1st International Summit on Hurricanes and Climate Change, May 27-June 1 2007, Crete, Hellas

Theoretical Estimation of the Mean Rainfall Field in Tropical Cyclones

A. Langousis, D. Veneziano

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (M.I.T.), U.S.A.

> S.S. Chen RSMAS/University of Miami, U.S.A

Objectives

> Develop a simple model for the mean rainfall field in TCs

Study how mean rainfall varies with TC parameters:

- cyclone intensity V_{max}
- radius of maximum winds R_{max}
- Holland's *B* parameter
- translation velocity V_c of the cyclone

Asymmetry due to motion

Schematic structure of a TC

What goes up must come down...

Assumption:

rainrate = upward *water vapor flux* at the top of the boundary layer

Validation using MM5!

Use a BL model to calculate W_{H} ...

Solving the Boundary Layer (BL)...

Surface boundary (Z=0)

Stress conditions with drag coefficient $C_d(C_d \rightarrow \infty \text{ for non-slip})$

Boundary layer model 1: Kepert (2001)

Features:

- ✓ Analytical and depth resolving
 - BCs at Z=0 and $Z=H\rightarrow\infty$
 - BL scale thickness: $\delta(R,\theta)$
- ✓ Accounts for *storm translation*
- × Linearized version of BL equations

Model breaks:

- for large horizontal gradients $\Rightarrow R < 2R_{max}$
- for large vertical gradients $\Rightarrow C_d \rightarrow \infty$
- for high translation velocities $\Rightarrow V_c > 5m/s$
- under inertial neutrallity $\Rightarrow B > 1.8$

Boundary layer model 2: Shapiro (1983)

Features:

✓ Vertically averaged ✓ Accounts for *storm translation*

Issues:

K High horizontal velocities
 K Stability for R>R_{max} requires
 K Constant boundary layer depth H=1000m
 k constant b

Boundary layer model 3: Smith (1968)

Karman & Pohlhausen momentum integral method:

* Assume that dependence of V and U on Z is of the *Ekman* type:

- * *Substitute U* and V into the BL equations
- * Integrate in the vertical direction accounting for boundary conditions
- * *Solve* ordinary differential equations (ODEs) for E(R) and $\delta(R)$

<u>Limitations</u>: $\begin{cases} * Stationary hurricanes \\ * a_1, a_2 = const. \Rightarrow Applies only for non-slip BCs \end{cases}$

Modification of Smith (1968) for a moving storm

Wind speeds (relative to the moving vortex):

$$\frac{\int \& g \text{ functions:}}{g(\eta) = -e^{-\eta} [a_1(R, \theta) \sin \eta + a_2(R, \theta) \cos \eta]} \begin{cases} f(\eta) = -e^{-\eta} [a_1(R, \theta) \cos \eta + a_2(R, \theta) \sin \eta] \\ g(\eta) = 1 - e^{-\eta} [a_1(R, \theta) \cos \eta + a_2(R, \theta) \sin \eta] \end{cases}$$
Stress surface boundary Analytical expressions for $(C_d \rightarrow \infty \text{ for non-slip})$ $a_1 \text{ and } a_2$

> *Solve* a non-linear system of partial DEs for $E(R,\theta)$ and $\delta(R,\theta)$

✓ Numerically <u>stable</u> and <u>fast</u> formulation

Model comparison: Stationary hurricane

 $(V_{max}=50 \text{m/s}, R_{max}=40 \text{km}, B=1.6, K=50 \text{m}^2/\text{s})$

Model comparison: Moving hurricane (5m/s)

 $(V_{max}=50 \text{m/s}, R_{max}=40 \text{km}, B=1.2, K=50 \text{m}^2/\text{s})$

Vertically averaged (1km) *tangential* winds:

Model comparison: Moving hurricane (5m/s)

Vertically averaged (1km) radial winds:

Model comparison: Moving hurricane (5m/s)

Vertical wind **velocity** at top of BL:

Model validation: Axi-symmetric rainfall

Application to Frances 2004:

- ✓ *Fit* Holland's (1980) profile to *flight-level* tangential wind *data*
- ✓ Use modified Smith model to calculate $W_H(R)$

✓ *Calculate* the azimuthally averaged rainfall intensity *I*: $I(R) = \begin{bmatrix} \rho_{air} \\ \rho_w \end{bmatrix} q_w(T) W_H(R)$ ($q_w = 11$ gr/kgr; T = 20°C, S = 0.8)

Model validation: Rainfall asymmetry

Conclusions

- * We developed a simple model for the mean rainfall field in hurricanes
- * The model is **parameterized** through $[V_{max}, R_{max}, B, V_c, q_w]$

- ✤ Validated through MM5+TRMM
- * The model runs in approximately **5 min...**

⇒ Suitable for long-term risk analysis

Future research:

- Effect of vertical wind shear on rainfall asymmetry.
- Model rainbands and small-scale rainfall fluctuations.

Application to rainfall risk!

Thank you for your time!