 hours, the 402 

decay of i with D follows a power law D
-γD where γD ≈ 0.55. This exponent is slightly smaller 403 

than the values around 0.6-0.7 that are typical of extra-tropical rainfall (because the rainfall 404 
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intensities associated with long durations in TCs tend to be high relative to extra-tropical events); 405 

see for example Langousis et al. (2007). For longer averaging durations, the exponent γD rapidly 406 

increases and is effectively 1 for D > 24 hours; see dashed lines in Figure 9.a. The reason is that 407 

the passage of a hurricane usually lasts less than 24 hours; hence for D > 24 hours the total 408 

rainfall depth is approximately constant and the average rainfall intensity depends on D like D
-1

. 409 

 Figure 9.b shows the same results as plots of T against i for different averaging durations D. 410 

To determine the importance of TCs relative to other storm types in rainfall risk, the calculated 411 

IDF curves are compared with values from TP-40 (Hersfield, 1961), Babak et al. (1991) and 412 

Singh and Zhang (2007) for return periods T = 5, 10, 25, 50 and 100 years. The latter values refer 413 

to generic rainfall in the New Orleans area and therefore include both TC and non-TC events. 414 

The rainfall values reported in TP-40 cover the whole range of averaging durations D from 0.5-415 

24 hours, whereas Babak et al. (1991) and Singh and Zhang (2007) give rainfall values only for 416 

D = 6, 12 and 24 hours. It is clear from Figure 9.b that for T > 100 years also the dependence of 417 

the rainfall intensity on T is of the power-law type, say T
 γT with γΤ ≈ 0.32. This exponent is 418 

higher than the values around 0.20-0.25 that are typical of ordinary rainfall (Langousis et al., 419 

2007; Veneziano et al., 2006b). The higher exponent in tropical cyclones is related to the large 420 

dispersion of the amplification factor βl,max (see example plots in Figure 8).  421 

 Another feature of the TC curves in Figure 9.b is the lower asymptote at T = 1/λ = 1.75 years. 422 

This lower bound is a consequence of the fact that the return period of any TC-induced rainfall 423 

intensity cannot be lower than the return period of the TCs themselves. The effect of this lower 424 

bound is that for short return periods, say T < 10 years, the precipitation intensities from tropical 425 

cyclones are far below those from ordinary rainfall (frontal events, mesoscale convective 426 

systems etc.), for which the recurrence rate is much higher. By contrast, for long averaging 427 
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durations (D > 12 hours) and long return periods (T = 100 years), the calculated TC intensities 428 

are close to the empirical intensities, indicating that tropical cyclones have a dominant effect on 429 

those extreme values. Given that the TC curves in Figure 9.b are flatter than those for overall 430 

rain, it is expected that tropical cyclones become even more dominant for longer return periods.  431 

 For short averaging durations (e.g. D on the order of 1 hour), the contribution of tropical 432 

cyclone rainfall to the risk is negligible, irrespective of the return period. A possible explanation 433 

is that 1) for short averaging durations D, extreme rainfalls are contributed by localized 434 

downpours caused by deep cumulus convection and 2) deep cumulus convection in TCs has 435 

many similarities with tropical cumulus clouds (see e.g. Parrish et al., 1984; Jorgensen et al., 436 

1985; Burpee, 1986; and Powell, 1990 among others). One concludes that for short D rainfall 437 

risk is dominated by storm types whose rate of occurrence is much higher than that of TCs.  438 

 It is also of interest to determine which tropical cyclones contribute the most to the IDF 439 

values i(D,T). Such TCs might for example be used as scenario events when designing for return 440 

period T. The main parameters to be considered are θ = [Vmax, Rmax, Vt] and the distance y to the 441 

cyclone center. Their modal (most likely) values are obtained by maximizing the conditional 442 

probability density of (y,θ) given ID,max > i(D,T). This conditional density is given by 443 

    fy,θ|D,T (y,θ) ∝ fy,θ(y,θ) P[ID,max(y,θ) > i(D,T)] (15)  444 

Figure 10 shows the modal values of Vmax, Rmax and Vt for different D and T. The most likely 445 

distance y always satisfies y ≈ Rmax. This makes sense because Rmax is the distance at which the 446 

MSR model predicts maximum large-scale rainfall intensities.  447 

 Figure 10.a shows that the mode of Vmax increases when either D or T increase. This makes 448 

physical sense since for any given D, higher rainfall intensities require more intense storms, and 449 

for any given T, intense precipitation over longer averaging durations is associated with more 450 
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intense systems. Figure 10.b shows that the mode of Vt decreases as T increases, meaning that 451 

more intense rainfall is generally produced by slower-moving systems. For averaging durations 452 

smaller than 12 hours, the modal value of Vt is insensitive to D, whereas for longer averaging 453 

durations Vt decreases faster with T. This faster decay is related to the fact that, for averaging 454 

durations D on the order of one day or longer, extremely high rainfall intensities are produced by 455 

storms that take a time close to D to pass over the site. Therefore, for T large the translation 456 

speed Vt tends to be inversely proportional to D. Finally, Figure 10.c shows that the mode of Rmax 457 

decreases when either D or T increase. This makes sense, since more intense storms tend to have 458 

smaller values of Rmax; see Section 5.1. 459 

6. Conclusions 460 

We have developed a methodology to assess the frequency of extreme rainfall intensities from 461 

tropical cyclones (TCs) in coastal areas with flat topography. The mean rainfall field associated 462 

with a TC with maximum tangential wind speed Vmax, radius of maximum winds Rmax, and 463 

translation speed Vt is obtained using a physically-based (“MSR”) model (Langousis and 464 

Veneziano, 2008), whereas rainfall variability at both large scales (from storm to storm) and 465 

small scales (due to rainbands and local convection within a single storm) is modeled 466 

statistically. The statistical component of the model is estimated using 38 precipitation radar 467 

(PR) frames from the TRMM mission; see Table 1. These frames cover a wide range of TC 468 

intensities Vmax and vortex sizes Rmax. To make the model easier to use in risk analysis, we 469 

developed approximate analytical expressions for the statistical parameters. We use Taylor’s 470 

hypothesis to convert spatial rainfall intensity fluctuations to temporal fluctuations as the storm 471 

passes over a given geographical location A. The combined physical-statistical model predicts 472 

the maximum rainfall intensity at A during an averaging period D for a TC with characteristics 473 
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(Vmax, Rmax, Vt) whose center passes at distance y from A. To illustrate the use of the model for 474 

long-term rainfall risk analysis, we formulated a recurrence model for tropical cyclones in the 475 

Gulf of Mexico that make landfall between longitudes 85
o
-95

o
W and used the rainfall and 476 

recurrence models to assess the rainfall risk for New Orleans. Our main findings are as follows. 477 

 The maximum rainfall Il,max in a spatial interval of length l depends on l, the distance y from 478 

the center of the TC, and the intensity Vmax and size Rmax of the vortex. We expressed Il,max as the 479 

product of the large-scale (L ≈ 400 km) average rainfall intensity produced by the MSR model, 480 

IL,MSR, and an amplification factor βl,max  that includes both storm-to-storm variability and spatial 481 

fluctuations of rainfall intensity within a storm. The distribution of βl,max depends of course on l, 482 

but in addition depends significantly on the large-scale intensity IL,MSR and the standardized 483 

distance from the storm center, y′ = |y/Rmax|. Specifically, the dispersion of βl,max increases as l 484 

and IL,MSR decrease or y′ = |y/Rmax| increases. These trends with IL,MSR and y′ are linked to the fact 485 

that lower intensity storms and larger distances y′ are associated with higher dry area fractions, 486 

more intermittent rainfall, and therefore an increased dispersion of the rainfall maxima.  487 

 Application of the model to TC rainfall risk for New Orleans has produced interesting insight 488 

into the importance of tropical cyclones relative to other rainfall-producing events. For short 489 

return periods T, the TC intensities are significantly below those from other storms, which have a 490 

much higher rate of occurrence. However, as the return period T increases, the TC estimates for 491 

long averaging durations (D around 12-24 hours) approach the values found from continuous 492 

rainfall records. This means that for long return periods, the long-duration TC rainfalls tend to 493 

dominate. In New Orleans, this happens for T around 100 years.  494 

 To determine how the most likely TC scenario varies with the averaging duration D and the 495 

return period T, we calculated the joint distribution of {Vmax, Rmax, Vt, y} conditioned on 496 
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exceeding the T-year rainfall intensity for averaging duration D. Then we plotted the modal 497 

values of Vmax, Rmax, and Vt against D and T; see Figure 10 (for y, the modal value is always close 498 

to Rmax). The modal value of Vmax increases when D or T increase, whereas the opposite is true 499 

for Rmax. The mode of the translation velocity Vt is insensitive to D for D < 24 hours, but 500 

decreases with increasing T and with increasing D for D > 24 hours. 501 

  A rich parameterization and high computational efficiency make the proposed model 502 

attractive for rainfall risk applications in TC-prone areas. A limitation of the current model is that 503 

it does not account for landfall effects and therefore is applicable only to open-water or coastal 504 

sites with flat topography. Future work should focus on extending the model to include inland 505 

conditions and extra-tropical conversion using coastal and over-land weather radar data. 506 

Acknowledgments 507 

This work was supported by the Alexander S. Onassis Public Benefit Foundation under 508 

Scholarship No. F-ZA 054/2005-2006. The authors are grateful to Shuyi Chen for the PR-509 

TRMM rainfall products and Mark DeMaria for access to the extended best track record. We 510 

also thank Demetris Koutsoyiannis and two anonymous reviewers for their useful comments and 511 

suggestions.  512 

References 513 

Atkinson, G.D. and C.R. Holiday (1977) Tropical Cyclone Minimum Sea Level Pressure-514 

maximum Sustained Wind Relationship for Western North Pacific, Mon. Wea. Rev., 105, 515 

421-427. 516 

Babak, N., V.P. Singh and F.X. Yu (1991) LADOTD 24-hour rainfall frequency maps and IDF 517 

curves, Louisiana Transportation Research Center, Baton Rouge, La. 518 



 24 

Bolen, S.M. and V. Chandrasekar (2000) Quantitative Cross Validation of Space-Based and 519 

Ground-Based Radar Observations, J. Appl. Meteor., 39, 2071–2079. 520 

Burpee, R.W. (1986) Mesoscale Structure of Hurricanes, In: Mesoscale Meteorology and 521 

Forecasting, Edited by: Ray P.S., Amer. Meteor. Soc., Boston, U.S.A. 522 

Chen, S.S., M. Lonfat, J.A. Knaff, and F.D. Marks, Jr. (2006) Effects of Vertical Wind Shear and 523 

Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM, Mon. 524 

Wea. Rev., 134: 3190-3208. 525 

Chouinard, L.E., C. Liu and C.K. Cooper (1997) Model for Severity of Hurricanes in Gulf of 526 

Mexico, J. of Waterway, Port, Coastal and Ocean Engineering, 123(3), 120-129. 527 

Chow, V.T., D.R. Maidment and L.W. Mays (1988) Applied Hydrology, McGraw-Hill, New 528 

York. 529 

Deidda, R., M. Grazia-Badas and E. Piga (2006) Space–time Multifractality of Remotely Sensed 530 

Rainfall Fields, J. Hydrol., 322, 2-13, doi:10.1016/j.jhydrol.2005.02.036. 531 

Demuth, J., M. DeMaria and J.A. Knaff (2006) Improvement of Advanced Microwave Sounder 532 

Unit Tropical Cyclone Intensity and Size Estimation Algorithms, J. Appl. Meteor., 45, 1573-533 

1581. 534 

Ferraro, R., P. Pellegrino, M. Turk, W. Chen, S. Qiu, R. Kuligowski, S. Kusselson, A. Irving, S. 535 

Kidder and J. Knaff (2005) The Tropical Rainfall Potential (TRaP) Technique. Part II: 536 

Validation, Wea. Forecasting, 20, 465–475. 537 

Gebremichael, M., T.M. Over and W.F. Krajewski (2006) Comparison of the Scaling Properties 538 

of Rainfall Derived from Space- and Surface-based Radars. J. of Hydrometeor., 7, 1277-539 

1294. 540 



 25 

Herbert, P.J., J.D. Jarrell, and M. Mayfield (1997) The Deadliest, Costliest, and Most Intense 541 

United States Hurricanes of this Century (and Other Frequently Requested Hurricane Facts), 542 

NOAA Tech. Memo., NWS TPC-1, Miami, Florida. 543 

Hershfield, D.M. (1961) Rainfall Frequency Atlas for the United States for Durations from 30 544 

minutes to 24 hours and Return Periods from 1 to 100 years, Technical Paper 40, U.S. 545 

Weather Bureau, Washington, D.C. 546 

Ho F.P., J.C. Su, K.L. Hanevich, R.J. Smith and F.P. Richards (1987) Hurricane Climatology fir 547 

the Atlantic and Gulf Coasts of the United States, NOAA Tech. Rep. NWS 38, completed 548 

under agreement EMW-84-E-1589 for FEMA, 194p. 549 

Ho, F.P. and V.A. Myers (1975) Joint Probability Method of Tide Frequency Analysis Applied 550 

to Apalachicola Bay and St. George Sound, Florida, NOAA Tech. Rep. NWS 18, 43p. 551 

Holland, G.J. (1980) An Analytic Model of the Wind and Pressure Profiles in Hurricanes, Mon. 552 

Wea. Rev., 108: 1212-1218. 553 

Interagency Performance Evaluation Taskforce (I.P.E.T.) (2006) Engineering and Operational 554 

Risk and Reliability Analysis, Volume VIII, Technical Appendix J, 60% Progress Report, 555 

United States Army Corps of Engineers. 556 

Interagency Performance Evaluation Taskforce (I.P.E.T.) (2008) Engineering and Operational 557 

Risk and Reliability Analysis, Volume VIII, Technical Appendix 8: Hazard Analysis, United 558 

States Army Corps of Engineers, https://ipet.wes.army.mil/ 559 

Jarvinen, B.R., C.J. Neumann and M.A.S. Davis (1984) A Tropical Cyclone Data Tape for the 560 

North Atlantic Basin 1886-1993: Contents, Limitations and Uses, NOAA Tech. Memo. NWS-561 

NHC-22, U.S. Department of Commerce, Washington, D.C.  562 



 26 

Jorgensen, D.P., E.J. Zipser and M.A. Lemone (1985) Vertical Motions in Intense Hurricanes, J. 563 

Atmos. Sci., 42, 839-856. 564 

Kidder, S.Q., S.J. Kusselson, J.A. Knaff, R.R. Ferraro, R.J. Kuligowski and M. Turk (2005) The 565 

Tropical Rainfall Potential (TRaP) Technique, Part I, Wea. Forecasting, 20, 456–464. 566 

Koutsoyiannis, D., D. Kozonis and A. Manetas (1998) A Mathematical Framework for Studying 567 

Rainfall Intensity-Duration-Frequency Relationships, J. Hydrol., 206: 118-135. 568 

Kummerow, C., W. Barnes, T. Kozu, J. Shiue and J. Simpson (1998) The Tropical Rainfall 569 

Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Technol., 15, 809–817. 570 

Langousis A, D. Veneziano, P. Furcolo, and C. Lepore (2007) Multifractal Rainfall Extremes: 571 

Theoretical Analysis and Practical Estimation, Chaos Solitons and Fractals, 572 

doi:10.1016/j.chaos.2007.06.004. 573 

Langousis, A. (2008) Modeling Long-term Rainfall Risk for Tropical Cyclones, Ph.D. Thesis, 574 

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology 575 

(M.I.T.), Cambridge, Mass. 576 

Langousis, A. and D. Veneziano (2008) Theoretical Model of Rainfall in Tropical Cyclones for 577 

the Assessment of Long-term Risk, J. Geophys. Res., doi:10.1029/2008JD010080.   578 

Langousis, A., D. Veneziano, and S. Chen (2008) Boundary Layer Model for Moving Tropical 579 

Cyclones, In: Hurricanes and Climate Change, Edited by: J. Elsner and T.H. Jagger, 580 

Springer. 581 

Lee, T.F., F.J. Turk, J. Hawkins and K. Richardson (2002) Interpretation of TRMM TMI Images 582 

of Tropical Cyclones, Earth Interactions, 6, 1–17. 583 



 27 

Liao, L., R. Meneghini and T. Iguchi (2001) Comparisons of Rain Rate and Reflectivity Factor 584 

Derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, 585 

Florida, Site. J. Atmos. Oceanic Technol., 18, 1959–1974. 586 

Lonfat, M., F.D. Marks, Jr. and S.S. Chen (2004) Precipitation Distribution in Tropical Cyclones 587 

Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global 588 

Perspective, Mon. Wea. Rev., 132: 1645-1660. 589 

Lonfat, M., R. Rogers, T. Marchok, and F.D. Marks Jr. (2007) A Parametric Model for 590 

Predicting Hurricane Rainfall, Mon. Wea. Rev., 135: 3086-3097. 591 

Madsen, H., P.F. Rasmussen and D. Rosbjerg (1997) Comparison of Annual Maximum Series 592 

and Partial Duration Series Methods for Modeling Extreme Hydrologic Events 1. At-site 593 

Modeling, Wat. Resour. Res., 33(4): 747-757. 594 

Marks, F.D., G. Kappler and M. DeMaria (2002) Development of a Tropical Cyclone Rainfall 595 

Climatology and Persistence (RCLIPER) Model, Preprints, 25th Conf. on Hurricanes and 596 

Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 327–328. 597 

Molinari, J., P.K. Moore, V.P. Idone, R.W. Henderson and A.B. Saljoughy (1994) Cloud-to-598 

ground Lightning in Hurricane Andrew, J. Geophys. Res., 99, 16,665-16,676. 599 

Myers, V.A. (1975) Storm Tide Frequencies on the South Carolina Coast, NOAA Tech. Rep. 600 

NWS-16, 79p. 601 

Over, T.M. and V.K. Gupta (1996) A Space-time Theory of Mesoscale Rainfal Using Random 602 

Cascades, J. Geophys. Res., 101(D21): 26,319- 26,331. 603 



 28 

Parrish, J.R., R.W. Burpee, F.D. Marks Jr. and C.W. Landsea (1984) Mesoscale and Convective-604 

scale Characteristics of Hurricane Frederic During Landfall, Postprints, 15
th
 Conference of 605 

Hurricanes and Tropical Meteorology, Miami, Amer. Meteor. Soc., Boston, 415-420. 606 

Powell, M., G. Soukup, S. Cocke, S. Gulati, N. Morisseau-Leroy, S. Hamid, N. Dorst and L. 607 

Axe, (2005) State of Florida Hurricane Loss Projection Model: Atmospheric Science 608 

Component, J. Wind Engineering and Industrial Aerodynamics, 93: 651-674. 609 

Powell, M. (1990) Boundary Layer Structure and Dynamics in Outer Hurricane Rainbands. Part 610 

I: Mesoscale Rainfall and Kinematic Structure, Mon. Wea. Rev., 118, 891-917. 611 

Rappaport, E.N. (2000) Loss of Life in the United States Associated with Recent Atlantic 612 

Tropical Cyclones, Bull. Amer. Meteor. Soc., 81: 2065-2074. 613 

Scofield, R.A. and R.J. Kuligowski (2003) Status and Outlook of Operational Satellite 614 

Precipitation Algorithms for Extreme Precipitation Events, Wea. Forecasting, 18, 1037–615 

1051. 616 

Shen, W. (2006) Does the Size of Hurricane Eye Matter with its Intensity? Geophys. Res. Lett., 617 

33, L18813, doi:10.1029/2006GL027313. 618 

Simpson, J., R.F. Adler and G.R. North (1988) Proposed Tropical Rainfall Measuring Mission 619 

(TRMM) Satellite, Bull. Amer. Meteor. Soc., 69: 278-295. 620 

Singh, V. P. (1992) Elementary Hydrology, Prentice-Hall, New Jersey, U.S.A. 621 

Singh, V.P. and L. Zhang (2007) IDF Curves Using the Frank Archimedean Copula, J. Hydrol. 622 

Eng, 10.1061/(ASCE)1084-0699(2007)12:6(651). 623 

Smith, R.K. (1968) The Surface Boundary Layer of a Hurricane, Tellus, 20: 473-484. 624 



 29 

Taylor, G.I. (1921) Diffusion processes by continuous movements, Proc. Lond. Math. Soc., 625 

20(2): 196–211. 626 

Taylor, G.I. (1938) The spectrum of turbulence, Proc. R. Soc. Lond., Ser. A, 164: 476–90. 627 

Tuleya, R.E., M. DeMaria, and J.R. Kuligowski (2007) Evaluation of GFDL and Simple 628 

Statistical Model Rainfall Forecasts for U.S. Landfalling Tropical Storms, Wea. 629 

Forecasting, 22: 56–70. 630 

Veneziano, D., A. Langousis and P. Furcolo (2006b) Multifractality and Rainfall Extremes: A 631 

Review, Wat. Resour. Res., 42, W06D15, doi:10.1029/2005WR004716. 632 

Veneziano, D., P. Furcolo and V. Iacobellis (2006a) Imperfect Scaling of Time and Space-Time 633 

Rainfall, J. Hydrol., 322(1-4), 105-119. 634 

Vicente, G.A., R.A. Scofield and W.P. Menzel (1998) The Operational GOES Infrared Rainfall 635 

Estimation Technique, Bull. Amer. Meteor. Soc., 79, 1883–1898. 636 

Vickery, P.J. and L.A. Twisdale (1995) Prediction of Hurricane Wind Speeds in the United 637 

States, J. of Structural Engineering, 121(11), 1691-1699. 638 

Vickery, P.J., P.F. Skerlj and L.A. Twisdale (2000) Simulation of Hurricane Risk in the U.S. 639 

Using Empirical Track Model, J. of Structural Engineering, 126(10): 1222-1237. 640 

Willoughby, H.E. and M.E. Rahn (2004) Parametric Representation of the Primary Hurricane 641 

Vortex. Part I: Observations and Evaluation of the Holland (1980) Model, Mon. Wea. Rev., 642 

132, 3033-3048. 643 

Wolff, D.B., D.A. Marks, E. Amitai, D.S. Silberstein, B.L. Fisher, A. Tokay, J. Wang and J.L. 644 

Pippitt, 2005: Ground Validation for the Tropical Rainfall Measuring Mission (TRMM), J. 645 

Atmos. Oceanic Technol., 22, 365–380. 646 



 30 

Table 1: Characteristics of the PR/TRMM rain frames used in the analysis. The direction of 647 

storm translation is relative to the East and is positive counter-clockwise. The estimates of Vmax 648 

and Rmax are from the extended best track record (M. DeMaria, 2008; personal communication).  649 

 Storm center 

 
Lat. 

(deg) 

Lon. 

(deg) 

Storm 

speed 

(m/s) 

storm 

direction 

(deg) 

Vmax 

(m/s) 

Rmax 

(km) 

TRMM 

frame 

number 

Storm 

intensity 

21.7 -61.6 4.9 143 48.8 41 10290 CAT2 

23.5 -68.7 4.8 169 64.0 37 10317 CAT4 

F
lo

y
d

 

'9
9

 

23.7 -70.6 5.8 171 69.3 37 10321 CAT4 

12.6 -43.7 10.9 158 23.1 37 38646 TS 

15.7 -49.8 5.4 139 51.4 19 38667 CAT3 

17 -51.3 5.3 139 54.0 28 38677 CAT3 

17.9 -52.6 4.3 144 59.1 28 38682 CAT4 

19 -57.3 4.9 180 51.4 28 38708 CAT3 F
r
a

n
c
e
s 

'0
4
 

21.2 -68.5 6.1 162 61.7 28 38739 CAT4 

8.9 -38.9 7.6 184 25.7 37 38789 TS 

10.7 -50.6 12.2 185 57.5 28 38814 CAT4 

11.2 -53.4 8.1 173 51.4 28 38820 CAT3 
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Figure captions 651 

Figure 1: Schematic representation of a moving storm. Point O translates with the storm at speed 652 

Vt. Point A is the geographical location of interest.  653 

Figure 2: Rainfall intensities from Hurricane Katrina (Aug. 28, 2005, at 03:00UTC; TRMM 654 

frame 44361) along a cross-section C at distance y = 100 km from the storm center, for 655 

spatial averaging scales l = 6 and 24 km. The maximum values Il,max are indicated by 656 

circles. IL is the average value for the entire cross-section and IL,MSR is the estimate of 657 

IL produced by the MSR model. 658 

Figure 3: (a,b) Mean value and standard deviation of lnβL as a function of the model rainfall 659 

intensity IL,MSR  and the standardized distance y′= |y/Rmax| from the TC center using 789 660 

cross-sections of the 38 frames in Table 1. The contour plots are obtained using a 661 

smoothing Gaussian kernel with standard deviation 0.5. The dashed lines delimit the 662 

region of high data density along the direction of the gradient of σlnβL
 (white arrow). (c) 663 

Plots of mlnβL
 and σlnβL

 as a function of ω = ln(y′) - 0.4ln(IL,MSR) along cross-section A. 664 

(d) Comparison between the standard normal density and the empirical PDF of ln(βL), 665 

standardized to have zero mean and unit variance. 666 

Figure 4: Log-log plots of E[γl,max] and Var[γl,max] against l for different ranges of IL. Triangles 667 

and circles indicate empirical values. The solid lines are from equation (7). 668 

Figure 5: Dependence of the parameters a1-a5 in equation (7) on IL. The solid lines are least 669 

squares fits. 670 

Figure 6: Comparison of histograms of γl,max for l = 96 and 6 km and different large-scale 671 

intensities with theoretical distributions from equations (7) and (8). The intensity 672 

categories are the same as in the left column of Figure 4. 673 
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Figure 7: Histogram of the non-exceedance probability P in equation (10) for different spatial 674 

scales l. Each histogram is based on a sample of size 789. 675 

Figure 8: Comparison of the probability density functions of βl,max = Il,max/IL,MSR for different Vmax, 676 

y′ = |y/Rmax|, and l. 677 

Figure 9: Theoretical IDF curves for New Orleans obtained from equation (11). (a) Maximum 678 

rainfall intensity i as a function of averaging duration D for different return periods T. 679 

(b) Comparison of the IDF values in (a) for different averaging durations D (solid 680 

lines) with intensities obtained from continuous rainfall records. 681 

Figure 10: Modal values of (Vmax, Vt, Rmax) conditioned on exceeding the T-year rainfall intensity 682 

for averaging duration D = 0.5, 1, 3, 6, 12 and 24 hours. 683 

 684 
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Figure 1: Schematic representation of a moving storm. Point O translates with the storm at speed 686 

Vt. Point A is the geographical location of interest. 687 
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Figure 2: Rainfall intensities from Hurricane Katrina (Aug. 28, 2005, at 03:00UTC; TRMM 689 

frame 44361) along a cross-section C at distance y = 100 km from the storm center, for spatial 690 

averaging scales l = 6 and 24 km. The maximum values Il,max are indicated by circles. IL is the 691 

average value for the entire cross-section and IL,MSR is the estimate of IL produced by the MSR 692 

model. 693 
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Figure 3: (a,b) Mean value and standard deviation of lnβL as a function of the model rainfall 696 

intensity IL,MSR  and the standardized distance y′= |y/Rmax| from the TC center using 789 cross-697 

sections of the 38 frames in Table 1. The contour plots are obtained using a smoothing Gaussian 698 

kernel with standard deviation 0.5. The dashed lines delimit the region of high data density along 699 

the direction of the gradient of σ (white arrow). (c) Plots of m and σ as a function of ω = ln(y′) -700 

 0.4ln(IL,MSR) along cross-section A. (d) Comparison between the standard normal density and the 701 

empirical PDF of ln(βL), standardized to have zero mean and unit variance. 702 
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 703 

Figure 4: Log-log plots of E[γl,max] and Var[γl,max] against l for different ranges of IL. Triangles 704 

and circles indicate empirical values. The solid lines are from equation (7). 705 
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Figure 5: Dependence of the parameters a1-a5 in equation (7) on IL. The solid lines are least 707 

squares fits. 708 
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 709 

Figure 6: Comparison of histograms of γl,max for l = 96 and 6 km and different large-scale 710 

intensities with theoretical distributions from equations (7) and (8). The intensity categories are 711 

the same as in the left column of Figure 4. 712 
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 713 

Figure 7: Histogram of the non-exceedance probability P in equation (10) for different spatial 714 

scales l. Each histogram is based on a sample of size 789. 715 
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 716 

Figure 8: Comparison of the probability density functions of βl,max = Il,max/IL,MSR for different Vmax, 717 

y′ = |y/Rmax|, and l. 718 
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 719 

Figure 9: Theoretical IDF curves for New Orleans obtained from equation (11). (a) Maximum 720 

rainfall intensity i as a function of averaging duration D for different return periods T. (b) 721 

Comparison of the IDF values in (a) for different averaging durations D (solid lines) with 722 

intensities obtained from continuous rainfall records. 723 

 724 
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 725 

Figure 10: Modal values of (Vmax, Vt, Rmax) conditioned on exceeding the T-year rainfall intensity 726 

for averaging duration D = 0.5, 1, 3, 6, 12 and 24 hours. 727 


