
According to conventional EV and EE thinking, at least for short averaging durations d,  
(1) the annual maximum rainfall intensity in d, Iyear(d), has generalized extreme value 

(GEV) distribution, 
(2) the excess of the average intensity in d, I(d), above a level u on the order of the 

annual maximum has generalized Pareto (GP) distribution,
(3) the GEV and GP distributions have the same shape parameter k,
(4) k is determined by the upper tail of I(d).

Application of LD theory and multifractal analysis show that the above is incorrect and, 
(1) for d →0,  Iyear(d) has EV2(k) distribution where,

• k depends on the distribution of the scaling factor not the upper tail of I(d),
• k is always higher than the value from EV and EE theories,

(2) for finite d, the distribution of Iyear(d) between return periods of practical interest is 
well approximated by an EV2(k) distribution where,

• k(d) depends on d and the MF parameters,
• k(d) is nearly universal. 

Estimation of IDF valuesEstimation of IDF values

Let i(d,T) be the average rainfall intensity in an interval of duration d with return period T. 
The IDF curves are plots of I(d,T) against d for different fixed T. We compare several 
estimators of I(d,T). Some are classical and other are new.

Classical EstimatorsClassical Estimators use either Annual Maxima (AM) or Marginal Excesses (ME). The 
distribution of the annual maxima is assumed to be GEV type

and the distribution of the marginal excesses above threshold u is assumed to be GP

When using Eq.1 I(d,T) is obtained as the upper 1/T-quantile of Iyear(d), whereas in the 
case of Eq. 2 I(d,T)  is the (1/λT)-upper quantile of I, λ being the rate of which the 
threshold u is exceeded. 
The parameters in Eqs. 1 and 2 are fitted by Maximum Likelihood (ML) or by Probability 
Weighted Moments (PWM). In Eq. 2, we have fixed u such that the estimator of k has 
the minimum RMSE.

Alternative EstimatorsAlternative Estimators include (i) methods that obtain k from multifractal theory (mf) 
and (ii) estimators that use different distributional assumptions.
Methods (i) retain the use of GEV for the annual maxima and GP for the marginal 
excesses. The important difference is that k is derived from the scaling parameters of a 
beta-lognormal MF model (see above oral presentation). We refer to this estimator  as 
kmf(d).  Another  possibility is to use a “universal” default value kdef(d), obtained as the 
average of kmf(d) over  many sites (see above oral presentation). The other parameters 
are estimated by ML. 
Methods (ii) are based on the assumption that the marginal excess has a truncated 
lognormal distribution and therefore that the upper tail of the marginal distribution of I(d) 
above some threshold u has scaled lognormal (SLN) form

where Φ is the stardard normal distribution. This SLN distribution is supported by 
empirical evidence and asymptotic (d→0) multifractal analysis. To obtain the distribution 
of the annual maximum Iyear(d), the distribution in Eq. 3 is raised to a power n(d) that is 
either estimated by ML using AM data or fixed to 1/d with d expressed in years. The 
parameters (μ, σ2) are estimated by ML using marginal excess data and P1 is either 
estimated from MF theory as P1mf (like k in Eq. 2) or found by ML together with μ and σ2.

5 yr records

For short records (5For short records (5--20 years)20 years):

• The estimator based on ME with k=kdef , GPME,def , performs best, mostly 
because in this case kdef is close to the optimal k. The new estimator 
that uses k=kmf , GPME,mf , is the next high performer, with a generally 
small bias and even smaller std. The traditional estimator  GPME,ml2 (with 
k and σ estimated by ML using the optimum threshold u as described 
above) has a relatively small bias but a high variance and performs 
much worse than GPME,mf .

• AMmf+ml2 performs nearly as well as GPMEmf for records of duration ≥ 5 
years (d=1 hr) or ≥ 20 years (d=24 hr). This is true especially for long 
return periods. This result was partly expected as GPMEmf and AMmf+ml2  
share the same multifractal estimator of k.

• the traditional estimators based on AM data, AMpwm3 and AMml3 are 
highly erratic.

• the estimator based on the SLN model in Eq. 3 performs best when n(d) 
is estimated from annual maximum data (SLNnd in figures)  as opposed 
to being fixed to 1year/d (SLN). For d=1hr these estimators perform 
better than the GP estimators, whereas for d=24 hr the performance is 
comparable.

For long records (>50 years)For long records (>50 years)

• The AM estimator with kmf, AMmf,ml2, performs similarly to GPME,mf; it may 
even outperforrm GPME,mf for long return periods.
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MotivationMotivation

In a separate oral communication (Veneziano et al., “Annual Rainfall Maxima: Large-
deviation Alternative to Extreme-Value and Extreme-Excess Methods”), we show that, 
at least for scale-invariant rainfall models, classical extreme value (EV) and excess 
(EE) theories do not apply to the annual rainfall maxima (AM) under multifractal rainfall; 
a more comprehensive theoretical setting to study annual maxima is provided by large-
deviation (LD) theory. Here we present some practical implications of these theoretical 
findings for the estimation of the Intensity-Duration-Frequency (IDF) Curves.

Method for assessing different estimatorsMethod for assessing different estimators

• All the estimator of I(d,T) are applied to records simulated as uninterrupted 
sequences of iid multifractal cascades of the beta-lognormal type with 
parameters Cβ=0.5, CLN=0.04. The duration of each cascade is 15 days. 

• The figures show the BIAS, STD and RMSE of log10[Ι(d,T)] for d=1 hr  and 
24 hr and return periods T ranging from 5 to 10000 years (T varies along 
the horizontal axes). 

• Results are shown for record lengths of 5, 20 and 100 years (50 simulations 
each).

• For each simulated record the I(d,T) estimates are compared with the 
corresponding exact values obtained analytically by the method of 
Langousis et al. 2007. 
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Results and ConclusionsResults and Conclusions

Results are displayed in 3 boxes, each for one record length. Within each box, 
the first row considers estimators that use the AM values and the GEV 
distribution in Eq. 1, the second row uses the ME values and the GP 
distribution in Eq.2, and the third row is for estimators that use the SLN 
distribution of the excesses in Eq. 3.
(See legend of the figures for more details).
The results show that the estimators that either fix k to default values or 
estimate k using the multifractal method clearly outperform the traditional 
estimators. This is especially true for long return periods. As expected the 
relative accuracy of methods based on annual maxima increases as the 
record length increases. More detailed comments follow.

1 hr 24 hr

AMmf,ml2 – GEV fitted to AM data with kmf and the other 2 parameters estimated by ML. 
AMdef,ml2 – GEV fitted to AM data with kdef and the other 2 parameters estimated by ML.
AMPWM3 – GEV fitted to AM data, 3 parameters (including k) are estimated by PWM.
GPME,ml2 – GP fitted to ME data with both parameters estimated by ML.
GPME,def – GP fitted to ME data with kdef and the remaining parameter s estimated by ML.
GPME,mf – GP fitted to ME data with kmf and the remaining parameter s estimated by ML
SNLn(d),XX,YY – SLN fitted to ME data, all 3 parameters including n(d) fitted to the ME data with 

threshold equal to the XX quantile for d=1hr and the YY quantile for d=24hr.
SNL – SLN distribution with n(d) = 1/d, XX=0.8 and YY=0.6.
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