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1. Abstract 

Choosing a proper probabilistic model for geophysical processes is not a trivial 
task. The common practice of choosing one of a few popular (among infinitely 
many) distributions is subjective and relies too much on empirical considerations 
e.g., the summary statistics of the data record. In contrast, the principle of 
maximum entropy offers a robust theoretical basis in selecting a distribution law, 
based on deduction rather than on trial-and-error procedures. Yet, the resulting 
maximum entropy distribution is not unique as it depends on the entropic form 
maximized and the constraints imposed. Here we use the Boltzmann-Gibbs-
Shannon entropy and we propose a rationale for defining and selecting 
constraints. We suggest simple and general constrains that are suitable for 
positive, highly varying and asymmetric random variables, and lead to 
distributions consistent with geophysical processes. We define a generalization of 
the classical moments (the p-moments) which naturally leads to power-type 
distributions avoiding the use of generalized entropic measures. 



2. Entropy measures 
• Entropy as a concept dates back to the works of Rudolf Clausius in 1850 and of Ludwig 

Boltzmann around 1870 who gave entropy a statistical meaning and related it to 
statistical mechanics. Next, the concept of entropy was evolved by J. Willard Gibbs and 
Von Neumann in quantum mechanics, and was reintroduced in information theory by 
Claude Shannon in 1948.  

• Information entropy is a purely probabilistic concept and is regarded as a measure of 
the uncertainty related to a random variable (RV). 

• In literature there are more than twenty different entropy measures [1], proposed 
mainly as generalizations of Boltzmann-Gibbs-Shannon (BGS) entropy, which is the 
most famous and well justified entropy measure. The BGS entropy for a non-negative 
continuous RV X with density function 𝑓𝑋(𝑥) is defined as 

 𝑆BGS = − ∫ 𝑓𝑋 𝑥 ln𝑓𝑋 𝑥 d𝑥∞
0   (1) 

• A famous generalization, proposed by Rényi in 1961, is defined as 

 𝑆R = 1
1−𝑞

ln∫ 𝑓𝑋 𝑥 𝑞 d𝑥∞
0   (2) 

• Another popular generalization, the Havrda-Charvat-Tsallis (HTC) entropy [2,3], is 
defined as  

 𝑆HCT = 1
1−𝑞 ∫ 𝑓𝑋 𝑥 𝑞d𝑥∞

0 − 1  (3) 

• For 𝑞 → 1 both the Renyi and HCT entropies converge to the BGS entropy. 



3. The principle of maximum entropy 
• The principle of maximum entropy (PME), established by Edwin Jaynes [4,5], essentially 

relies in finding the most suitable probability distribution under the available 
information. According to Jaynes, the resulted maximum entropy distribution “is the 
least biased estimate possible on the given information…”.  

• Mathematically, the given information used in the principle of maximum entropy, is 
expressed as a set of constraints formed as expectations of functions gj( ) of X, i.e., 

 𝐸 𝑔𝑗 𝑥 = ∫ 𝑔𝑗 𝑥
∞
0 𝑓𝑋 𝑥 d𝑥 = 𝑐𝑗 ,    𝑗 = 1, … ,𝑛 (4) 

• The resulting maximum entropy distributions emerge by maximizing the selected form 
of entropy with constraints cj, and with the additional constraint (to guarantee the 
legitimacy of the distribution)  

 ∫ 𝑓𝑋 𝑥∞
0 d𝑥 = 1 (5) 

• The general solution of the maximum entropy distributions resulting from the 
maximization of BGS entropy and the HCT entropy (accomplished by using the method 
of Lagrange multipliers) are, respectively, 

 𝑓𝑋 𝑥 = exp[−𝜆0 − ∑ 𝜆𝑗𝑛
𝑗=1 𝑔𝑗 𝑥 ] (6) 

 𝑓𝑋 𝑥 = 1 + 1 − 𝑞 𝜆0 + ∑ 𝜆𝑗𝑛
𝑗=1 𝑔𝑗 𝑥

−1/(1−𝑞)  (7) 
where λj, with j =0,…, n are the Lagrange multipliers linked to the constraints. 



4. Selecting the constraints 
• The choice of the imposed constraints is the most important and determinative part of 

the method as it defines uniquely the resulting maximum entropy distribution. 
• Choosing constraints, however,  is not trivial; theoretically, the expectation of any RV 

function can be used. 
• Commonly, entropy maximization is done by assuming known mean and variance, 

which leads (a) to the Gaussian distribution in the BGS entropy case and (b) to a 
symmetric bell-shaped distribution with power-type tails in the HCT entropy case. 

• So, how should we choose constraints? 
i. Constraints should express our state of knowledge concerning a RV and should 

summarize all the available information from observations or from theoretical 
considerations. 

ii. We can assume that some coarse features of the RV, e.g., the mean or the variance, are 
more likely to be preserved in the future than finer features, e.g., the kurtosis 
coefficient. Therefore, constraints should be simple and express features that are 
robust to estimate from the sample, and are likely to be preserved in the future. 

iii. For some geophysical processes we may know important prior characteristics of the 
underlying distribution that should be preserved, e.g., a J-shaped or bell-shaped 
distribution or a heavy- or light-tailed distribution. So, constraints also should be 
chosen based on the suitability of the resulting distribution regarding the empirical 
evidence.  

 



5. The generalized power function and p-moments 
• Here, we aim to define some simple and general constraints, to use with the BGS entropy,  that 

lead to suitable probability distributions for geophysical processes. 
• Many entropy generalizations have emerged to explain empirically detected deviations from 

exponential type distributions that arise from the BGS entropy using moment constraints. Yet, 
generalized entropy measures have been criticized for lacking theoretical consistency and for 
being arbitrary.  

• Here, we generalize the important notion of moments inspired by the limiting definition of the 
exponential function. We first define the generalized power function  

 𝑥𝑝
𝑞 = ln 1 + 𝑝 𝑥𝑞 /𝑝 (8) 

which for 𝑝 → 0 becomes the familiar power function 𝑥𝑞 . Thus, we can define a generalization 
of the classical moments, which we name p-moments of order 𝑞 as  

 𝑚𝑞
𝑝 = 𝐸(𝑋𝑝

𝑞)  = 1
𝑝 ∫ ln 1 + 𝑝 𝑥𝑞∞

0  𝑓𝑋 𝑥 d𝑥 (9) 

Clearly, for 𝑝 → 0, p-moments are identical to classical moments, i.e., 𝑚𝑞
0 = 𝑚𝑞 ≡ 𝐸(𝑋𝑞). 

• We believe that the following rationale supports the use of p-moments: 
i. Generalized entropy measures have been successfully used; why not p-moments with the standard 

definition of entropy? 
ii. Maximization of the BGS entropy using p-moments leads to flexible power-type distributions 

(including the Pareto and Tsallis distributions for q = 1 and q = 2, respectively). 
iii.  p-moments are simple and, for p = 0, become identical to the ordinary moments. 
iv. They exhibit similar properties with the ln 𝑥 function, and thus are suitable for positively skewed RVs; 

additionally, compared to 𝐸(ln 𝑥) they are always positive. 
 



6. The expectation of ln𝑋 as a constraint 

• The generalized power function, as defined in (8) involves the logarithmic function, so, it 
would be useful to investigate also the logarithmic function as a constraint. 

• The geometric mean μG given by 

 𝜇𝐺 = ∏ 𝑥𝑖𝑛
𝑖=1

1 𝑛⁄ = exp 1
𝑛
∑ ln𝑥𝑖𝑛
𝑖=1 = exp ln𝑥  (10) 

is measure of central tendency, with the convenient property for geophysical processes 
to be defined only for positive values. This gives an intuitively meaning to formulate the 
expectation of ln𝑋 as a constraint 
 𝐸(ln𝑋)  = ln𝜇G (11) 

• Apart from its relationship to the geometric mean and its simplicity, the expectation of 
ln𝑋, has some desired properties that make it an essential constraint for positively 
skewed RVs. Samples drawn from positively skewed, or even more, from heavy-tailed 
distributions, e.g., like those of daily rainfall, exhibit values that act like outliers and 
consequently strongly influence the sample moments, especially those of higher order. 
On the contrary, the function ln 𝑥 applied to this kind of samples eliminates the 
influence of those “extreme” values and offers a very robust measure that is more likely 
to be preserved than the estimated sample moments. For this reason the logarithmic 
transformation is probably the most common transformation used in hydrology as it 
tends to normalize positively skewed data. 



(a, i) (a, ii) (a, iii) 

(b, iii) (b, ii) (b, i) 

7. p-moments estimates vs. moments estimates 

The figure depicts Monte Carlo results, i.e., we generated 1000 random samples (1000 values each) from each of the two 
following distribution (a) an Exponential with scale parameter 𝛽 = 1 and (b) a Pareto type II with scale parameter β  = 1 with 
asymptotic behavior ~𝑥−5.  We estimated the percent error defined as Percent Error % = 100 (𝑠𝑚𝑞

𝑝 − 𝑚𝑞
𝑝)/𝑚𝑞

𝑝, where 𝑠𝑚𝑞
𝑝 is 

the sample estimate of  𝑚𝑞
𝑝 for the following three cases (i) for 𝑝 = 1 and 𝑞 = 1 − 4, (ii) for 𝑞 = 1 and 𝑝 = 1 − 4, and (iii) for  the 

first four classical moment (𝑚𝑞
0 = 𝑚𝑞). The percent error of the classical moments is orders of magnitude higher, if compared to 

that of p-moments. 



8. Entropy maximization based on p-moments 

Constraints Distribution Name Density function 

𝑚1 Exponential 𝑓𝑋 𝑥 = exp(−𝜆0 − 𝜆1𝑥) 

𝑚2 Half-Normal 𝑓𝑋 𝑥 = exp(−𝜆0 − 𝜆1𝑥2) 

𝑚1 and 𝑚2 Normal 𝑓𝑋 𝑥 = exp(−𝜆0 − 𝜆1𝑥 − 𝜆2𝑥2) 

𝑚𝑞  Generalized Exponential 𝑓𝑋 𝑥 = exp(−𝜆0 − 𝜆1𝑥𝑞) 

𝐸(ln 𝑥) and 𝑚1 Gamma 𝑓𝑋 𝑥 = 𝑥−𝜆1  exp(−𝜆0 − 𝜆2𝑥) 

𝐸(ln 𝑥) and 𝑚𝑞  Generalized Gamma 𝑓𝑋 𝑥 = 𝑥−𝜆1  exp(−𝜆0 − 𝜆2𝑥𝑞) 

𝑚1
𝑝 Pareto type II 𝑓𝑋 𝑥 = exp −𝜆0 1 + 𝑝𝑝 −𝜆1 /𝑝 

𝑚2
𝑝 Tsallis 𝑓𝑋 𝑥 = exp −𝜆0 1 + 𝑝𝑥2 −𝜆1 /𝑝 

𝑚1
𝑝 and 𝑚2

𝑝 Not named 𝑓𝑋 𝑥 = exp(−λ0) 1 + 𝑝𝑝 𝜆1 1 + 𝑝𝑥2 𝜆2 
−1/𝑝 

𝐸(ln 𝑥) and 𝑚1
𝑝

 Beta of the second kind 𝑓𝑋 𝑥 = exp(−λ0) 𝑥−𝜆1 1 + 𝑝𝑝 −𝜆2 /𝑝 

𝐸(ln 𝑥) and 𝑚𝑞
𝑝 Generalized Beta of the 

second kind 𝑓𝑋 𝑥 = exp −λ0  𝑥−𝜆1 1 + 𝑝𝑥𝑞 −𝜆2 /𝑝 

The following table displays distributions (in terms of Lagrange multipliers 𝜆𝑗) arising from the 
maximization of the BGS entropy and by imposing constraints, (a) classical moments 𝑚𝑞 of various 
orders, (b) p-moments or various orders, and (c) combinations of moments or p-moments with the 
expectation of ln 𝑥. In all cases classical moments produce exponential-type distributions while p-
moments produce power-type distributions. 



9. The Generalized Beta of the second kind (GB2) 
• The GB2 distribution, arises from the BGS entropy maximization by imposing as 

constraints the expectation of the ln 𝑥 and the p-moment of arbitrary order q. The 
density function in terms of Lagrange multipliers is 

 𝑓𝑋 𝑥 = exp −𝜆0 − 𝜆1ln𝑥 − 𝜆2 ln 1 + 𝑝 𝑥𝑞 /𝑝  (12) 
which after algebraic manipulations and parameter renaming can be written as 

 𝑓𝑋 𝑥 = 𝛾3
𝛽 B 𝛾1,𝛾2

𝑥
𝛽

𝛾1  𝛾3−1
1 + 𝑥

𝛽

𝛾3 − 𝛾1+𝛾2
, 𝑥 ≥ 0 (13) 

corresponding to the distribution function 
 𝐹𝑋 𝑥 = B𝑧 𝛾1, 𝛾2 /𝐵 𝛾1, 𝛾2 , where 𝑧 = 1 + 𝑥 𝛽⁄ −𝛾3 −1 (14) 

where 𝐵( , )  and 𝐵𝑧( , ) are the Beta and the incomplete Beta functions, respectively. 
• The GB2 distribution is probably one of the most versatile power-type distributions in 

literature and has been rediscovered many times under different names and 
parameterizations. It seems that Milke and Johnson [6] were the first who formed this 
distribution, and proposed it for describing hydrological and meteorological variables. 

• The GB2 distribution is an extremely flexible four-parameter distribution comprising 
one scale parameter 𝛽, and three shape parameters 𝛾1, 𝛾2, 𝛾3, which allow the 
distribution to form innumerable different shapes. Many of the well-known distributions 
are special or limiting cases of the GB2 distribution (see e.g. [7,8]). 



10. A simple special case of GB2 distribution 
• While the GB2 distribution is extremely flexible, it is also very complicated and thus not 

easy to handle. Nevertheless, among the several three-parameter special cases that can 
be constructed, a simple case with analytical distribution function is obtained by setting 
𝛾1 = 1 in the density function of GB2. After some trivial algebraic manipulations and 
parameter renaming we obtain a distribution known as the Burr type XII, introduced by 
Burr in 1942 in the framework of distribution system similar to Pearson’s. Its density 
function is 

 𝑓𝑋 𝑥 = 1
𝛽

𝑥
𝛽

𝛾1−1
1 + 𝛾2

𝑥
𝛽

𝛾1 − 1
𝛾1𝛾2

−1
, 𝑥 ≥ 0 (15) 

which corresponds to the distribution function 

 𝐹𝑋 𝑥 = 1 − 1 + 𝛾2
𝑥
𝛽

𝛾1 − 1
𝛾1 𝛾2 (16) 

• The Burr type XII distribution is a flexible power-type distribution that comprises the 
scale parameter 𝛽 and the shape parameters 𝛾1 and 𝛾2. The distribution is found in 
literature in a different form than the one given here (see e.g. [9]). However, we prefer  
this expression as it constitutes a kind of a generalization of the familiar Weibull 
distribution (for 𝛾2 → 0 ). Additionally, the asymptotic behavior of the right tail is solely 
controlled by the parameter 𝛾2, while the parameter 𝛾1 controls the left tail. Particularly, 
for  0 < 𝛾1 < 1 the distribution is J-shaped, for  𝛾1 > 1 is bell-shaped while for 𝛾1 = 1  it 
degenerates to the familiar Pareto type II distribution. 



11. Application to daily rainfall 
To test the applicability of the above theoretical framework, we used a large data set of daily rainfall records, i.e., 
the Global Historical Climatology Network-Daily database (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily) 
which includes data recorded at over 40 000 stations worldwide. Many of those records, however, are too short in 
length, have missing data, or, contain data suspect in terms of quality. Thus, we selected for analysis only those 
records  fulfilling the following criteria: (a) record length greater or equal than 50 years, (b) missing data less than 
10% and, (c) data with quality flags less than 0.1% (see the above web site for details about flags). The selected 
subset includes 11 697 daily rainfall records. In the analysis performed [10], we tested the suitability of the Burr 
type XII distribution based on L-moments ratio plots. 

The figure depicts the theoretical area 
covered by the Burr type XII 
distribution in an L-skewness vs. L-
variation plot. The blue dots represent 
the corresponding sample L-statistics 
of the 11 697 daily rainfall time series, 
while the red dot depicts their average 
value. 
Most of the sample points, i.e., 89.5%, 
lie within the distribution’s area.  
Among those points, 63.4% lies below 
the Pareto line and 36.6% above, 
corresponding  thus to J-shaped and 
bell-shaped distributions, respectively. 
Finally, the right tail of the distribution  
corresponding to the average sample 
point behaves asymptotically as 𝑥−4.8. 

Pareto type II line 



12. Summary and conclusions 
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• The principle of maximum entropy offers a theoretical basis to derive probability distributions based on the available 
information. Nevertheless, the available information is expressed as constraints imposed in the maximization of 
entropy without any limitation on their form. 

• Here, we argue that the selected constraints should (a) summarize all the available information either from 
observations or from theoretical considerations, and (b) be simple and express features that are robust to estimate 
from the sample and are likely to be preserved in the future. 

• We introduce a generalization of classical moments, the  p-moments and justify their use as constraints, especially for 
highly skewed and varying random variables. 

• We study the expectation of ln𝑋 as a constraint and we justify its use as suitable for geophysical processes.  
• A Monte Carlo study showed that the sample estimates of p-moments are more robust, if compared to that of classical 

moments. 
• Optimization of the BGS entropy using p-moments as constraints, naturally leads to power-type distributions thus 

avoiding generalized entropy measures. 
• Optimization of the BGS entropy, with constraints the p-moment order q and the expectation of ln𝑋 leads to a  very 

flexible, power-type distribution, known as the Generalized Beta of the second kind (GB2). 
• An empirical analysis performed to 11 697 daily rainfall records worldwide, showed that the Burr type XII 

distribution (a special case of the GB2 distribution) is a very good probabilistic model for positive daily rainfall. 
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