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Develop a simple model for the mean rainfall field in Develop a simple model for the mean rainfall field in TCsTCs

ObjectivesObjectives

Study how mean rainfall varies with TC parameters:Study how mean rainfall varies with TC parameters:

•• cyclone intensity cyclone intensity VVmaxmax

•• radius of maximum winds radius of maximum winds RRmaxmax

•• HollandHolland’’s s BB parameterparameter

•• translation velocity translation velocity VVcc of the cycloneof the cyclone Katrina, 2005
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What goes up must come down…

Use a BL model to  
calculate WH…

Assumption:Assumption:
rainraterainrate= upward = upward water vapor fluxwater vapor flux at the top of the boundary layerat the top of the boundary layer

I(R,θ)=  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ρair

ρw
  qw(Τ)  WH(R,θ) 

mean 
rainfall 
intensity

dry air 
density liquid water 

density

vertical wind velocity
depth averaged temperature

water vapor mixing ratio

Almost constants:Almost constants:
•• TT≈≈2020ooCC
•• SaturSatur. . ≈≈0.80.8
•• qqww≈≈1010--13 13 gr/kgrgr/kgr
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Solving the Boundary Layer (BL)…

WHH

∂W
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∂U
∂Z = 

∂V
∂Z =0

U=0 V=Vg 
Conditions 
at BL top

BL equationsBL equations
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condcond..

vertical diffusion coef.
K≈10-50m2/s

eyewalleyewall

Stress conditions with Stress conditions with drag coefficientdrag coefficient CCdd (Cd→∞ for non-slip)
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Boundary layer model 1: Kepert (2001)

AnalyticalAnalytical andand depth resolvingdepth resolving

Model breaks:Model breaks:
•• for large horizontal gradientsfor large horizontal gradients ⇒⇒ R< R< 22RRmaxmax

•• for large vertical gradientsfor large vertical gradients ⇒⇒ CCdd →→ ∞∞

•• under inertial under inertial neutrallityneutrallity ⇒⇒ B B >1.8>1.8

•• for high translation velocitiesfor high translation velocities ⇒⇒ VVcc >5m/s>5m/s

Accurate for R< Accurate for R< 22RRmaxmax

factor of 5factor of 5

Features:Features:

Accounts for Accounts for storm translationstorm translation

LinearizedLinearized version of  BL version of  BL 
equationsequations

•• BL scale thickness: BL scale thickness: δδ((RR,,θθ))
•• BCsBCs at at ZZ=0 and =0 and ZZ==HH→→ ∞∞
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Boundary layer model 2: Shapiro (1983)

Features:Features:

Accounts for Accounts for storm translationstorm translationVertically averagedVertically averaged

High horizontal velocitiesHigh horizontal velocities

Stability for R>Stability for R>RRmaxmax requiresrequires

constant boundary layer depth constant boundary layer depth HH=1000m=1000m

vertical diffusion coefficientvertical diffusion coefficient ⇒⇒ K=K=50000m50000m22/s/s

discretizationdiscretization stepstep ⇒⇒ ΔΔR = 5kmR = 5km

Issues:Issues:

factor of 3factor of 3

≈≈ zero vertical velocitieszero vertical velocities



Boundary layer model 3: Smith (1968)

SubstituteSubstitute UU and and VV into the BL equationsinto the BL equations

Integrate Integrate in thein the vertical vertical directiondirection accounting for boundary conditions accounting for boundary conditions 

SolveSolve ordinary differential equations (ordinary differential equations (ODEsODEs) for ) for EE((RR)) and and δδ((RR))

KarmanKarman & & PohlhausenPohlhausen momentum integral method: momentum integral method: 

AssumeAssume that dependence of that dependence of VV and and UU on on ZZ is of the is of the EkmanEkman type:type:

V(R,Z)=Vg(R) f[Ζ/δ(R)] U(R,Z)=Ε(R) Vg(R) g[Ζ/δ(R)]

 f(η) = -e-η (a1 sin η + a2 cos η) 
 g(η)=1-e-η (a1 cos η + a2 sin η) 

gradient 
winds

BL scale 
thickness Smith (1968): Smith (1968): EkmanEkman solutionssolutionsamplitude 

coef.

Limitations:Limitations:
Stationary hurricanesStationary hurricanes

aa11,,aa22 = = const.const. ⇒⇒ Applies only for Applies only for nonnon--slip slip BCsBCs



Modification of Smith (1968) for a moving storm

Numerically Numerically stablestable and and fastfast formulationformulation

 f(η) = -e-η [a1(R, θ) sin η + a2(R, θ) cos η] 
 g(η)=1-e-η [a1(R, θ) cos η + a2(R, θ) sin η] f & g functionsf & g functions::

Wind speeds (relative to the moving vortex): Wind speeds (relative to the moving vortex): 

U(R,θ,Z)=Ε(R,θ) Vg(R) g
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⎢
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δ(R,θ) 
WH(R,θ)=- 

1
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⌡⎮
⎮⌠

0

∞

∂(RU) 
∂R + 

∂V
∂θ

 dZ 

SolveSolve a nona non--linear system of  partial linear system of  partial DEsDEs for for EE((RR,,θθ)) and and δδ((RR,,θθ))

Stress surface boundary Stress surface boundary 
(Cd→∞ for non-slip)

Analytical expressions forAnalytical expressions for
aa11 andand aa22
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Model validation: Axi-symmetric rainfall
Application to Frances 2004Application to Frances 2004::

FitFit HollandHolland’’ss (1980)(1980) profile toprofile to flightflight--levellevel tangential wind tangential wind datadata

Model corrected for Model corrected for 
sloping wallsloping wall
((φφ=30=30--4545oo))

UseUse modified Smithmodified Smith model to calculate model to calculate WWHH((RR))

I(R)= 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 
ρair
ρw

  qw(Τ) WH(R) CalculateCalculate the azimuthally averaged rainfall intensity the azimuthally averaged rainfall intensity II::
(qw=11gr/kgr; T=20oC, S=0.8)

30 August 2004, 18:00 UTC30 August 2004, 18:00 UTC
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Rainfall asymmetryRainfall asymmetry ((modelmodel))

Model validation: Rainfall asymmetry

γI(R,θ)=  
I(R,θ)- Ī(R)

Ī(R)

Rainfall asymmetryRainfall asymmetry

rainfall intensity 
at (R,θ)

azimuthal
average

Asymmetry of WAsymmetry of WH H ((modelmodel))

Distance from TC center (km)

Distance from TC center (km)

Direction of mean translation
θθ

RR

Atlantic basinAtlantic basin
Averaged over 476 storms Averaged over 476 storms 

((LonfatLonfat et al. 2004)et al. 2004)
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Rainwater Rainwater 
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Conclusions

Future research:Future research:

Effect of Effect of vertical vertical windwind shearshear on on 
rainfall rainfall asymmetryasymmetry..

Model Model rainbandsrainbands and and smallsmall--scalescale
rainfall rainfall fluctuationsfluctuations..

The model runs in approximately The model runs in approximately 5 min5 min……

Suitable for longSuitable for long--term risk analysisterm risk analysis

We developed a We developed a simplesimple model for the model for the meanmean rainfallrainfall field in hurricanesfield in hurricanes

The model is The model is parameterizedparameterized through through [[VVmaxmax,, RRmaxmax,, BB,, VVcc,, qqww]]

AxiAxi--symmetric symmetric 
componentcomponent

Asymmetry due Asymmetry due 
to motionto motion

andandProducts:Products:

Validated through Validated through MM5MM5++TRMMTRMM

Application to rainfall risk!Application to rainfall risk!



Thank you for your time!


