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1. Abstract
A multidimensional (MD) stochastic simulation model is presented, which is a direct extension 
of the 1D simple scaling process, known as Hurst-Kolmogorov (HK) process following the 
analysis of the 2D extension of Koutsoyiannis et al. (2011). The MD HK (MHK) process can 
generate time-varying spatial geophysical fields (such as rainfall and temperature), consistent 
with the observed long-term spatiotemporal persistence (slowly decaying autocorrelation over 
spatial or temporal displacement). The MHK process is formulated assuming anisotropy, so as 
to take into account possibly different autocorrelation decay rates (Hurst coefficients) in each 
dimension of the field. The MHK process is also investigated through some applications based 
on observed temperature and rainfall fields.

2. Hurst phenomenon and the MHK process
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“High tendency of high/low values to occur in natural events”: Hurst (1951) � Slowly decaying 
autocorrelation over scale� Power-law behaviour (Kolmogorov, 1940).

• Z: random field of interest  (assumed stationary and isotropic)
• Zv: mean aggregated  field (at a spatio-temporal scale)
• v: vector index of random field indicating location in the field
• k,l: any aggregation scales of the process
• μ: mean of the process 
• =d: equal in distribution function
• A: power law exponent of autocorrelation over scale
• D: dimension of vector index space of random field (v)
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3. Hurst coefficient (H) of the MHK process
• HK process depends on the characteristic parameter 0<H<1. Here, the estimation of the H
coefficient is done via the minimization of the square error (SEH) of the empirical (S(k))2 and true 
(γ(k)) variance over scale k of the process. A method of Tyralis and Koutsoyiannis (2010) for the 
estimation of H was extended to the MHK process (D dimensions).
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• The autocovariance γ (acvf) and autocorrelation function ρ (acrf) of the MHK are expressed as:
where B = 2D(1 - H) = 2A

 and L=(k) -B (1) (k) -Bγ = k γ γ r

4. Field Normalization
MHK process generates random fields that follow the N(0,1). Here the following transformation 
(Papalexiou et al., 2007) is used, where its coefficients pi are estimated through the minimization 
of the square error of the transformed data and the N(0,1) distribution function.
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Note: The continuous acvf and acrf become infinite for scale 0 and lag 0, respectively.
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5a. Discrete autocorrelation function of the MHK process
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For the discrete acrf, one can adapt the Koutsoyiannis et al. (2010) approximate solution (KAS); this works well 
for D ≤ 2 and for D ≥ 3 and lags greater than 1; for lags 0 and 1, a poly-line fit for lags can give better results.
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Comparison of equation ρD,r with the KAS for lag 1/√D 
for a 2D, 3D and 4D field. It can be observed that the 
min function equals the first term when rm ≥ 1/√ D.

For lags r greater than 1 (thus r≥ 2), the KAS can 
be used.
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Poly-line fits for 3D, 4D fields and lags 0 and 1, with the constrains ρD,r=1 for H=1 (ZD,r �1) and 
ρD,0=0 for H=0.5 (CD�0 more rapidly, so ZD,r�0). Obviously, ρD,r=0 for H=0.5 but it seems that this 
happens for H coefficients very close to 0.5 where the Mathematica software could not converge.
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6. Simulation scheme for generating MHK process
SMA stands for Symmetric Moving Average and it can be used to generate a stochastic process 
with any structure of autocorrelation or power spectrum (Koutsoyiannis, 2000). Here, the SMA 
scheme has been extended to D spatio-temporal dimensions (direct extension from 1D and 2D 
schemes).

•Zv: generated normalized random field of interest

D 1

...∑ ∑
q q

v
y = -q y = -q

Z = α Wy v-y

• W: discrete white noise (random field) with zero mean (μw = 0) and unit standard deviation (σw = 1) (since Z
has been normalized).

•αy: field of coefficients that can be determined through the Fourier transform Fγ of the autocovariance field 
γZ (Koutsoyiannis, 2000, Koutsoyiannis et al. 2010).

• q: finite limit for the range of coefficients αy (for m, the desired number of autocorrelation coefficients that 
are to be preserved). 



7. Spectral density and αy coefficients of SMA
The spectral density Fγ of the stochastic field can be determined via the Fourier transform of the 
discrete form of autocovariance γdiscrete(r). It can be shown that the Fourier transform Fα, of the 
field αy, is related to Fγ (for q=∞), thus the αy field can then be estimated.
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8. Case study on observed rainfall fields
The application presented is based on an observed rainfall and temperature field South of the 
Indian Ocean (coordinates: 0N-30S, 55E-85E). The data were acquired from NASA satellite 
system (available on-line): 

http://disc2.nascom.nasa.gov/Giovanni/tovas/TRMM_V6.3B42.shtml (rainfall) 
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=neespi_daily (temperature)

The sample consists of a spatial grid 31 x 31 points (of a 1o x 1o spatial resolution, approx. 110 km 
x 110 km) and a temporal 270-days grid for September 2002 to 2010 (October was also needed for 
the calculation of the acrf).

Spatial averaged 

The temperature field 
contained a lot of 
missing values which 
were supplemented 
assuming linear 
regression.

Spatial averaged 
rainfall and 
temperature fields. 
The rainfall field 
contained no missing 
values.



9. Normalization of fields
The zero values of the natural field are replaced with the small value of 1e-5.

The simulated field should be converted to natural units by solving arithmetically the inverted 
transformation.

Rainfall:                                                     
p1 = 77.0, p2 = 6,.0 p3 = -1.0,  p4 = -2.2E-5, 
p5 = 0.073, SE = 54.0

Temperature:                                            
p1 = 8.0E-7, p2 = 1E4, p3 = 7.4, p4 = -35.2, p5

= 0.00165, SE = 97.0
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10a. Dealing with anisotropy
A separate Hurst coefficient should be assigned to the quantities that are non isotropic to each 
other. It is still not applicable to create a multi-dimensional model that can synthesize time-series 
assuming anisotropy (thus assuming a different autocorrelation behavior in each dimension) and 
that is why hydrologists tend to use multi-variate models. A proposed solution is to omit 
intermediate data of the field grids, so as the multi-acrfs decay at the same rate (at least for the 
first lags).  So, omitting factor (omfc) m means that the (m*c)th cell is omitted in the model, where c
is 0,1,…,maximum number of cells in each direction of the sub-field and in the diagonally ones.
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Since, the autocorrelagram is more sensible than the climacogram (as the first is the second 
derivative of the second, Koutsoyiannis, 2010), it is rather more appropriate to work with the 
second. So, one should change the m until the minimum Hurst coefficient is reached.

becomes approximately equal 
to the temporal H=0.92.

m ≈ 0, as the temporal and 
spatial H coefficients are 
very close to each other.



10b. Dealing with anisotropy

3D: Heq = 0.88 1D Time: H = 0.87 2D Space: H = 0.90

For this application, m is found 0 for the rainfall field and 2 for the temperature one, so that the 
Hurst coefficients of 0.87 and 0.92 are approximately reached for all the sub-fields, respectively.
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3D: Heq = 0.95 1D Time: H = 0.92 2D Space: H = 0.97
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H A / DThe equivalent Hurst coefficient can be determined by the equation:
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11. Stochastic simulation model
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Note: All the negative values of the synthetic rainfall field are set equal to zero.

Note: The simulated autocorrelations seem to be smaller than the natural ones. This is due to the small q
parameter that is chosen, as larger values would enormous increase the numerical simulation time.



12. Conclusions
• A multi-dimensional (MD) stochastic simulation model is proposed, which is 

a direct extension of the 1D simple scaling process (HK or FGN).

• The HK process and the SMA generation algorithm are extended for any 
dimension D of the field (the autocorrelation function is extended for D≤4 and 
a methodology is proposed for greater dimensions).

• The MHK process is formulated assuming anisotropy through a methodology 
of changing the m omitting factor of the grids until the minimum Hurst 
coefficient of the sub-fields is reached.coefficient of the sub-fields is reached.

• A 3D spatio-temporal model is applied based on an observed rainfall and 
temperature field.
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