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A Simple Theoretical Model for the Mean Rainfall Field of Tropical Cyclones

Objectives

1. Basic structure of tropical cyclones
Tropical cyclones (TCs) are a class of low pressure rotating systems
that develop over tropical and subtropical waters. These systems have
a non-frontal core, well organized convection and cyclonic surface
wind circulation.

Flow regions

Figure 1: Schematic structure of a mature hurricane.

I.   Boundary layer: Surface stresses cause radial influx and low level
convergence.

II.  Main vortex: Tangential winds are approximately in gradient-wind
balance  => Negligible radial flux.

III. Subsidence region: The inward directed pressure gradient force
decreases with height leading to high-level divergence.

IV. Eye: Downward directed flux of relatively dry air originated from
region III.

Katrina, 2005

Rainfall is contributed mainly by elevations between 2 and
6km.

Focus on regions I and II should suffice to model the mean
rainfall field.

Develop a simple theoretical approximation for the mean rainfall field
of tropical cyclones (TCs) and study how this mean rainfall field
depends on TC :

Maximum tangential wind velocity Vmax

Radius of maximum winds Rmax

Holland’s B parameter of the tangential wind profile

Translation velocity V

2. Methodology (axi-symmetric component)
Step 1: Use a parametric model for the tangential winds in the main

vortex.

Holland (1980)

Figure 2: Holland’s (1980) model for two different values of the shape parameter B.

Tangential mean
wind velocity in
the main vortex.

Step 2: Use Smith’s (1968) theoretical model to describe the radial and
tangential fluxes inside the boundary layer.

Rmax =40km
Vmax =50m/s

Step 3: Integrate the continuity equation in the vertical direction to obtain
the vertical velocity Wδ(R) at the top of the boundary layer.

Step 4: Assume that the upward water vapor mass flux at the top of the
boundary layer equals the downward rainwater flux:

Rainfall intensity

Dry air density
Liquid water density

Water vapor mixing ratio

Vertical wind velocity

Validation of step 4 using MM5

Figure 3: (a) Correlation of vertical wind velocity at different elevations and
surface rainfall intensity for hurricane Frances (2004) using MM5. (b) Radial
profiles of  simulated surface rainfall intensity and vertical wind velocity at the
elevation of maximum correlation (2km). Both profiles are normalized to have
maximum value equal to 1.

(1)

Figure 4: The effect of Vmax, Rmax and B on the radial distribution of rainfall
intensity i(R).

4. Validation (Hurricane Frances, 2004)
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Figure 5: Comparison of model estimates of tangential winds V(R) and
surface rainfall intensity i(R) with observed values and MM5
calculations for hurricane Frances (30 August 2004, 18:00 UTC).

Fit Holland’s model to flight-
level tangential wind
observations.

Apply steps 2-4. Use qw =11gr/kgr
(T=20oC, saturation ratio=0.9). See
Figures 5 and 6.

Figure 6: Same as Figure 5 for 02 September 2004, 19:00 UTC.

Especially close to the TC center, TMI estimates under-predict surface
rainfall intensity and should not be considered accurate.

The proposed approximation produces estimates of the azimuthal
average rainfall intensity i(R) close to the PR data from TRMM.

5. Extensions

Use Kepert’s (2001) linearized boundary layer model to estimate the
effect of motion on Wδ(R,θ), where θ is the azimuth relative to the
direction of motion.

Estimate i(R,θ) accounting for the effects of upward spiral motion of
moist air, water vapor condensation and downward spiral motion of
rain.

 
Direction of motion

(%) (%)

(a) (b)
Figure 7: (a) Average rainfall asymmetry in the North Indian Oceanic
Basin (Lonfat et al., 2004), (b) simulated rainfall asymetry for
Vmax=50m/s, Rmax =40km, B=1.5, and translation velocity V=4m/s.

Effect of motion on rainfall asymmetry

Future extensions should account for vertical wind
shear and the effect of landfall.

Depth averaged temperature (≈20oC)
(≈10-15gr/kgr) 
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Given Wδ(R), the proportionality model in equation (1) has
accuracy similar to MM5.

3. Sensitivity analysis

Vmax =50m/s
B =1.6

Vmax

Rmax =40km
B =1.6

(a)

(b)

Rmax

B

Vmax =50m/s
Rmax =40km

(c)

i(R) increases with increasing Vmax

As Rmax decreases, i(R) becomes
more picked around Rmax

Insignificant effect!
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MM5 overpredicts rainfall (need for calibration….).V(R) = Vmax (Rmax/R)B exp[1-(Rmax/R)B] 

i(R)= 
ρair
ρw

 qw(Τ) Wδ(R) 


