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Synopsis 

It is shown that the Hurst phenomenon, while having a significant 
influence on the magnitude of storage fluctuations in an infinite reservoir, has 
relatively little effect on performance reliability of finite reservoirs of the 
size typically encountered in practice. 

Resume 

On denontre que le phenomene de Hurst a peu de repercussions sur la 
fiabilite du fonctionnement des reservoirs a capacite limitee qui sont de 
dimensions typiques, corame ceux que l'on rencontre en pratique, bien qu'il 
influence grandement 1'importance des variations du volume d'eau dans un 
reservoir a capacite illimitee. 
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1. Introduction 

The traditional way of estimating the storage capacity necessary for an 
on-stream reservoir in order to prevent the reservoir outflow from dropping below 
a certain flow Q (called safe draft, firm yield or target draft) has been to 
compute it from a "design inflow series" {X)n for the reservoir site using a simple 
water-accounting technique which has become known as the sequent peak procedure 
(see Klemes for a historic summary}. 

When the target draft Q is set equal to the mean inflow X , the storage 
capacity obtained in this manner is equal to the range of a residual mass curve 
of the design inflow series. In such a case, the range is usually called the 
adjusted range since the mass curve to which it pertains has been computed with 
respect to the sample mean X and thereby 'adjusted' to reach zero at the end of 
the series of length n. A mass curve computed with respect to the true population 
mean I of a complete series [X] generally does not reach zero at the end of a 
sample series of length n and, for this series, it yields a so-called 'crude' 
range. Thus the crude range for a series {X} is given as 

R = max Y. - min Y , 0 < t < n (l) 

where Y, is the residual mass curve Y, = 1. {X. - X), Y = 0, whereas the 
adjusted, range for a series {X} is given as 

i?* = max 7* - min J* , 0 < t < n (2) 

where Y* = Z._ {X. - X ), Y* = 0. A pertinent graphical interpretation is shown 
in Fig. 1. 

Since 1936, H.E. Hurst and his co-workers have conducted numerous studies 
on storage reservoirs on the Nile River, summarized in Hurst et al. . These 
studies led to an investigation of the storage capacity that would have to be 
provided for a complete equalization of flow of the Nile in order to eliminate 
spilling as well as a reduction of the draft (the so-called full regulation). 
The analyses were based on the sequent peak procedure. Hence, for any given 
series of reservoir inflow {X} (represented by annual flow totals), for which 
the equalized annual flow is equal to X, the necessary storage capacity is equal 
to /?*. Sample series of a given length n> taken from the same basic series 
{A"}„, N > nt led to different values of R*. One obvious reason for these 
differences was the different variability of flows in different samples. To 
eliminate this influence and to make the sample values of R* mutually comparable, 
Hurst normalized R* by the standard deviation S of the underlying sample series 
{X} , thereby introducing a new variable 

R** = R*/s (3) 
n n n 

now commonly known as the reseated adjusted range. He then split the series 
{A"} into k = Kin samples {X} and plotted the logarithm of the average 
£** = {l/k)l ._ i?**., against the logarithm of the sample length n. 

Klemes, V. (in press). Applied storage theory in evolution. Advances in 
Hydroscience, vol. 12. 
Hurst, H.E., Black, R.P. and Y.M. Simaika (1965). Long-term storage. 
Constable, London, 
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The plot log i?** versus log n yielded_two results important to storage 
reservoir design. The iirst was the fact that Z?** increased with n and did not 
converge to any finite limit. This finding revealed a fundamental flaw in the 
traditional method of estimating reservoir storage capacity as the maximum 
depletion that a semi-infinite (bottomless) reservoir, fed with a single inflow 
series and subjected to a given draft Q, would experience during the period 
covered by the series. It showed that, on the average, the estimate of storage 
capacity obtained in this manner would increase with the length of the flow record 
employed - a feature not previously fully appreciated by engineers. 

The second result was the finding that the rate of increase of R** with n 
in observed series of geophysical phenomena was significantly higher than tSe 
stochastic process theory of that time predicted. According to the theory, the 
increase of R** should be proportional to n for large nt whereas Hurst showed 
that for natural phenomena such as river flows, precipitation, temperatures, tree 
rings and others it was proportional to rc , where h was greater than 0.5 and on 
the average equal to about 0.72. The fact that typical natural stochastic series 
have h > 0.5 has become known as the Hurst phenomenon. The relevance to storage 
reservoir design resides in the fact that an estimate of reservoir storage 
capacity (obtained by the above described traditional method) is, on the average, 
lower when based on an inflow series which does not exhibit the Hurst phenomenon 
than it would be if based on a series which does exhibit it. Hence it has been 
suggested that reservoirs designed on the basis of simple mathematical models of 
streamflow series not exhibiting the Hurst phenomenon may have a significantly 
lower reliability then claimed because of the underestimation of their storage 
capacity. It is therefore deemed of paramount importance to base reservoir design 
on streamflow models exhibiting the Hurst phenomenon. 

It is the purpose of this paper to demonstrate that the importance of the 
Hurst phenomenon for reservoir performance reliability has been exaggerated and 
that the main reason for this exaggeration can be traced to a fundamental error 
which Sudler3 identified in Hazen's4 storage reliability assessment. This was 
the application of results valid for a semi-infinite reservoir to a finite 
reservoir with a relatively small storage capacity. 

2. Reliability of reservoir performance in dry periods 

This reliability can be measured in many different ways, the three most 
common reliability characteristics being as follows: 

1) Annual reliability {A), defined as the probability that reservoir outflow 
will not drop below the target draft during the year (any year); this 
concept was introduced by Hazen. 

2) Time reliability (T), defined as the percentage of time in which reservoir 
outflow is equal to higher than the target draft during some long period of 
time; this concept was also introduced by Hazen. 

Sudler, C. (1927)• Storage required for the regulation of streamflow. Trans. 
Amer. Soc. Civil Eng., 91, 622-660. 
Hazen, A. (191*0. Storage to be provided in impounding reservoirs for 
municipal water supply. Trans. Amer. Soc. Civil Eng., 77, 1539-16^0. 
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3) Volume reliability (V), defined as the amount of water actually supplied 
from the reservoir over some long period of time, expressed in percent of the 
total target water amount; this concept seems to have been first applied by 
Savarenskiy.5 

For a constant draft, A < T < V, since usually not all failure periods 
(periods when reservoir outflow is less than the draft) extend over the whole 
year and reservoir outflow is not always reduced to zero during a failure period. 

Reservoir design based on the sequent peak procedure implies a 100$ 
reliability (of any of the three above types) with regard to the inflow series 
{X} employed. On the other hand, the sampling variability of series {X} formed 
from an underlying series f.X}„, li » n, implies_that storage capacity K Sbtained 
in this manner (and equal to R* for draft Q = X ) has a distribution. Hence no 
specific value of K guarantees a 100$ reliability of the target draft during a 
period of length n with an absolute certainty; there always is some probability 
P that the given K may not be sufficiently large. This probability was 
introduced as another measure of reservoir performance reliability by Fiering.6 

He estimated it from an empirical distribution of K values obtained from a number 
of synthetic inflow series of length n via the sequent peak algorithm. Thus, for 
example, a value of K exceeded in 20% of cases is said to have an B0% reliability 
C or a 20% risk of failure P . Note that here the terms "failure" and 
"reliability" have a different meaning than above: a "failure" means here an 
inability of the reservoir to maintain the target draft without any interruption 
or reduction (i.e. without failure) throughout the whole period n, while 
"reliability" means its ability to do so. 

Fiering himself pointed out that the main purpose of his analysis was 
to show, first of all, the inadequacy of using a single (historic) flow series 
for finding reservoir storage capacity, secondly, that the risk P may be a poor 
characteristic of reservoir performance as compared, for instance, with the volume 
reliability V. Unfortunately, his caveat went largely unnoticed and the 
distribution of K and hence that of R , R* or R** were later adopted by many 
authors as the basis for assessing reservoir performance reliability. 

The inadequacy of this practice stems from the fact that P measures the 
risk that a reservoir will not meet an objective which is never aimed at in 
practice, namely a 100/8 reliable (in terms of A, T or V) performance during the 
whole of a design period lasting many decades. The important point is that, 
because of economic (and other) tradeoffs between benefits from water shortages 
averted and costs involved in averting them, the optimum streamflow regulation 
regime is always one in which some failures do take place. This makes the 
probability of a nonfailure operation C (or its complement P = 1 - C) a rather 
irrelevant performance characteristic. It is, for instance, quite likely that the 
probability of a given storage capacity meeting a specified draft without failure 
during an n-year period may decrease from, say, C = 95$ for an inflow which does 

5 Savarenskiy, A.D. (19I1O). A method for streamflow control computations (in 
Russian). Gidrotekh. stroitelstvo, (2), 2U-28. 

6 Fiering, M.B. (1967). Streamflow synthesis. Harvard University Press, 
Cambridge, Massachusetts. 
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not exhibit the Hurst phenomenon to C = 50$ for an inflow which does exhibit it 
(Wallis and O'Connell ). Also, it may well happen that the storage capacity would 
have to be increased by, say, 50!? if C in the latter case were to be brought up 
to the original value of 95!?. However, it must be borne in mind that, while the 
two values of C may differ significantly, the reservoir performance reliability 
measured by A, T or V is likely to differ by an order of magnitude less for the 
two inflow processes. Moreover, the difference may often be within the margin 
of accuracy of the reliability estimate which is as a rule quite wide (Klemes8). 

The reason that, for the two inflow processes, the differences in the 
classical reliability measures are much lower than those in C is that the latter 
characteristic is derived on the assumption of an infinite or semi-infinite 
reservoir while the classical reliability measures assume a finite reservoir. The 
following example is intended to elucidate this problem. 

3. Numerical Example 

We shall consider two series of mean annual flows, series a which does 
not exhibit the Hurst phenomenon and thus has h = 0.5 and series b which, as far 
as can be inferred from the data, does and has h - 0.75. In order to be able to 
keep easily under control the sample statistics and thus to eliminate their 
influence on the result, we shall consider a simple case where the flow can take 
on only two different values, X\ = 1 and Xi = 3, both with equal probabilities 
pj = p 2 = 0.5, so that the mean is V = 2 and the standard deviation a = 1 for both 
series a and b. 

In the example, 36-year9 samples from the two series will be used to 
examine the performance reliability of a reservoir the objective of which is to 
deliver a draft equal to the inflow mean, i.e. Q = V = 2. The two sample series 
are shown in the uppermost part of Fig. 2. They were constructed in such a way 
that their sample parameters are equal to the population parameters so that 
X(a) = X(b) = u = 2 and S(a) = S(b) = a = 1. To eliminate the influence of short-
term persistence (discussed in section h) on the result, both sample series were 
designed to have the lag-one serial correlation coefficient (based on circular 
definition) rt = 010. 

7 Wallis, J.R. and P.E. O'Connell (1973). Firm reservoir yield - how reliable 
are historic hydrological records? Bull. Hydrol. Sci. , 18 (2), 3>*7-365. 

8 Klemes1, V. (1978). The unreliability of reliability estimates of storage 
reservoir performance based on short streamflow records. Proc. International 
Symposium on Risk and Reliability in Water Resources, Vol. 1, pp. 127-136, 
University of Waterloo, Waterloo, Ontario. 

9 This length has been chosen for two reasons: 36 years is close to the typical 
length of a historic flow record and the number 36 is easily divided into 
various subsamples of equal lengths which is a convenient feature in the 
evaluation of the Hurst phenomenon. 

0 The lag-one serial correlation in a two-variable series with a ~ 1 is easy to 
control because a?i = (n\ - ni)ln (Klemes11), where n is the sample size, n\ is 
the number of pairs of equal successive flows and ni = n - n\ is the number of 
pairs, of unequal successive flows, i.e. the number of corner points of the 
residual mass curve of the series. 

1 Klemes, V. (1965). Problems involved in taking the lag-one serial correlation 
coefficient into consideration in storage reservoir design (in Czech). Proc. 
National Conference on Large Dams, Vol. 1, pp. llU-130, CSVTS, Prague. 
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A plot of log R** versus log n for both series is shown in Fig. 3. Note 
that for n = 36, R** = R* = R because X - y and 5 = 1 were chosen by design. n n n n n 

Nov, using the sequent peak procedure, we obtain K{a) = R{a) - 6 for 
series a while series b leads to K{b) - R{b) = 9 (Fig. 2, second from top). Thus, 
in this case, we see that to obtain a failure-free performance for an inflow 
exhibiting the Hurst phenomenon, it would be necessary to raise the storage 
capacity by 50$ as compared to the storage needed for an inflow which does not 
exhibit it. This result tends to make one believe that the neglect of the Hurst 
phenomenon in modelling the inflow series would severely impair the reservoir 
performance reliability. 

To see whether it is so we turn to the lower half of Fig. 2. It shows 
storage fluctuations12 for three finite reservoirs with different storage 
capacities operating on the two series and delivering the target draft Q = 2 
mentioned above. The reservoir performance will be evaluated in terms of 
reliabilities T and V, Note that failures in performance occur in the periods 
during which the reservoir is empty since then the outflow must be reduced to the 
natural inflow which, in our dry periods, is Xi = 1. 

In the first case, the storage capacity is chosen to be K - 6. 
Naturally, it fully satisfies the need in series a so that both T and V are 100% 
On the other hand, in series b, two failure periods occur and the performance 
reliability drops to T-, ~ 91.8$ and V-, = 95.9$ (Table l). Thus, while the origina: 
analysis of storage requirements indicated that a neglect of the Hurst phenomenon 
would lead to an underestimation of storage capacity by 50$, the actual drop in 
reliability would be only about 8$ in terms of time and about h% in terms of 
volume. 

While such a difference could be of practical importance, it must be 
realized that it pertains to a storage capacity equalling three times the average 
annual runoff total, i.e. to a storage coefficient s = 3 - a value much too large 
to be encountered in most real-life situations. A more likely but still rather 
large value of s is about 1 (for example, S = l.k for the active storage of 
Lake Superior). This, in the present example corresponds to K = 2 for which case 
the difference in performance reliability reduces to 5.6$ {for T) and 2.8$ (for 
V) as seen in Table 1. 

However, most reservoirs would have s substantially lower than 1 (the 
active storage of Lake Ontario is s = 0.2) and, with the decrease of S, the 
difference in reliability (for inflows of type a and type b) will decrease as 
well. In theory, the difference will tend to zero with K + 0 since for a "no 
reservoir" situation the values of At T and V depend only on the probability 
distribution of flow and not on its sequential structure. In practice, the 
difference will effectively disappear much sooner, usually for storage coefficient; 
within the range of those for typical storage reservoirs. In the present example, 
the difference disappears for K = 1 corresponding to 3 = 0.5 (Fig. 2), bottom; 
Table l). 

Steady-state conditions are e.ssumed, i.e. an equivalence of the initial and the 
final storage states is postulated. 
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Table 1. Example of stationary flow-regulation reliability for inflow series of 
size n = 36 with two different values of the Hurst coefficient, 
a) h = 0.5, b) h = 0.7S 

Time-based reliability, T (in %) 

Reservoir 
storage capacity 

K 

6 
2 
1 
0 

Inflow series 

a 

100.0 
86.2 
75.0 
50.0 

b 

91.8 
80.6 
75.0 
50.0 

Reliability 
difference 

T - T, a b 

8.2 
5.6 
0 
0 

Volume-based reliability, V (in %) 

Reservoir 
storage capacity 

K 

6 
2 
1 
0 

Inflow series 

a 

100.0 
93.1 
87.5 
75.0 

b 

95.9 
90.3 
87.5 
75.0 

Reliability 
difference 

V - V, 
a b 

U.l 
2.8 
0 
0 

k. A note on short-term persistence 

It is virtually impossible to determine on the basis of a short sample 
series such as those encountered in historic flow records, whether or not a 
process exhibits the Hurst phenomenon. The reasons are l) the extremely high 
sampling variability of i?**, 2) the practical difficulty, for small n, in 
approximating the relationship between R** and n by a straight line and 3) the 
tendency for the apparent straight-line fit for small n to have a slope h > 0.5, 
even for processes not exhibiting the Hurst phenomenon. 

Equally important is the fact that, in a short series, a pattern 
suggestive of the Hurst phenomenon (the clustering of extremes of the same sign) 
may well be the consequence of short-term persistence or may even be due to 
chance. The latter is in fact the case in series b which is a sample from a 
random (serially independent) series. 

Fig. k (based on Klemes11) shows all the possible combinations of the 
lag-one correlation coefficient r\ and the range R (here equal to R* and to R** 
as well) for a series of length n = 36 composed of l8 values of X] = 1 and of 
l8 values of XQ_ = 3. It can be seen that, despite a complete elimination of the 
sampling variability both in the mean (kept as X = 2) and in the standard 
deviation (kept as 5 = l), the spread of the possible i?3g values is considerable, 
especially for positive lag-one correlation. Thus, for instance, for a random 
series, i?3g can range from 2 to 10 and for a series with V\ ~ 0.3 from 3 to 13. 

However, the main points which Fig. 4̂ is intended to demonstrate are 
l) that a range i?3g = 6, which is about average for a random series, can occur in 
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an autocorrelated series with r\ ranging from -0.1+5 to 0,65, and 2) that a range 
i?36 = 9» which in combination with r\ - 0 is rather unlikely and invokes the 
existence of the Hurst phenomenon, would be about average for an autocorrelated 
series with rj - 0.5 and quite likely for series with v\ from 0.1 to 0.7. Thus 
it is obvious that the clustering effect within a short series can often be 
accounted for by lag-one serial correlation alone, without the necessity of 
invoking the Hurst phenomenon. To distinguish between these two causes, i.e. 
between short-term and long-term persistence, on the basis of a short record 
{n < 100) has been found difficult because of the weakness of the applicable 
statistical tests (Wallis and O'Connell7). 

5* Conclusion 

The Hurst phenomenon in a streamflow series, while having a significant 
influence on the fluctuation of storage in an infinite reservoir, has little 
effect on performance reliability of finite reservoirs with storage capacities 
typically encountered in practice. Even for reservoirs with an over-year storage. 
the neglect of the Hurst phenomenon in the inflow model will lead to a relatively 
small reduction in reservoir performance reliability in terms of the stationary 
probability of a failure year, of the percentage of the time with water shortage c 
of the percentage of the amount of the water desired. This relative insensitivitj 
is due to the fact that constraints on storage in a finite reservoir frequently 
interrupt the long-term pattern of unconstrained storage fluctuations on the basis 
of which the Hurst phenomenon is defined, thereby reducing the difference between 
storage fluctuations caused by short-persistence and long-persistence inflows, 
Because of this reason, a low-order (usually the first-order) autoregressive 
process can be expected to provide a satisfactory model for an annual flow series 
to be used for the assessment of reservoir performance reliability expressed in 
terms of the three traditional indices Ay T and V. 
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Fig, k Possible combinations of lag-one serial correlation coefficient r*\ and 
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