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Entropy is uncertainty quantified: Definitions 
● For a discrete random variable* z taking values zj with probability mass function Pj ≡ P(zj) 

= P{z = zj}, j = 1,…,w, where 

 
j = 1

w

 Pj = 1 (1) 

 the entropy† is a dimensionless nonnegative quantity defined as (e.g., Papoulis, 1991): 

 Φ[z] := E[–ln P(z)] = –
j = 1

w

 Pj ln Pj (2) 

● For a continuous random variable z with probability density function f(z), where 

 


-∞

∞

  f(z) dz = 1 (3) 

  the entropy† is defined as: 

 Φ[z] := E[–ln[ f(z)/h(z)]]= – 


-∞

∞

  ln [f(z)/h(z)] f(z) dz  (4) 

The function h(z) can be any probability density, proper (with integral equal to 1, as in 
(3)) or improper (meaning that its integral does not converge); typically it is an 
(improper) Lebesgue density, i.e. a constant with dimensions [h(z)] = [f(z)] = [z–1], so that 
Φ[z] is again dimensionless. 

                                     
* An underlined symbol denotes a random variable; the same symbol not underlined represents a value of the random variable.  
† In case of risk of ambiguity, we will characterize Φ[z] as probabilistic entropy. 
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The principle of maximum entropy (ME) 
● The importance of the entropy concept springs from the principle of maximum entropy, 

an extremely powerful principle in physics and, at the same time, in logic.* 

● Although this principle stands behind the Second Law of thermodynamics, which was 
first formulated in the mid-19th century by Clausius (who also coined the term entropy), 
it took 100 years to recognize its general applicability (Jaynes, 1957) also in logical 
inference (to infer unknown probabilities from known information) and to formalize it. 

● The principle of maximum entropy postulates that the entropy of a random variable z 
should be at maximum, under some conditions, formulated as constraints, which 
incorporate the information that is given about this variable. 

● In simple words, the principle advises us to express what we know for a variable z in the 
form of mathematical constraints, which are either equations or inequalities. What we 
do not know, we determine in probabilistic terms by maximizing entropy, i.e., 
uncertainty. 

● The logic behind the principle is very simple and almost self-evident: If uncertainty is not 
maximized then there must be some more knowledge, which, however, should already 
have been incorporated in the constraints. 

                                     
*In an optimistic view that our logic in making inference about natural systems could be consistent with the behaviour of the natural 
systems, we can regard the principle of maximum entropy both as a physical principle to determine thermodynamic states of natural 
systems and as a logical principle to make inference about natural systems. We will see later that this is reasonable. 
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Entropy maximization: The die example 
● What is the probability that the outcome of a die throw will be i? 

● The entropy is: 
 Φ := E[–ln P(z)] = –P1 ln P1 – P2 ln P2 – P3 ln P3 – P4 ln P4– P5 ln P5 – P6 ln P6 (5) 

● The equality constraint is 
 P1 + P2 + P3 + P4 + P5 + P6 = 1 (6) 

● The inequality constraint is 0 ≤ Pi ≤ 1 (but in this case it is not necessary to include) 

● Solution of the optimization problem (e.g. by the Lagrange method*) yields a single 
maximum: 

 P1 = P2 = P3 = P4 = P5 = P6 = 1/6 (7) 

● The entropy is Φ = –6 (1/6) ln (1/6) = ln 6. In general the entropy for w equiprobable 
outcomes is 

 Φ = ln w (8) 

● In this case, the application of the ME principle (mathematically, an “extremization” 
form) is equivalent to the principle of insufficient reason (Bernoulli-Laplace; 
mathematically, an “equation” form). 

                                     
* Simple calculations like this and other in the following pages should be regarded as homework. 
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 Entropy maximization: The loaded die example 
● What is the probability that the outcome of a die throw will be i if we know 

that it is loaded, so that P6 – P1 = 0.2? 

● The principle of insufficient reason does not work in this case. 

● The ME principle works. We simply pose an 
additional constraint: 

   P6 – P1 = 0.2 

● The solution of the optimization problem (e.g. by 
the Lagrange method) is a single maximum as 
shown in the figure. 

● The entropy is Φ = 1.732 smaller than in the case of 
equiprobability, where Φ = ln 6 = 1.792. 

 

 

The decrease of entropy in the loaded die derives from the additional information 
incorporated in the constraints. 

Entropy and information are complementary to each other. 

When we know (observe) that the outcome is i (Pi = 1, Pj = 0 for j ≠ i), the entropy is zero. 
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Expected values as constraints: General solution 
● In the most typical application of the ME principle, we wish to infer the probability 

density function f(z) of a continuous random variable z (scalar or vector) with 
constraints formulated as expectations of functions gj(z). 

● In other words, the given information used in the ME principle is expressed as a set 
of constraints formed as 

 E[gj(z)] = 
-∞

∞

  gj(z) f(z) dz = ηj, j = 1, …, n (9) 

● The resulting maximum entropy distribution by maximizing entropy as given in (4) 
with constraints (9) and the obvious additional constraint (3) is (Papoulis, 1991, p. 
571) is 

 f(z) = exp 
 –λ0 – 

j = 1

n

  λj gj(z)
  (10) 

where λ0 and λj are constants determined such as to satisfy (3) and (9), respectively. 

● The resulting maximum entropy is 

 Φ[z] := λ0 + 
j = 1

n

  λj ηj (11) 
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Typical results of entropy maximization 
 
Constraints for the continuous variable z Resulting distribution f(z) and entropy Φ (for 

h(z) = 1) 

z bounded within [0, w], no equality 
constraint 

f(z) = 1/w (uniform) 
Φ = ln w 

z unbounded from both below and above 
No constraint or constrained mean μ not defined 
Constrained mean μ and standard 
deviation σ 

f(z) = exp{–[(z – μ)/σ]2/2} / (σ 2π) (Gaussian) 

Φ = ln (σ 2πe) 

Nonnegative z unbounded from above 
No equality constraint  not defined 
Constrained mean μ f(z) = (1/μ) exp(–z/μ) (exponential) 

Φ = ln (μe) 
Constrained mean μ and standard 
deviation σ with σ < μ 

f(z) = A exp{–[(z – α)/β]2/2} (truncated 
Gaussian tending to exponential as σ → μ). 
The constants A, a and β are determined from 
the constraints and Φ from (11) (the equations 
are involved and are omitted) 

As above but with σ > μ not defined 
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A first application of the ME principle to uncertain 
motion of a particle: setup* 
● We consider a motionless cube with edge a (volume V = a3) containing spherical particles 

of mass m0 (e.g. monoatomic molecules) in fast motion†, in which we cannot observe the 
exact position and velocity. 

● A particle’s state is described by 6 variables, 3 indicating its position xi and 3 indicating its 
velocity ui, with i = 1, 2, 3; all are represented as random variables, forming the vector 
z = (x1, x2, x3, u1, u2, u3). 

● The constraints for position are: 
 0 ≤ xi ≤ a,  i = 1, 2, 3 (12) 

● The constraints for velocity are (where the integrals are over feasible space Ω, i.e. (0, a) 
for each xi and (–∞, ∞) for each ui): 
○ Conservation of momentum: E[m0 ui] = m0 ∫Ωui f(z) dz = 0 (the cube is motionless), or: 

  E[ui] = 0,  i = 1, 2, 3 (13) 

○ Conservation of energy‡: E[m0 ||u||
2/2] = (m0 /2) ∫Ω||u||

2 f(z) dz = ε, where ε is the 
energy per particle and ||u||

2 = u1
2 + u2

2 + u3
2; thus, the constraint is 

 E[||u||
2] = 2ε/m0  (14) 

                                     
* This analysis (and those of the following pages up to p. 22) is explained in more detail in Koutsoyiannis (2013). 
† See a 2D animation in en.wikipedia.org/wiki/File:Translational_motion.gif. 
‡ The expectation E[ui] represents a macroscopic motion, while ui – E[ui] represents fluctuation at a microscopic level. If E[ui] ≠ 0, then the 
macroscopic and microscopic kinetic energies should be treated separately, the latter being ε = Ε[m0 (||u – E[u]||)2/2]; see also pp. 14-15. 
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A first application of the ME principle to uncertain 
motion of a particle: results 
● We form the entropy of z as in (4) recognizing that the constant density h(z) in 

ln [f(z)/h(z)] should have units [z–1] = [x–3] [u–3] = [L–6 T3]. To make this, we utilize a 
universal constant, i.e. the Planck constant h = 6.626 × 10−34 J·s; its dimensions are 
[L2 M T–1]. If we combine it with the particle mass m0, we observe that the quantity 
(m0/h)3 has the required dimensions [L–6 T3], thereby giving the entropy as 

 Φ[z] := E[–ln[(h/m0)3 f(z)]]= –∫Ω ln [(h/m0)3f(z)] f(z) dz  (15) 

● Application of the principle of maximum entropy with constraints (3), (12), (13) and (14) 
will give the distribution of z (see proof below) as: 

 f(z) = (1/a)3 (3m0 / 4πε)]3/2exp(–3m0 ||u||
2/ 4ε),  0 ≤ xi ≤ a (16) 

● The marginal distribution of each of the location coordinates xi is uniform in [0, a], i.e., 

 f(xi) = 1/a,  i = 1, 2, 3 (17) 

● The marginal distribution of each of the velocity coordinates ui is derived as 

 f(ui) = (3m0 / 4πε)1/2 exp(–3m0ui
2 / 4ε),   i = 1, 2, 3 (18) 

This is Gaussian with mean 0 and variance 2ε / 3m0 = 2 × energy per unit mass per 
degree of freedom. 
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A first application of the ME principle to uncertain 
motion of a particle: results (2) 
● The marginal distribution of the velocity magnitude ||u|| results as: 

 f(||u||) = (2/π)1/2(3m0 / 2ε)3 ||u||
2 exp(–3m0||u||

2/ 4ε) (19) 

 This is known as the Maxwell–Boltzmann distribution. 

● The entropy is then calculated as follows, where e is the base of natural logarithms: 

 Φ[z] = 
3
2 ln




 
 
4πe

3  
m0

h2  ε V2/3




 
 = 

3
2 ln




 
 
4πe

3  
m0

h2



 
 + 

3
2 ln ε + ln V (20) 

An extended version of (20) (for many particles), but with some differences, is known as 
the Sackur-Tetrode equation (after H. M. Tetrode and O. Sackur, who developed it 
independently at about the same time in 1912). 

● From (16) we readily observe that the joint distribution f(z) is a product of functions of 
z’s coordinates x1, x2, x3, u1, u2, u3. This means that all six random variables are jointly 
independent. The independence results from entropy maximization. 

● From (16) and (18) we also observe a symmetry with respect to the three velocity 
coordinates, resulting in uniform distribution of the energy ε into ε/3 for each direction 
or degree of freedom. This is known as the equipartition principle and is again a result of 
entropy maximization. 

● From (20) we can verify that the entropy Φ[z] is a dimensionless quantity. 
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Sketch of proof of equations (16)-(20) 
According to (10) and taking into account the equality constraints (3), (13) and (14), the ME distribution 
will have density f(z) = exp [–λ0 – λ1u1 – λ2u2 – λ3u3 – λ4(u1

2 + u2
2 + u3

2)]. This proves that the density will 
be an exponential function of a second order polynomial of (u1, u2, u3) involving no products of 
different ui. The f(z) in (16) is of this type, and thus it suffices to show that it satisfies the constraints. 

Note that the inequality constraint (12) is not considered at this phase but only in the integration to 
evaluate the constraints. That is, the integration domain will be Ω := {(0 ≤ x1 ≤ a, 0 ≤ x2 ≤ a, 0 ≤ x3 ≤ 

a, -∞ < u1 < ∞, –∞ < u2 < ∞, –∞ < u3 < ∞)}. We denote by ∫Ω dz the integral over this domain. It is easy 
then to show (the integrals are trivial) that: 

∫Ω f(z) dz = 1; ∫Ω u1 f(z) dz = 0; ∫Ω u2 f(z) dz = 0; ∫Ω u3 f(z) dz = 0; ∫Ω (u1
2 + u2

2 + u3
2) f(z) dz = 2ε/m0. 

Thus, all constraints are satisfied. 

To find the marginal distribution of each of the variables we integrate over the entire domain of the 
remaining variables; due to independence this is very easy and the results are given in (17) and (18). To 
find the marginal distribution of ||u|| (eqn. (19)), we recall that the sum of squares of n independent 
N(0, 1) random variables has a χ2(n) distribution (Papoulis, 1990, p. 219, 221) and then we use known 
results for the density of a transformation of a random variable (Papoulis, 1990, p. 118) to obtain the 
distribution of the square root, thus obtaining (19). 

To calculate the entropy, we observe that –ln[f(z)] = (3/2) ln [4πε / 3m0)] + ln a3 + 3m0 (u1
2 + u2

2 + u3
2) / 

4ε and ln [h(z)] = 3 ln (m0/h). Thus, the entropy, whose final value is given in (20) is derived as follows: 

Φ[z] = ∫Ω {–ln[f(z)] + ln [h(z)]} f(z) dz = (3/2) ln [(4πε /3m0 (m0/h)2)] + ln a3 + (3m0 / 4ε) (2ε/m0) 

= (3/2) ln (4πm0 /3 h
2) + (3/2) ln ε + ln V + (3/2). 

In a similar manner we can prove the results of the cases discussed below, whose proofs are omitted. 
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The ME principle applied to one diatomic molecule 
● Analysis of diatomic gases is important for atmospheric physics because the dominant 

atmospheric gases are diatomic (N2, O2). 

● In a diatomic gas, in addition to the kinetic energy, we have rotational energy at two 
axes x and y perpendicular to the axes defined by the two molecules; these are Lx

2 / 2I 
and Ly

2 / 2I, where L denotes angular momentum and I denotes rotational inertia and has 
dimensions [M L2] (due to symmetry, Ix = Iy = I). 

● We consider again a motionless cube with edge a (volume V = a3) containing identical 
diatomic molecules, each one with mass m0 and kinetic and rotational energy ε. 

● Each molecule is described by 8 variables, 3 indicating its position xi, 3 indicating its 
velocity ui (i

 = 1, 2, 3) and two indicating its rotation, u4
 := Lx

 / I m0 and u5
 := Ly

 / I m0; all 
are represented as random variables, forming the vector z = (x1, x2, x3, u1, u2, u3 , u4, u5). 

● The constraints are the same as before: 

○ position: 0 ≤ xi ≤ a; 

○ momentum/angular momentum: E[ui] = 0 (the cube is not in motion); 

○ energy: E[||u||
2] = 2ε/m0. 

● The constant density h(z) in ln [f(z)/h(z)] in (4) should have units [z–1] = [x–3] [u–5] = [L–8 
T5]. Combining the Planck constant h with the particle mass m0 and rotational inertia I, 
we observe that the required dimensions are attained by the quantity m0

4I/h5, so that 

 Φ[z] := E[–ln[(h5/ m0
4I) f(z)]]= –∫Ω ln [(h5/ m0

4I) f(z)] f(z) dz  (21) 
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The ME principle applied to one diatomic molecule (2) 
● Application of the ME principle with the above constraints will give the density function 

as: 

 f(z) = (1/a)3 (5m0 / 4πε)5/2 exp(–5m0 ||u||
2/ 4ε),  0 ≤ xi ≤ a  (22) 

which is again uniform for the location components and Gaussian for the translational 
and rotation components, and indicates independence of all 8 components and 
equipartitioning of energy (1/5 for each degree of freedom). 

○ Note that the energy per degree of freedom i is E[m0 ui
2/ 2], which for the rotational 

components becomes E[m0 u4
2/ 2] = E[Lx

2/ 2I] and E[m0 u5
2/ 2] = E[Ly

2/ 2I]. 

● The entropy is then calculated as 

 Φ[z] = 
5
2 ln




 
 
4πe

5  
m0

3/5I2/5

h2  ε V2/5




 
 = 

5
2 ln




 
 
4πe

5  
m0

3/5I2/5

h2



 
 + 

5
2 ln ε + ln V (23) 

● Generalizing (20) and (23) for β degrees of freedom we obtain 

 Φ[z] = 
β
2 ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2  ε V2/β




 
 = 
β
2 ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2



 
 + 
β
2 ln ε + ln V (24) 

Q: Why the kinetic energy is equally distributed among the different degrees of freedom? 
A: Because this maximizes entropy, that is, uncertainty. 
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The ME principle applied to N molecules 
● The N molecules are assumed to be of the same kind and thus each one has the same 

mass m0, rotational inertia I, and degrees of freedom β (for monoatomic and diatomic 
molecules, β = 3 and β = 5, respectively). 

● Their coordinates form a vector Z = (z1,…, zN) with 3N location coordinates and βN 
velocity coordinates; this could be rearranged as Z = (X, U), with X = ((x1, x2, x3)1, …, (x1, 
x2, x3)N) and U = ((u1, …, uβ)1, …, (u1, …, uβ)N). 

● If E is the total kinetic energy of the N molecules and ε = E/N is the energy per particle, 
then conservation of energy yields 

 E[||U|||2] =2E/m0 = 2Nε/m0  (25) 

● Application of the ME principle with constraints (3), (12), (13) and (25) gives: 

 f(Z) = (1/a)3N (βm0 / 4πε) βN/2 exp(–βm0 ||U||
2/ 4ε),  0 ≤ xi ≤ a (26) 

● The entropy for N particles is: 

 Φ[Z] = 
βN
2  ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2  ε V2 / β




 
 = 
βN
2  ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2



 
 + 
βN
2  ln ε + N ln V (27) 

 Φ[Z] = 
βN
2  c+ 

βN
2  ln ε + N ln V = 

βN
2  c + 

βN
2  ln 

E
N + N ln V (28) 

where c incorporates mathematical and physical constants. 
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Is the entropy subjective or objective? 
● In physics most quantities are subjective in the sense that they depend on the observer. 

There may be also some objective quantities that are unaltered if the observer’s choices 
change. 

○ Thus, the location coordinates (x1, x2, x3) depend on the observer’s choice of the 
coordinate frame and change if this frame is translated or rotated; however the 
distance between two points remains constant if the frame changes. 

○ Also, the velocity depends on the relative motion of the frame of reference; the 
velocity of a car whose speedometer indicates 100 km/h is zero for an observer 
moving with the car, 100 km/h for an observer sitting at the road and 107 000 km/h 
for a coordinate system attached to the sun. The kinetic energy, as well as changes 
thereof, depend on the reference frame, too. 

● Surprisingly, however, the entropy Φ[Z] of the gas in a container of a fixed volume V, 
whose general form is given in (24), does not change with the change of the reference 
frame (see demonstration below), provided that the kinetic energy per gas molecule ε is 
defined based on the difference of velocity u from its mean E[u], i.e., 
ε = Ε[m0 (||u – E[u]||)2/2]; in this case ε is also invariant, despite that u changes with the 
reference frame. The invariance extends to the entropy maximizing distribution. 

● Therefore, despite that entropy is based on probabilities, it is an objective quantity that 
can be measured and its magnitude does not depend on the reference frame. 
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Demonstration of invariance properties of entropy 
We consider again the container with a gas 
with spherical particles (3 degrees of freedom). 
We assume that an observer is moving with 
velocity uo parallel to the horizontal axis x1 as 
shown in figure. According to this observer 
each particle has location coordinates x΄i and 
velocity coordinates u΄i related to those of the 
fixed frame, xi and ui, by the relationships 
shown in figure. 

For the moving frame, E[u΄1] = u0 while E[u΄i] = 
0 for i = 2, 3. Thus, Ε[m0 (||u΄ – E[u΄]||)2/2] = Ε{m0 [(u΄1 – u0)2 + u΄2

2 + u΄3
2]} /2 = ε, the same as for the 

fixed frame. 

For one molecule, the density function will be 

f(z) = (1/a)3 (3m0 / 4πε)]3/2exp{–3m0[(u΄1 – u0)2 + u΄2
2 + u΄3

2]/ 4ε} , –x0
 ≤ x΄1 ≤ –x0 + a, 0 ≤ x΄2 ≤ a, 0 ≤ x΄2 ≤ a 

It can be verified, using the same method as in p. 10, that it satisfies all constraints. 

To calculate the entropy we observe that –ln[f(z)] = (3/2) ln [4πε / 3m0)] + ln a3 + 3m0 [(u΄1 – u0)2 + u΄2
2 

+ u΄3
2] / 4ε and ln [h(z)] = 3 ln (m0/h). Thus, the entropy is calculated as Φ[z] = (3/2) ln (4πem0 /3 h

2) + 
(3/2) ln ε + ln V, which is the same as in (20). 

Likewise, the entropy of N molecules with respect to the moving frame will be the same as that with 
respect to the fixed frame. 

x1

x2

x3

x1

x2

x3

x΄1

x΄2

x΄3  

u0

u1

u2
u3

u1

u2
u3
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a

a

a
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The extensive entropy 
● In very large systems, such as the atmosphere as a whole, all physical quantities change 

with location and the homogeneity (independence of expected values from location) 
assumed in our “gas container” example does not hold. 

● Still the equations we have derived are valid but at a local scale, i.e. at a small volume V 
for which homogeneity can be assumed. It looks convenient to use as a possibly 
objective quantity the entropy for a single particle φ(ε, V) := Φ[z] = (β/2)c + (β/2) ln ε + 
ln V = Φ[Z]/N, where N is the number of particles contained in volume N. 

● However, φ(ε, V) is not an objective/invariant quantity, as it depends on the selection of 
the volume V. To make it objective, we observe that the quantity φ(ε, V) – ln N = (β/2)c + 
(β/2) ln ε + ln v =: φ*(ε, v) where v := V / N, is invariant under change of V, provided that 
the density of particles N/V is fairly uniform. 

● This leads to the definition of two derivative quantities, which we call standardized 
entropies and more specifically, intensive entropy and extensive entropy respectively: 

 φ*(ε, v) := φ(ε, v) = φ(ε, V) – ln N = 
β
2 ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2



 
 + 
β
2 ln ε + ln v (29) 

 Φ*(E, V, N) := N φ*(ε, v) = Φ[Z] – N ln N = 
βN
2  ln




 
 
4πe
β  

m0
3/βI1 – 3/β

h2



 
 + 
βN
2  ln 

E
N + N ln 

V
N (30) 
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Properties of intensive and extensive entropy 
● Like the energy per particle, ε, and the volume per particle, v, the standardized entropy 

per particle φ*(ε, v), is an intensive property (hence its name) in the sense that it does 
not depend on the size of system that an observer, justifiably or arbitrarily, considers. 

● In contrast, the total energy, E, the volume, V, and the number of particles, N, are 
extensive properties in the sense that depend on the observer’s selection of the system 
and are proportional one another; that is, a system of volume αV, where α is any positive 
number contains αN particles with a total energy αE. Likewise, the extensive entropy 
Φ*(E, V, N) is indeed an extensive property, as it is easily seen that 

 Φ*(αE, αV, αN) := α Φ*(E, V, N)  (31) 

● It is noted that the probabilistic entropy per particle φ(ε, V) = Φ[z] is not intensive as it 
depends on the system volume V. Likewise, the probabilistic total entropy Φ(E, V, N) = 
Φ[Z] is not extensive: it can be seen that 

 Φ(αE, αV, αN) – α Φ(E, V, N) = αN ln α ≠ 0  (32) 
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Interpretation of extensive entropy 
● An interpretation of standardized entropies φ*(ε, v) and Φ*(E, V, N) is that they are not 

strictly (probabilistic) entropies, but differences of entropies, taken with the aim to 
define quantities invariant under change of the observer’s choices (as in taking 
differences of linear coordinates to make them invariant under translation of the frame 
of reference).  

● The reference entropies, from which these differences are taken are ln N and N ln N = ln 
NN for φ and Φ*, respectively. Thus, φ* or Φ* measures how much larger the entropy 
Φ[z] or Φ[Z], respectively, is from the entropy of a simplified reference system, in which 
only the particle location, discretized into N bins, counts (with the number N of bins here 
representing a discretization of the volume V that is not a subjective choice of an 
observer). Clearly, in gases (and fluids in general) there are N and NN ways of placing one 
and N particles, respectively, in the N bins, so that the reference entropies are ln N and N 
ln N, respectively*.  

● An easy perception of φ*(ε, v) is that it is identical to the probabilistic entropy of a 
system with a fixed volume equal to v. Also Φ*(E, V, N), is identical to the probabilistic 
entropy of a system of N particles, each of which is restricted in a volume v. 

● A more common interpretation of φ* and Φ* is that they in fact represent the 
probabilistic entropies of the gas under study, under the assumption that the particles 
are indistinguishable. This interpretation has several problems. 

                                     
* Notably in solids the locations of particles are fixed (only one possible way) and thus the reference entropy is ln 1 = 0. Thus, φ* and Φ* in 
solids become identical to φ and Φ, respectively, which agrees with the classical result for solids. 
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Equivalence of descriptions by the two entropy measures 
● We assume that N molecules are in motion in a container of volume V and entropy per 

particle φ. 

● We make an arbitrary partition of the container into two parts A and B with volumes VA 
and VB, respectively, with VA + VB = V. The partition is only mental—no material 
separation was made. Therefore, at any instance any particle can be either in part A with 
probability π, or in part B with probability 1 – π. 

● We assume that we are given the information that a particle is in part A or B. We denote 
the conditional entropy, for each of the two cases as φA and φB, respectively. 

● The unconditional entropy (for the unpartitioned volume) can be calculated from the 
conditional entropies as (see proof in box below) 

  φ = π φA + (1 – π) φB + φπ,  where φπ := –π ln π – (1 – π) ln (1 – π) (33) 

● Substituting NA/N for π and NB/N for (1 – π), where NA and NB are the expected number 
of particles in parts A and B respectively, we get (see proofs in box below) 

 Φ = ΦA + ΦB + N ln N – NA ln NA – NB ln NB (34) 
 Φ* = Φ*

A + Φ*
B (35) 

● Equations (34) are (35) precisely equivalent and describe the same thing, using either 
probabilistic entropies Φ or extensive entropies Φ *. Apparently, (35) is simpler and 
therefore the description using Φ * is more convenient when the number of particles N 
matters. 
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Proof of equations (33)-(35) 
To show that (33) holds true (cf. also Papoulis, 1991, p. 544) we observe that the unconditional density 
f(z) is related to the conditional ones f(z|A) and f(z|B) by 

 f(z) = 


π f(z|A)‚   z in A
(1 – π) f(z|B)‚ z in B  (36) 

Denoting ∫A g(z) dz and ∫B g(z) dz the integral of a function g(z) over the intersection of the domain of z 

with the volume A and volume B, respectively, the unconditional entropy will be 

 φ = Φ[z] = –∫A f(z) ln[f(z)/h(z)]dz – ∫B f(z) ln[f(z)/h(z)]dz = 

 = –∫A π f(z|A) ln[π f(z|A)/h(z)]dz – ∫B (1 – π) f(z|B) ln[(1 – π) f(z|B)/h(z)]dz = 

 = –π ∫A f(z|A) ln[f(z|A)/h(z)]dz – π ln π ∫A f(z|A) dz  

  – (1 – π) ∫B f(z|B) ln[f(z|B)/h(z)]dz – (1 – π) ln(1 – π) ∫B f(z|B) dz 

We observe that ∫A f(z|A) ln[f(z|A)/h(z)]dz = φA and ∫B f(z|B) ln[f(z|B)/h(z)]dz = φB, whereas ∫A f(z|A) dz 

= ∫B f(z|B) dz = 1. Evidently, then, (33) follows directly. 
From (33) we get: 

 φ = (NA/N) φA + (NB/N) φB – (NA/N) ln (NA/N) – (NB/N) ln (NB/N) 

 Nφ = NA φA + NB φB – NA ln NA – NB ln NB + N ln N 

so that (34) follows directly. In turn, from (34) we obtain 

 φ – ln N = (NA/N) (φA – ln NA) + (NB/N) (φB – ln NB) 

 Nφ* = NAφ
*

A + NB φ*
B 

from which (35) follows directly. 
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Definition of temperature 
● Temperature is defined to be the inverse of the partial derivative of entropy with respect 

to energy, i.e., 

 
1
θ := 

∂Φ
∂E  (37) 

Since entropy is dimensionless and E has dimensions of energy, temperature has also 
dimensions of energy (joules). This contradicts the common practice of using different 
units of temperature, such as kelvins or degrees Celsius. To distinguish from the common 
practice, we use the symbol θ (instead of T which is used for temperature in kelvins*) 
and we call θ the natural temperature (instead of absolute temperature for T). 

● From (27), (24), (30), (29) we obtain 

 
1
θ = 

∂Φ
∂E  = 

∂Φ*

∂E  = 
∂φ
∂ε= 

∂φ*

∂ε  = 
β
2ε (38) 

or 

 θ = 
2 ε
β  (39) 

That is, the temperature is proportional to the kinetic energy per particle; in fact it 
equals twice the particle’s kinetic energy per degree of freedom. 

                                     
* We can regard the unit of kelvin an energy unit, a multiple of the joule, like the calorie and the Btu, i.e. 1 K = 0.138 06505 yJ . 
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The law of ideal gases 
● We consider again the cube of edge a containing N identical molecules of a gas, each 

with mass m0 and β degrees of freedom. 

● We consider a time interval dt; any particle at distance from the bottom edge dx3 ≤ -u3 dt 
will collide with the cube edge (x3 = 0). 

● From (22), generalized for β degrees of freedom, the joint distribution function of (x3, u3) 
of a single particle is 

 f(x3, u3) = (1/a)(β m0 / 4π ε)1/2 exp(–βm0u3
2 / 4ε) (40) 

● Thus, the expected value of the momentum q(dt) of molecules colliding at the cube edge 
(x3 = 0) within time interval dt is 

 E[q(dt)] = N 
0

∞

 dx3 


-∞

-x3/dt 
  m0 u3 f(x3, u3) du3 = N ε dt/(β a) (41) 

● According to Newton’s 2nd law, the force exerted on the edge is F = 2 E[q(dt)]/dt and the 
pressure is p = F / a2 = 2 N ε /(β V), or finally (by using (39)), 

 p = N θ / V = θ / v  p V = N θ  p v = θ (42) 

This is the well-known law of ideal gasses written for natural temperature. 

Q: Is the law of ideal gases an empirical relationship or can it be deduced and how? 

A: It can be easily derived by maximizing entropy. 
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Alternative expression of entropy 
The definition of temperature θ and its relationship with kinetic energy per particle ε 
(equation (39)) along with law of ideal gasses (equation (42)) allows expressing the intensive 
entropy φ* (equation (29)) in terms of temperature and pressure as follows 

 φ* = 
β
2 ln




 
 2πe 

m0
3/βI1 – 3/β

h2



 
 + 




 
 1 + 

β
2


 
  ln θ – ln p (43) 
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Differential form of entropy 
● From (27), (24), (30), (29), the partial derivatives of entropy with respect to V and v are 

 
∂Φ
∂V  = 

∂Φ*

∂V  = 
∂φ*

∂v  = 
1
v = 

p
θ ,    

∂φ
∂V = 

1
V (44) 

where the term p/θ was obtained from the ideal gas law. 

● From the same equations, the partial derivatives with respect to N are 

 
∂Φ
∂N = N 

∂φ
∂N ,     

∂Φ*

∂N  = φ* + N 
∂φ*

∂N  (45) 

● The latter can be simplified by using of the so called chemical potential, μ (cf., Wannier, 
1987, p. 139)*, 

 – 
μ
θ := 

∂Φ*

∂N  = φ* + N 
∂φ*

∂N  (46) 

● Based on the above, the probabilistic and the extensive entropy can be written, 
respectively, in differential form as 

 dΦ = 
1
θ dE + 

p
θ dV + 




 
 – 
μ
θ + 1 + ln N




 
 dN, dΦ* = 

1
θ dE + 

p
θ dV – 

μ
θ dN (47) 

● The latter can be written in the equivalent form 

 θ dΦ* = dE + p dV – μ dN (48) 

                                     
* Note that the definition applies when E is the internal energy, which for gases is identical to the thermal energy. 
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Gas mixtures: probability distribution 
● We assume that our cube of edge a contains a mixture of two gases: NA molecules of a 

gas A with particle mass m0A
 and βA degrees of freedom and NB molecules of a gas B with 

particle mass m0A
 and βB degrees of freedom. We split the vector of velocities into two 

sub-vectors, i.e U = (UA, UB), with UA = ((u1, …, uβA
)1, …, (u1, …, uβA

)NA
) and UB = ((u1, …, uβB

)1, 

…, (u1, …, uβB
)NB

). 

● The characteristic quantities of the mixture are total number of are given in the table: 

 Total Average 

Number of particles N = NA + NB  

Mass M = m0A
NA + m0B

NB m0 = (m0A
NA + m0B

NB)/N 

Energy E = EA + EB ε = E / N 

Degrees of freedom βN = βANA + βBNB β = (βANA + βBNB)/N 

● Conservation of energy yields: 

 E[m0A
 ||UA ||2+ m0B

 ||UB||
2] =2E = 2Nε  (49) 

● Maximization of entropy will give the following probability density function: 

 f(Z) = (1/a)3N (β/4πε)βN/2 m0A
βBNA/2 m0B

βBNB/2exp[–m0A||UA||
2 – m0B||UB||

2)(β/4ε)], 0 ≤ xi
 ≤ a  (50) 
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Gas mixtures: entropy 
● The maximized entropy of the gas mixture is then calculated as: 

 Φ[Z] = 
βN
2  ln c + 

βN
2  ln ε + N ln V (51) 

where c incorporates mathematical and physical constants. 

● The interpretation of the above results is that a mixture of gases, statistically behaves 
like a hypothetical single gas with molecular mass, energy per particle and degrees of 
freedom equal to the corresponding averages in the mixture of gases. 

● However, a mixture is not identical to a single gas as demonstrated with the following 
example (Q&A). 

Q: Why in the composition of Earth’s atmosphere, nitrogen and oxygen are present and 
hydrogen is absent, while in planets far from the Sun hydrogen is present? 

A: Because, to maximize entropy, the kinetic energy is equally distributed among different 
molecules; hence, hydrogen, which has molecular mass lower than oxygen and nitrogen, 
moves faster (~4 times) and escapes to space, while nitrogen and oxygen cannot reach the 
escape velocity. 

Planets far from the sun have lower temperature, which is proportional to the kinetic 
energy, and thus hydrogen cannot reach the escape velocity. 
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Bringing two systems in contact 
● We consider two systems initially isolated to each other. System A with volume VA 

contains NA molecules with average energy εA; system B with volume VB contains NB 
molecules with average energy εB; both systems contain molecules of the same type 
(equal molecular mass m0 and degrees of freedom β). 

● The extensive entropies of the two systems are: 

 Φ*
A = 

βNA

2
 ln c + βNA

2
 ln εA + NA ln 

VA

NA
 ,    Φ*

B = 

βNB

2  ln c + 

βNB

2  ln εB + NB ln 
VB

NB
 (52) 

● As far as the systems are isolated, the total entropy will be the sum of the two partial 
ones: 

  Φ*(0) = 
βN
2  ln c + 

βNA

2  ln εA + 

βNB

2  ln εB + NA ln 

VA

NA
 + NB ln 

VB

NB
 (53) 

● Now let us bring the systems in contact, but keep them isolated from the environment. 
There are two kinds of system interactions. In a closed interaction the two systems 
exchange energy but not mass, reaching at an equilibrium state (1) with energies per 
particle εA

(1) and εB
(1), respectively. Due to conservation of energy, 

  NA εA
(1)

 + NB εB
(1) = NA εA + NB εB = E  (54) 

● In an open interaction, the systems can also exchange mass reaching at an equilibrium 
state (2), where in addition to energy, mass conservation should also be considered, i.e., 

 NA
(2) + NB

(2) = NA + NB = N (55) 
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Closed interaction 
● After a closed interaction, εA

(1) and εB
(1) can be determined by maximizing the extensive 

entropy: 

 Φ*(1) = 
βN
2  ln c + 

βNA

2  ln εA
(1) + 

βNB

2  ln εB
(1) + NA ln 

VA

NA
 + NB ln 

VB

NB
 (56) 

● Maximization of Φ(1) with respect to εA
(1) and εB

(1) subject to (54), results in εA
(1) = εB

(1) = 
ε(1) = E/N. Thus, 

  Φ*(1) = 
βN
2  ln c + 

βN
2  ln ε(1) + NA ln 

VA

NA
 + NB ln 

VB

NB
 (57) 

● We observe that the entropy change is 

  Φ(1) – Φ(0) = Φ*(1) – Φ*(0) = 
βN
2  ln 

NA εA + NB εB

N  – 
βNA

2  ln εA – 
βNB

2  ln εB (58) 

● It is readily understood that Φ(1) – Φ(0) ≥ 0, where the equality sign applies to the case 
that the initial entropy was already at maximum. The spontaneous increase of entropy, 
due to entropy maximization, constitutes a version of the 2nd law of thermodynamics. 

● It can be easily verified that if the two systems have different degrees of freedom βA and 
βB, then maximum entropy is achieved for εA

(1)/ βA = εB
(1)/βB  or for equal temperature: 

 θA
(1) = θB

(1) = θ(1) (59) 
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Open interaction 
● After mass and energy exchange, the compound system A + B will reach at a state (2), 

with the boxes A and B containing NA
(2) and NB

(2) particles with energies per particle εA
(2) 

and εB
(2), respectively; the entire volume will be V = VA + VB. 

● Consequently, the new entropy will be 

  Φ*(2) = 
βN
2  ln c + 

βNA
(2)

2  ln εA
(2) + 

βNB
(2)

2  ln εB
(2) + NA

(2) ln 
VA

NA
(2) + NB

(2) ln 
VB

NB
(2) (60) 

● Maximization of Φ*(2) with respect to εA
(2), εB

(1), NA
(2), NB

(2), subject to (54) and (55), 
results in εA

(2) = εB
(2) = ε(2) = E/N and VA/NA

(2) = VB/NB
(2) = V/N. Thus, 

 Φ*(2) = 
βN
2  ln c + 

βN
2  ln ε(2) + N ln 

V
N (61) 

● We observe that the entropy change is 

 Φ*(2) – Φ*(0) = 
βN
2  ln 

NA εA + NB εB

N  – 
βNA

2  ln εA – 
βNB

2  ln εB + N ln 
V
N – NA ln 

VA

NA
 – NB ln 

VB

NB
 (62) 

 Φ(2) – Φ(0) = 
βN
2  ln 

NA εA + NB εB

N  – 
βNA

2  ln εA – 
βNB

2  ln εB + N ln V – NA ln VA – NB ln VB (63) 

● Clearly, Φ*(2) – Φ*(0) ≥ 0 and Φ(1) – Φ(0) > 0, which again constitutes a version of the 2nd law 
of thermodynamics. In particular, even if Φ*(2) – Φ*(0) = 0, the difference Φ(1) – Φ(0) is 
always positive, reflecting the larger uncertainty due the mixing of the two systems. 
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Constrained open interaction 
● We have seen that if two systems of same composition are brought in contact and are 

allowed to exchange energy (closed interaction) then they reach to equal energy per 
particle, or equal temperature. If they are also allowed to exchange mass (open 
interaction), then they reach to full uniformity, with equal temperature and volume per 
particle, thus practically forming a single system. 

● However, due to external effects, sometimes the two systems cannot reach full 
uniformity. Assuming that the intensive entropies per particle, when the system will 
reach a maximum entropy state (3) (not an equilibrium state in the classical sense) will 
be φ*

A
(3) and φ*

B
(3) for parts A and B, respectively, a general expression for the extensive 

entropy of the compound system will be (omitting the superscript (3) for simplicity): 

 Φ* = NAφ
*

A + NB φ*
B (64) 

● To maximize Φ* under constraint (55) (constraint (54) is not used, assuming fixed εA and 
εB), we form the function Ψ incorporating the constraint with a Langrage multiplier λ: 

 Ψ = NAφ
*

A + NB φ*
B + λ (NA + NB – N) (65) 

● Equating the derivatives with respect to NA and NB to 0 to maximize Ψ, we obtain 

 
∂Ψ
∂NA

 = φ*
A + NA 

∂φ*
A

∂NA
 + λ = 0,  

∂Ψ
∂NB

 = φ*
B + NB 

∂φ*
B

∂NB
 + λ = 0 (66) 

which yields 

 φ*
A – φ*

B = –NA 
∂φ*

A

∂NA
 + NB 

∂φ*
B

∂NB
 (67) 
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Constrained open interaction (2) 
● We recall the expression of φ* from (29), which can be combined with (39) and (42) to 

give various different expressions as seen in the table below, from which the quantity 
N ∂φ*/∂N is derived as follows: 

Expression ∂φ*

∂N  –N 
∂φ*

∂N  

φ*  0 0 

φ* = c + (β/2) ln ε + ln v = c΄ + (β/2) ln θ + ln v  
= c΄ + (β/2) ln θ + ln(θ/p) = c΄ + (1 + β/2) ln θ – ln p  
[where c΄ = c + (β/2) ln(β/2)] 

0 0 

φ* = c + (β/2) ln (E/N) + ln (V/N)  –(1 + β/2)/N 1 + β/2 

φ* = c + (β/2) ln ε + ln (V/N) = c΄ + (β/2) ln θ + ln (V/N) –1/N 1 

φ* = c + (β/2) ln (E/N) + ln v = c + (β/2) ln (E/N) + ln(θ/p) –(β/2)/N β/2 

● In all cases contained in the table, the quantity N ∂φ*/∂N proves to be constant, 
independent of N, so that the right hand side of (67) equals 0. Hence, 

 φ*
A = φ*

B = φ* (68) 

● This defines an isentropic state, which is reached when full uniformity is not possible. 
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Isentropic state and the law of adiabatic change 
● It is easy to show that at the isentropic state the following equalities follow: 

 θΑ
β/2VΑ/NΑ = θΒ

β/2VB /NB θΑ
β/2vΑ = θΒ

β/2vB  θA
1 + β/2/pA = θB

1 + β/2/pB  (69)  

● The latter equations are known as the law of isentropic or (reversible) adiabatic change. 

● In particular, a reversible process for which the equality of intensive entropies in the two 
states (as implied by (68)) implies zero change in entropy (dΦ* = 0). As we will see below 
(equation (89)) this implies zero heat transfer (δQ = 0); a process with zero heat transfer 
is called an adiabatic process. 

 

Q: Why the temperature in a vertical cross section across the troposphere varies 
substantially (decreases with increasing elevation), while the entropy per unit mass is fairly 
uniform (an isentropic state)? 

A: Because this maximizes entropy, i.e., uncertainty. Note that, due to absorption of solar 
energy by the ground, the temperature close to the ground level is not the same as at 
higher elevation in the atmosphere. Also, due to the hydrostatic law, the pressure cannot 
be uniform in a vertical cross section and therefore uniformity cannot hold. Thus, both 
pressure and temperature vary according to (69). 
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Phase change: setup 
● When the two systems that are brought into contact are in different phases, e.g. system 

A is gas (vapour) and system B is liquid (water), then there is a difference in the equation 
of energy conservation, which should include the phase change energy, i.e. the amount 
of energy per molecule ξ to break the bonds between molecules of the liquid phase in 
order for the molecule to move to the gaseous phase. 

● Using subscripts A and B for the gaseous and liquid phase, respectively, the total entropy 
will be   

 Φ* = NAφ
*

A + NB φ*
B (70) 

with 

 φ*
A = cA + (βA/2) ln (EA/NA) + ln (V/NA),   φ*

B = cB + (βB/2) ln (EB/NB)  (71) 

where in the liquid phase we neglected the volume per particle, which is by several 
orders of magnitude smaller than that of the gaseous phase. 

● The two systems (phases) are in open interaction and the constraints are: 

 EA + EB + NAξ = E (72) 
 NA + NB = N (73) 

● We wish to find the conditions which maximize the entropy Φ* in (70)  under constraints  
(72) and (73) with unknowns EA, EB, NA, NB. We form the function Ψ incorporating the 
total entropy Φ* as well as the two constraints with Langrage multipliers κ and λ: 

 Ψ = NAφ
*

A + NB φ*
B + κ (EA + EB + NAξ –  E) + λ (NA + NB – N) (74) 
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Phase change: results 
● To maximize Ψ, equating to 0 the derivatives with respect to EA and EB, we obtain 

 
∂Ψ
∂EA

 = 
NA βA

2EA
 + κ = 0,  

∂Ψ
∂EB

 = 
NB βB

2EB
 + κ = 0 (75) 

and since E/N = ε and by virtue of (39), this obviously results in equal temperature θ, i.e. 
 κ = –1/θA = –1/θB = –1/θ (76) 

● Equating to 0 the derivatives with respect to NA and NB, we obtain 

 
∂Ψ
∂NA

 = φ*
A – 

βA

2  – 1 + κξ + λ = 0,  
∂Ψ
∂NB

 = φ*
B – 

βB

2  + λ = 0 (77) 

and after eliminating λ, substituting κ from (76), and making algebraic manipulations, 

 φ*
A – φ*

B = ξ/θ – (βB/2 – βA/2 – 1) (78) 
● On the other hand, from (71), but expressed in terms of θ and p (equation (43)), the 

entropy difference is 

 φ*
A – φ*

B = –(βB/2 – βA/2 – 1) ln θ – ln p + constant (79) 
● Combining (78) and (79), and eliminating φ*

A – φ*
B, we find  

 p = constant × e–ξ/θ θ –(βB/2 – βA/2 – 1) (80) 
Assuming that at some temperature θ0, p(θ0) = p0, we write (80) in a more convenient 
and dimensionally consistent manner as:  

 p = p0 e ξ/θ0 – ξ/θ (θ0/θ) (βB/2 – βA/2 – 1) (81) 
For application of (81) to the change phase of water see p. 41. 
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The Clausius-Clapeyron equation 
Equations (78) and (79) can be written in differential form as 

 d(φ*
A – φ*

B) = –ξ dθ /θ2 = –(φ*
A – φ*

B) dθ /θ – (βB/2 – βA/2 – 1) dθ /θ (82) 

 d(φ*
A – φ*

B) = –(βB/2 – βA/2 – 1) dθ/θ – dp/p (83) 

respectively. Equating the right-hand sides of the two, after algebraic manipulations we find  

  (φ*
A – φ*

B) dθ /θ = dp/p  (84) 
or 

  dp/ dθ = (φ*
A – φ*

B) (p /θ) (85) 

This is the well known Clausius-Clapeyron equation, a differential equation whose solution, obviously, 
is (80). Here we derived it, as a result of entropy maximization, just for the completeness of the 
presentation. In fact, the differential form is not necessary because in application only the closed 
solution is actually needed. 

Warning: Classical and statistical thermodynamics books typically integrate the Clausius-Clapeyron 
equation using an incorrect assumption, that φ*

A – φ*
B = ξ/θ, with constant ξ, which results in the 

incorrect, albeit quite common, solution: 

 p = constant × e–ξ/θ (86) 
 

Q: What determines how much water is evaporated and condensed, thus providing the 
physical basis of the hydrological cycle? 

A: A combination of entropy maximization (eqn. (70)) with energy availability (eqn. (72)). 
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Laws of thermodynamics: the zeroth law 
● In classical (non-statistical) thermodynamics the zeroth law states that if two systems are 

in thermal equilibrium with a third system, then they are in thermal equilibrium with 
each other; this law defines the notion of thermal equilibrium. In turn, this is necessary 
to define, temperature as two systems that are in equilibrium have the same 
temperature. 

● In statistical thermodynamics this law looks not necessary. Two systems are in 
equilibrium if they are put in contact and the entropy of the compound system has been 
maximized. Besides, the temperature is defined through (37). 

● As we have seen already, (59) implies that two systems put in contact, in which entropy 
has been maximized, will have the same temperature. This is a consequence of entropy 
maximization and does not presuppose an axiomatic introduction of the zeroth law. 
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Laws of thermodynamics: the first law 
● We have already used several times the principle of conservation of energy, according to 

which energy can be neither created nor destroyed but can only change forms. 

● In classical thermodynamics, this principle is implemented as the first law of 
thermodynamics, which is typically stated as: the heat supplied to a system (δQ) equals 
the increase in internal energy of the system (dE) plus the work done by the system 
(δW). 

● While the internal energy of a gas in a motionless container is kinetic energy, the 
expected value of the velocity of a molecule is zero and thus macroscopically it cannot 
produce work. In contrast, the forces exerted on the walls of the container by the 
colliding molecules are all of the same direction and give a resultant force (pressure 
times area) whose expected value is not zero. Macroscopically, this can produce work. 

● This is demonstrated in the figure; if the piston whose area is A is moved by dx, then the 
work produced is δW = p A dx = p dV, or per particle δw = p A dx / N = p dv. 

● If energy δQ, called heat, is supplied to the system then, because of energy conservation, 
 δQ = dE + δW = dE + pdV (87) 

or per particle 
 δq = dε + pdv  (88) 

These are the mathematical expressions of the first law. 
p

x
p

x
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Laws of thermodynamics: the second law 
● In classical thermodynamics, the second law states that in the process of reaching a 

thermodynamic equilibrium, the total entropy of a system increases, or at least does not 
decrease. 

● In this respect, the second law is none other than the principle of maximum entropy 
applied to thermodynamic systems. Since, starting from any condition and approaching 
the equilibrium, the entropy change dΦ* of the total system can only be positive. 

● In classical thermodynamics, the entropy change is defined as δQ/T for a reversible 
process, where T is the absolute temperature (see below), which in our formalism should 
equivalently be written as δQ/θ. 

● Taking the piston example in the previous page, and comparing (87) with (48), we may 
see that, since in our example dN = 0, their right-hand sides are equal. Thus  

 δQ = θ dΦ* (89) 

which indicates the equivalence of the classical entropy with the extensive entropy of 
our framework. Note that (89) holds true only for reversible systems. 

● However, we have seen (Closed interaction in p. 28, Open interaction in p. 29) that the 
entropy can increase (dΦ* > 0) without energy gain or work production (δQ = δW = 0). 
Processes in which this happens are known as irreversible and are more generally 
characterized by    

 δQ < θ dΦ* (90) 
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Classical (Boltzmann) formalism 
● We have seen that the statistical framework provided here can produce the classical 

thermodynamic framework, yet it is more general as the principle of maximum entropy 
can be applied in other systems. 

● In order for the statistical system to be able to reproduce classical thermodynamics also 
numerically, some numerical adaptations are necessary. 

● In the classical formalism the temperature is (unnecessarily) regarded as an independent 
fundamental unit (kelvin, K) and the (unnecessary) constants k = 0.138 065 yJ/K (yocto-
joules per kelvin) and 

 R* = k Na = 8 314.472 J K−1 kmol−1  (91) 

are used, where Na (= 6.022×1023 mol−1) is the Avogadro constant (the number of 
particles per mole of substance). 

● Accordingly, the so-called absolute (or thermodynamic) temperature T and the classical 
entropy S are defined as follows, so that the relationship 1/T = ∂S/∂E is retained: 

 T := θ/k [units: K],   S := k Φ* [units: J/K] (92) 

● The classical entropy per unit mass becomes: 

 s = k φ* / m0 = [(1 + β/2) ln(T/T0) – ln(p/p0)] (R*/M0) (93) 

where T0 and p0 designate an arbitrary macroscopic state to which we assign zero 
entropy (usually in atmospheric thermodynamics this is T0 = 200 K and p0 = 1000 hPa) 
and M0 := Na m0 is the molecular mass. 
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Classical (Boltzmann) formalism (2) 
● By setting 
 R*/M0 =: R,  (1 + β/2) R =: cp, (β/2) R =: cv (94) 

(which are, respectively, the gas constant and the specific heat for constant pressure and 
constant volume, respectively), we obtain the final classical entropic formula: 

 s = cpln(T/T0) – R ln(p/p0) (95) 

● The law of ideal gases becomes 
  p V = n R* T  p v = R T (96) 

where now v := V / m = V / (n M0) is the volume per unit mass (= 1/density), m is the 
mass of the gas in volume V and n is the number of moles. 

● All of the above equations, after being adapted, substituting T for θ and S for Φ* based 
on (92), are valid also in classical thermodynamics. 

Q: Is the specific heat (heat capacity per unit mass) of a gas an experimental quantity or 
can it be derived theoretically? 

A: The entropy maximization framework can derive heat capacities theoretically. 

As an example we consider the atmospheric air mixture which is mostly composed by 
diatomic molecules (N2, O2) so that the degrees of freedom per molecule are β = 5. In this 
mixture, M0 = 28.96 kg/kmol, so that R = 8314.472/28.96 = 287.1 J K−1 kg−1. Thus, cp = 
(1 + 5/2) × 287.1 = 1004.8 J K−1 kg−1, while the experimental value is cp = 1004 J K−1 kg−1! 
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The phase change using classical formalism 
● Equation (78) can be easily transformed into the classical formalism using the above 

definitions, thus obtaining 

 sA – sB = 
α
T – (cL– cp) (97) 

 where α := ξ/m0.  

● We choose as reference point the triple point of water, for which it is known with 
accuracy that T0 = 273.16 K (= 0.01oC) and p0 = 6.11657 hPa (Wagner and Pruss, 2002).  

● The specific gas constant of water vapour is R = 461.5 J kg–1 K–1.  

● The specific heat of water vapour for constant pressure, again determined at the triple 
point, is cp = 1884.4 J kg–1 K–1 and that of liquid water is cL = 4219.9 J kg–1 K–1(Wagner and 
Pruss, 2002), so that cL– cp = 2335.5 J kg–1 K–1 and (cL – cp)/R = 5.06.  

● The latent heat, defined as L = (sA – sB) T, at T0 is L0 = 2.501 × 106 J kg–1 so that α =  
L0 + (cL – cp) T0 = 3.139 × 106 J kg–1 and ξ / kT0 = α / RT0 = 24.9. This results in the 
functional form 

 L [J kg–1] = α – (cL– cp)T = 3.139 × 106 – 2336 T [K] (98)  
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The phase change using classical formalism (2) 
● It can be verified (see figure) that equation (98) is very close to tabulated data from 

Smithsonian Meteorological Tables (List, 1951), as well as a commonly suggested 
empirical linear equation for latent heat (e.g. Shuttleworth, 1993):  

 L [J kg–1] = 3.146 × 106 – 2361 T [K] ( = 2.501 × 106 – 2361 TC [oC]) (99) 

● It is important to know that the entropic framework which gives the saturation vapour 
pressure is the 
same framework 
that predicts the 
relationship of 
the latent heat 
of vaporization 
with 
temperature. 
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The phase change using classical formalism (3) 
● Equation (81), if converted to the classical formalism, takes the form: 

 p = p0 exp








α

RT0
 










1 – 
T0

T  








T0

T

(c
L
 – c

p
)/R

 (100)  

● With the above values of thermodynamic properties, (100) becomes  

 p = p0 exp










24.921 










1 – 
T0

T  








T0

T

5.06

, with T0 = 273.16 K, p0 = 6.11657 hPa. (101) 

where we have slightly modified the last two decimal digits of the constant α / RT0 to 
optimize its fit to the data (see below).  

● For comparison, (86) (based on the inconsistent integration of the Clausius-Clapeyron 
equation for constant L) is 

 p = p0 exp










19.84 










1 – 
T0

T , with T0 = 273.16 K, p0 = 6.11657 hPa (102)  

● Empirical equations based on observations are in common use; among these we 
mention the so-called Magnus-type equations, two of which are:  

 p = 6.11 e17.27 TC / (237.3 + TC)     [TC in oC, p in hPa] (Tetens, 1930) (103) 

 p = 6.1094 e17.625 TC / (243.04 + TC)     [TC in oC, p in hPa] (Alduchov & Eskridge, 1996) (104) 
The latter is the most recent and is regarded to be the most accurate—but it is less 
accurate than  (101) (see Koutsoyiannis, 2012).  
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Saturation vapour pressure: comparisons 
● The figure on the right compares the two 

theoretical equations (101) and (102) also 
with the empirical (104). All seem 
indistinguishable.  

● However, the figure below, which compares 
relative differences from measurements, 
clearly indicates the inappropriateness of 

(102). 
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Calculation of dew point for known vapour pressure 
● The simplicity of (101) makes numerical calculations easy. For known T, (101) provides p 

directly. The inverse problem (to calculate T, i.e. the saturation temperature, also known 
as dew point, for a given partial vapour pressure p) cannot be solved algebraically. 
However, the Newton-Raphson numerical method at an origin T0/T = 1 gives a first 
approximation T΄ of temperature by 

 
T0

T΄ = 1 + 
1

24.921 – 5.06 ln








p0

p  (105) 

 Notably, this is virtually equivalent to solving (102) for T0/T.  

● This first approximation can be improved by re-applying (101) solved for the term T0/T 
contained within the exponentiation, to give 

 
T0

T  = 1 + 
1

24.921 ln








p0

p  + 
5.06

24.921 ln








T0

T΄  (106) 

● A single application of (106) suffices to provide a value of T with a numerical error in T0/T 
less than 0.1%, while a second iteration (setting the calculated T as T΄) reduces the error 
to 0.02%.  
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Statistical vs. classical thermodynamics 
● In classical thermodynamics, first we define temperature T, as well as a basic unit for it 

(kelvins) and then the entropy S by dS := δQ / T, where Q denotes heat; the definition is 
perhaps affected by circularity, as it is valid for reversible processes, which are those in 
which dS = δQ / T, while irreversible are those in which dS > δQ / T. 

● In statistical thermodynamics, the entropy Φ is just the uncertainty, as defined in 
probability theory, and is dimensionless; the temperature is then defined by 1/θ := 
∂Φ/∂E, where E is the internal energy of the system; the natural unit for temperature θ 
is then identical with that of energy (joules). 

● Classical thermodynamic equations can be derived from statistical thermodynamics by 
simple linear transformations (S = k Φ* and T = θ/k where k is Boltzmann’s constant). 

● The essential difference is in interpretation: 

○ Awareness of maximum uncertainty in statistical thermodynamics. 

○ Delusion of deterministic laws in classical thermodynamics. 

● The statistical thermodynamic framework is clearly superior to the classical framework 
for many reasons: 

○ It is more parsimonious. 

○ It provides explanations for the processes described by classical thermodynamics. 

○ It can be generalized to other processes, involving higher levels of macroscopization. 
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Concluding remarks 
● Heat is not a caloric fluid, as used to be thought of up to the 19th century. 

● Thermodynamic laws e.g. the ideal gas law are statistical laws (typically relationships of 
expectations of random variables). 

● While these laws are derived by maximizing entropy, i.e. uncertainty, they express near 
certainties and are commonly misinterpreted as deterministic laws. 

● The explanation of near certainty relies on these two facts: 

○ Typical thermodynamic systems are composed of hugely many identical elements: 
N ~ 1024 per kilogram of mass. 

○ The random motion of each of the system elements is practically independent to the 
others’. 

● As a consequence, a random variable x expressing a macroscopic state, will have a 

variation std[x]/E[x] ~ 1/ N ~ 10–12 (for a kilogram of mass). 

● The fact that the macroscopic variability is practically zero should not mislead us to 
interpret the laws in deterministic terms. 
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