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1. Abstract
Two-dimensional (2D) spatio-temporal temperature records obtained from tracer concentration 
measurements on the plane of symmetry of heated jets (small turbulence scale) are statistically 
analyzed and the presence of Hurst-Kolmogorov (HK) dynamics is detected. The 2D HK process 
is then fitted to the data and synthetic time-varying and/or spatial fields are generated for 
temperature, which are consistent with the observed. Moreover, the 2D HK process is formulated 
assuming anisotropy, so as to take into account possibly different autocorrelation decay rates 
(Hurst coefficients) in each dimension of the field.

“High tendency of high/low values to occur in natural events”: Hurst (1951) � Slowly decaying 

2. Hurst phenomenon and the HK process
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“High tendency of high/low values to occur in natural events”: Hurst (1951) � Slowly decaying 
autocorrelation over scale� Power-law behaviour (Kolmogorov, 1940).

• Z: random field of interest  (assumed stationary and isotropic)
• Zv: mean aggregated  field (at a spatio-temporal scale)
• v: vector index of random field indicating location in the field
• k,l: any aggregation scales of the process
• μ: mean of the process 
• =d: equal in distribution function
• A: power law exponent of autocorrelation over scale
• D: dimension of vector index space of random field (v)

Α = D(1 - H) , 



3. Hurst coefficient (H) and autocorrelation function (ρ) of 
the HK process
• HK process depends on the characteristic parameter 0<H<1. Here, the estimation of the H
coefficient is done via the minimization of the square error (SEH) of the empirical (S(k))2 and true 
(γ(k)) variance over scale k of the process, a method by Tyralis and Koutsoyiannis (2010).
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• The autocovariance γ (acvf) and autocorrelation function ρ (acrf) of the HK are expressed as:
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Note: The continuous acvf and acrf become infinite for scale 0 and lag 0, respectively.

4. Field Normalization
HK process generates random fields that follow the N(0,1). Here the following transformation 
(Papalexiou et al., 2007) is used, where its coefficients pi are estimated through the minimization 
of the square error of the transformed data and the N(0,1) distribution function.
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5. Discrete autocorrelation function of the HK process
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For the discrete acrf, one can adapt the Koutsoyiannis et al. (2010) approximate solution (KAS)
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6. Simulation scheme for generating HK process6. Simulation scheme for generating HK process
SMA stands for Symmetric Moving Average and it can be used to generate a stochastic process 
with any structure of autocorrelation or power spectrum (Koutsoyiannis, 2000). 

•Zv: generated normalized random field of interest
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• W: discrete white noise (random field) with zero mean (μw = 0) and unit 
standard deviation (σw = 1) (since Z has been normalized).

•αy: field of coefficients that can be determined through the Fourier transform 
Fγ of the autocovariance field γZ (Koutsoyiannis, 2000, Koutsoyiannis et al. 
2010).

• q: finite limit for the range of coefficients αy (for m, the desired number of 
autocorrelation coefficients that are to be preserved). 



7. Spectral density and αy coefficients of SMA

The spectral density Fγ of the stochastic field can be determined via the Fourier transform of the 
discrete form of autocovariance γdiscrete(r). It can be shown that the Fourier transform Fα, of the 
field αy, is related to Fγ (for q=∞), thus the αy field can then be estimated.

( ) ( )/ 2 / 2

/2

/ 2 1 / 2 1/ 2 1 / 2 1

2
( ) ( ) {2 } {2 }

D D / 2- B

γ

0 0

2π π
F s = r γ r J πsr dr = r J πsr dr

∞ ∞

− −− −
→∫ ∫

D D

D D DD D
L

s s

( )
[ ]

2
2 1 1

( ) 1 1
2 2 2

B- D

γ

Γ D - B
F L E s ,  E π , for < B < D < H < - , 

Γ
where

− +   → = = → ∈�
D B

Ds s
B D

discrete

extension

of 1  SMA
γ y 0F F α ρ( y ; H'), where= → ≈

D
α α ' ( ) / 2 ' ( 0.5) / 2− = − → = +B D B D H H

0 ( ) ( )

( ') ( ')

D

D

C H E H

C H E H
α ∞and  0,q=

γ
=

1 D

D 1

,...,... →∑ ∑ ∑
�����

D

q q q,q,...,q
2 2 2

0 y y 0 0
y = -q y = -q = -q,-q,...,-q

γ = α α = γ / ρ ( ; H')
y

y

great lags

discete 0 discrete

1 1
Thus  it can be shown that for 1

2 2

B - D

γ, , F C γ E s ,  < H < - , s≈ ∈ �D discrete
D

discrete discreteAlso  it can be assumed that  for 0< <1 and a coefficient
B - D

γ, , F s , H   K  ≈
D D

K

From the above equations and assumptions it can be derived that:



8. Experimental set-up
The first scale under investigation is the turbulence microscale (order of mm). This scale is 
usually observed in boundary layers and turbulent shear flows such as turbulent buoyant jets. 
An experiment is set at the laboratory of Applied Hydraulics of the NTUA by P. Papanicolaou, 
where measurements are based on the LIF (laser-induced fluorescence) technique. 

The buoyant jet is dyed with a rhodamine 
6G (R6G) dye with low concentration that 
does not affect buoyancy. The jet flow field is 
illuminated with a thin (order of 1 mm) 
plane sheet of laser light. A DPSS 1 W laser 
beam at 532 nm (green) is converted to a 
thin laser light sheet via a rotating prism thin laser light sheet via a rotating prism 
mirror at 20 kHz. The rhodamine dye 
excited by the 532 nm wavelength emits 
(yellow) light at 556 nm. Thus, laser based 
tomography of the buoyant jet flow-field can 
be obtained across any desired plane. Then, 
the experiment is videotaped using a high 
resolution video-camera pointing normal to 
the light sheet at 30 frames per second (fps). 
In this way, the yellow intensity of R6G 
(measured through the RGB frame format of 
the camera) can be linked to its 
concentration (as shown in the next slide).

Photograph of the experimental set-up of Turbulent Buoyant Jets 
(source: Spyridon Michas, PhD on ‘Experimental investigation of 
horizontal, circular and non axis-symmetric buoyant jets, in a 
homogeneous and stationary environment’, supervisor  P. 
Papanicolaou, Department of Civil Engineering, University of 
Thessaly, 2008).



9. Calibration
• The initial fluorescence light intensity Io is proportional to the R6G initial concentration Co if it 
does not exceed 50 ppm (or μg/L), as shown by Ferrier et al. (1993). Here, this is verified through 
the measurement of the intensity of several R6G concentrations samples fully mixed into the 
water-tank, for 2 camera shutter speeds (sp).of 50 and 100 s-1. The ‘Ferrier’ curves on the graphs 
are adjusted to the measurements by multiplying with an arbitrary factor as Ferrier et al. (1993) 
intensity is arbitrary. As the yellow emitted light is formed only by the red and green dye, the blue 
one will be close to zero. Also, to avoid the influence of the green laser beam, one can link the R6G 
concentration with the red intensity only.
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• For concentrations of R6G greater than 50ppm, the attenuation factor can no longer be 
assumed negligible and it should be accounted for (Ferrier et al., 1993).
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, where ηIw and εI are coefficients to be determined experimentally



10. Case study on heated vertical jet
The application presented is based on an experiment of a heated vertical jet held at the laboratory 
of Hydraulics at the NTUA. By analyzing the video-frames with MATLAB (computer image 
process program) and using the relationships held on the ‘Calibration’ slide, one can estimate the 
color intensity at any point and time of the experiment and thus the spatio-temporal tracer 
concentration/temperature.
Each frame (2278 in total) corresponds to 1/30 sec and each pixel to approximately 0.048X0.048 
cm2. The grid of the field shown below is 860 x 300 pixels.
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D is the nozzle diameter, Q, M, B, Fo, Ri and Re are the initial 
discharge, jet specific momentum and buoyancy flux, Froude, 
Richardson and Reynolds number, Tamb and Tjet are the 
ambient and jet temperatures and lm.the characteristic length 
scale (M3/4B-1/2).
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11. Anisotropy and 2D stochastic simulation model
A separate Hurst coefficient should be assigned to the quantities that are non isotropic to each 
other. It is still not applicable to create a multi-dimensional model that can synthesize time-series 
assuming anisotropy (thus assuming a different autocorrelation behavior in each dimension) and 
that is why scientists tend to use multi-variate models.

A proposed rough solution would be to omit intermediate data of 
the field grids, so as the multi-acrfs decay at the same rate (at 
least for the first lags). So, omitting factor (omfc) m means that the 
(m*c)th cell is omitted in the model, where c is 0,1,…,maximum 
number of cells in each direction of the sub-field and in the 
diagonally ones. Here, m is chosen equal to 30, as one can see at 
the figure on the left, thus the final spatio-temporal grid is 
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The simulated autocorrelation 
seems to  be smaller than the natural 
one. This is due to the small q
parameter that is chosen, as larger 
values would enormous increase the 
numerical simulation time.

the figure on the left, thus the final spatio-temporal grid is 
75secondsX860pixels.



12. Conclusions
• A calibration for the LIF technique is performed in order to explore the relationship between the 

temperature and R6G fluorescence intensity . It is shown that it is linear for R6G concentrations 
less than 50 μg/L, in agreement with Ferrier et al. (1993). Moreover, it is evident that the red 
intensity of the RGB color scheme is less sensitive than the green one (which may also be 
affected by the green laser light intensity), and thus more appropriate to be linked to the 
temperature concentration.

• A LIF technique is used to visualize a heated vertical jet. Spatio-temporal temperature is 
estimated through the analysis of the color intensity of the video-frames based on the red 
intensity of the RGB format. The plane of symmetry of the flow (“jet axis” of the maximum time-
averaged temperature) and RMS axis are identified.
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• A 2D model is also applied (via the SMA scheme) to generate the observed long-term persistence 
of temperature along the jet axis. The simulation is done at the plume area (S/lm>2) of the flow as 
the observed long-termed persistence is expected away from the nozzle, where buoyancy forces 
dominate over momentum ones, (M<<B).


