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1. Abstract

Orbital climate theory states that the variations in insolation caused by
changes in the shape of the earth’s orbit (eccentricity of ellipse), tilt of the
earth’s axis (obliquity) and precession of the equinoxes are linked with
large-scale climate variations. However, there is an on-going debate about
the qualitative characteristics that describe the driving force of large scale
climate dynamics (linear vs. nonlinear, insolation vs. obliquity forcing),
that extends to a greater disagreement about the overall appropriateness
of deterministic or stochastic descriptions of glacial cycles. Through this
scientific discussion some concepts are widely used by all sides, including
threshold mechanisms, state transition and multi-scale fluctuations,
which are characteristics that can be associated with a power-law
stochastic dependence. Hurst-Kolmogorov (HK) dynamics is a
characteristic model that results in power-law dependence. Here we show
that HK dynamics combined with components of orbital forcing is
consistent with several proxy climatic time series spanning periods up to
500 million years before present.




2. Motivation

There is an on-going debate about the consistency of orbital climate
theory, based on some contradictions between the results of this
theory and paleoclimatic data.

In this debate, extensive use of the well-known rules of classical
statistics is typically made. The Hurst-Kolmogorov approach provides
a better representation of the basic statistical properties of empirical
data, such as variance over different scales and autocorrelation
function, as long as they indicate long-term persistence.

Comparison between the statistical estimators of classical statistics
(CS) and Hurst-Kolmogorov statistics (HKS), has shown that in these
cases the wvariance and, therefore, the system uncertainty is
underestimated by the CS (Koutsoyiannis & Montanari, 2007). This
difference becomes quite serious as the Hurst coefficient, which is the
index of long-term persistence strength, approaches 1.

Temperature reconstructions of shorter scales exhibit this kind of
behaviour as demonstrated e.g. by Koutsoyiannis (2003); therefore, we
investigate possible HK behaviour in longer time scales.




3. The Data Set

The proxy data were of sediment
origin, both of planktic and benthic
type.

All reconstructions were
interpolated to lower resolution,
except Hu07, because of the
variable temporal resolution of the
samples.

In Hu07 though, interpolation was
performed by author (Huybers,
2007).

Hu07 age model was the only one
which was not orbitally-tuned and
therefore was used for validation
purposes.

Power spectrum was computed by
ajava FFT algorithm

(www.ee.ucl.ac.uk/~mflanaga/java/)

Name Ve00 Za01 LRO5 Hu07 Hel0
Researchers Veizer er al. Zachoset  Lisiecki & Huybers Herbert et al.
al. Raymo
Year Published 2000 2001 2005 2007 2010
Parameter SST ) 50 5"0 SST
measured
Time span 500 000 65 000 5000 2600 3500
(thousand years)
Resolution
(thousand years) 2-20000 0.2-100 1-5 1 1-4
# of records used ? 42 57 14 4
Orbital Tuned? Yes Yes Yes No Yes
Interpolated No No Yes Yes No
Location Global Global Global Global Tropics
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4. The orbital theory & insolation forcing

Orbital climate theory (Milankovitch cycles) is used to explain glaciations’ creation and
termination. The variations in earth’s orbit affect the amount of insolation that our
planet is receiving in each hemisphere.

e Milankovitch hypothesis (1941)
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Milankovitch (1941) hypothesis is based on the assumption that glaciations are
connected with the insolation at the summer solstice at 65°N. Huybers (2007) proposed
integrated summer insolation at 65°N, as a more plausible explanation, due to the
physical mechanics of glaciation creation and ablation.
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Huybers hypothesis focuses on the role of obliquity forcing, whereas Milankovitch
theory is precession-oriented.




5. Autocorrelation

We introduce a random variable y. = x, — x, ,, where a is

ACF of y; for different values of a
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6. The limits of the deterministic approach

. Although a certain amount of glaciation Distance between insolation onset and (de)glaciation peak
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/. HK Dynamics

Hurst-Kolmogorov dynamics describes the scaling behaviour in natural processes. It can be perceived as
the tendency of high or low values of natural events to group. Scaling behaviour can produce frequent and
strong “trends” in a process, in contrast to white noise.
This behaviour is mathematically described in terms of invariance properties of the time series aggregated
on different time scales, and therefore quantified through the so-called Hurst exponent, H, which is
described by the relationship:

ok =fH-1g
where 0® and 0 are the standard deviations at time scales k and 1, respectively. In a white noise series H is
0.5, whereas in real-world time series H is usually greater.
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8. HK dynamics emergence in 3 different

geological time scales

In our analysis we extend the classical
relationship which describes the
Hurst exponent to:

O-(A) = a0.5 (A+C) H-1 o 1)

where 0@ and o® are the standard
deviations at time scales A and 1,
respectively and @, c scale coefficients.
By adapting this equation to the
unbiased estimator for variance
proposed by Koutsoyiannis (2011),
we obtain:

A*T (1) 2H-2 2H-2
E[G(@)] = az—— [P {(c + )72 = (c+ 1))

where G(A4) is the classical variance
estimator (biased) at time scale 4, [,
is true variance at time scale 1 and T
is the total observation period.
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9. Removing the harmonics

Aggregated Var.

o
e

0.01

2500

~~
~—~<
~—

x  Hu07 Agg
N e FGN Empi

FGN Theo

= « = White Noi

rical

se

retical (unbiased)

1 10

Scale

Harmonics removal transformation

100

Following “Huybers hypothesis”, ,
we remove the 100 and 41
thousand years harmonics (rmse
minimization-fit).

The remaining variance is 73% of
the original, and the spectrum of
the residual time series shows no
peaks in the corresponding
frequencies.

The Hurst coefficient rises from
0.80 to 0.94, with a =0.22, c = 2.14,
which results in strong bias,
averaged at approx. 300% of the
empirical aggregated variance.

Even after the removal of
harmonics of Hu07 and LRO5,
there is still distortion due to the
interpolation  of the data.
Therefore single proxy data (used
by the researchers in these
reconstructions) are examined as

well.
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10. More evidence of HK dynamics in single

proxy reconstructions

100
2 3
= odp722 odp846 | &
5 0 - 3300 th. years 0 - 3000 th. years | &
3 ------------ et s. size =1 650 s. size = 1000 < 1
"""" ooy H=0.97 H=0.99
*’?’*"”‘wsg;\_‘
0.1
03
1 10 Scale 100
. 3
E
ST 5
L odp849 0dp662 | 3
e Tl 0 - 2800 th. years 1300 - 3500 th. years | &
3 T % s. size = 560 s. size = 712 g
SR K H=0.89 H=0.92
x Mﬁ’“ﬁ:ﬁ%‘gix
‘{\\
0.03 03
1 10 Scale 100
03 03
E dsdp607 odp677 |z
£ 390 — 2500 th. years 0-2700 th. years | &
g s. size = 530 s.size=675 | &
2 H=0.84 H=088 |<
0.03 0.03
1 10 Scale 100

................................. 2
b —
1 10 Scale 100
I —
_____________ -
X
2 Sty

<X

%&%S&% ~~~~~
1 10 Scale 100
1 10 Scale 100




11. Conclusions

We propose that self-sustained internal variability of the climate system
interacts at multi-millennial scales with external forcing described by
deterministic cycles of orbital origin.

These deterministic signatures, evident in time scales between 300 to
3000 thousand years, are explained in a more satisfactory way by the
“Huybers hypothesis” than the traditional “Milankovitch theory”. They
contribute only 30% to system variance, though, leaving 70% of variance
often misinterpreted as white noise.

The deterministic approach has some certain limits, even in the well-
studied “Ice age era”. Sometimes the glaciers retreat before a
corresponding rise in insolation; while in other circumstances the onset
of glaciation precedes the insolation fall. The same holds true for the ice
volume rate of change.

On the other hand, internal climatic variability can be described
satisfactorily by HK dynamics, a stochastic process that results in power-
law dependence, in scales ranging from 1 to 500 million years.

HK dynamics has been identified in both aggregated and single proxy
data, while the addition of deterministic components (orbital harmonics)
has a relatively minor impact (= 15%) to the estimate of the Hurst
coefficient.
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