Multifractality and the Estimation of Extreme Rainfall

D. Veneziano and A. Langousis

Dept. of Civil and Environmental Engineering, MIT

EGU General Assembly Vienna, April 2006

Contents

1. Rainfall as a sequence of *iid* multiplicative cascades

• Tail properties of ε_d

 \Rightarrow asymptotic behavior of IDF curves (or $\varepsilon_{d,T}$) as $d \rightarrow 0$ and $T \rightarrow \infty$

• **Distribution of** ε_d **or** $\varepsilon_{d,max}$

 \Rightarrow actual values of $\varepsilon_{d,T}$

2. More realistic rainfall models with MF "interiors"

- Fitting models to data/IDF calculation
- Comparison with empirical IDF curves
- **3.** Conclusions

ε_d : tail properties

• **<u>Rough limits</u>**: $P[\varepsilon_d \ge (D/d)^{\gamma}] \sim (D/d)^{-C(\gamma)}$, as $d \to 0$

•Illustration

$$\varepsilon_{d,T} \sim \begin{cases} (D/d)^{\gamma_1} T^{1/q_1}, \text{ for } d \to 0 \text{ and } T \text{ finite} \\ (D/d) T^{1/q^*}, \text{ for } d \text{ finite and } T \to \infty \end{cases}$$

• Refined limits for ε_d

⇒ Refined limits for IDF

⇒ Extension to **space-time rainfall** (IDAF curves and ARF)

IDF from distribution of $\varepsilon_d = \varepsilon_{d,b} Z$

$$\varepsilon_{d,b} = \prod_{i=1}^{n} A_i$$
, where A_1, \dots, A_n = independent copies of the cascade generator A

- F_{Z} from recursive numerical procedure (exact)
 - analytical approximation, e.g. $Z \approx A_{r_z}$ with r_z to match some moment of Z

Illustration

Distribution of $\mathcal{E}_{d,max}$

• Exact Iterative Procedure

 $Z = \mathcal{E}_{D,max} \rightarrow \mathcal{E}_{(D/2),max} \rightarrow \mathcal{E}_{(D/4),max} \rightarrow \dots \rightarrow \mathcal{E}_{d,max}$ Convolutions needed to evaluate F_Z and in each step

Approximations

(a) $Z \approx A_{r_Z}$ (b) Assume independence among $\varepsilon_{d,i}$ densities (c): (a) + (b)

Illustration

Other Rainfall Models

Fitting Models to Data

• Model 1

- **Identify storms** and find their rate λ
- **Distribution of** *D* (3-par. gamma)
- **Distribution of (***I***|***D***)** (shifted LN, tail-fitted)
- *K*(*q*) within storms (1 < *q* \leq 3 \Rightarrow LN, *C*₁ = 0.1, same for \neq *D*, *I*, storm types)
- Model 2
 - **D**, distribution of **I** (tail-fitted)
 - *K***(q)** (β -LN, $0 \le q \le 3$)
- Model 3
 - **D** and *I* (= mean rain rate)
 - **K**(q) (β -LN, $0 \le q \le 3$)

Note:

D is different in Models 2 and 3 K(q) is different in different models

Comparison with Empirical IDF

Conclusions

- Several approaches and rainfall models to estimate rainfall extremes (IDF, IDAF, ARF)
- <u>Approaches</u>: from rough IDF scaling limits to actual values based on marginal and extreme distributions
 - **IDF scaling** for $d \rightarrow 0$ more relevant in practice than for $T \rightarrow \infty$
 - **IDF values**: similar when using ε_d or $\varepsilon_{d,max}$. *Z* may be approximated
- <u>Models</u>: from simple *iid* cascades to more complex models with multifractality limited to storm interiors
 - more detailed models needed for storm mixtures
 - F_I or $F_{(I|D)}$ must be tail-fitted
 - *K*(*q*) fitted using moments of order below $q_1 \approx 3$
 - *K*(*q*) similar for all storm durations, intensities and types (universality?)