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Abstract

Virtually all research concerning short-term rain prediction to date makes use
of spatial rainfall data, sometimes also taking another variable, such as wind
direction, into account. This thesis explores the possibility of using neural net-
works for short-term rain predictions from several meteorological variables from
only one gauging station. The input variables examined, besides rainfall, are
wind speed and direction, temperature, humidity, and barometric pressure. The
method cannot compete with spatial methods, and the results are indeed im-
practical, but they show some correlation which could be used to improve the
spatial methods.
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Chapter 1

Introduction

In this introduction the way long-term and short-term forecasts are carried out
is presented; it is observed that all methods make use of spatial data, and that it
might be beneficial to study the problem with point data. The gauging station
whose data have been used in the study, and the prevalent meteorological con-
ditions and peculiarities of the site, are described. Finally, related works in the
literature are visited and the advantages of using neural networks are explained.

1.1 Forecasting and nowcasting

The foundation for modern meteorological prediction was laid by Richardson
(1922), who built on the idea Vilhelm Bjerknes had published in 1904 of apply-
ing the laws of motion and the laws of thermodynamics to weather prediction.
Richardson devised methods of solving the equations using finite differences. He
did not, however, have the means to make the required calculations, and al-
though he had dreamt of a meteorological organisation where tens of thousands
of human computers would be making calculations in parallel, he had not antic-
ipated the emergence of computing machines, which occurred two decades later.
His work, forgotten in the meantime, was then revisited, and by the mid 1950s
computer-produced weather forecasts had become operational (Tribbia 1997).

For current global prediction, the finite difference method is applied on three-
dimensional grids the nodes of which are at a distance of between one and two
degrees of latitude or longitude in the horizontal, and 500 and 1,000 m in the
vertical direction (Tribbia 1997). For more accurate, local prediction, grids up to
four times more dense are used. Data are collected from fixed gauging stations,
ships, aircraft, and meteorological balloons. The calculations are performed
on computers which are among the most powerful in the world, consisting of
hundreds of parallel processors.

This huge process may be impressive and successful, but when it comes to
very-short-range predictions it doesn’t work. There is a significant delay in
the collection of data; meteorological balloons, in particular, are sent to the
atmosphere for measurements only every 12 hours. In addition, the calculations
take several hour to complete. Finally, the forecasting models show instabilities
and do not converge on the short term. Thus, even if the speed of calculations is

13



14 CHAPTER 1. INTRODUCTION

increased tenfold—a feat not at all unlikely for the next few years—this process
would not give us an answer to our short-range problem.

The techniques used in short-range forecasting are very different from the
ones mentioned above for medium and long-range forecasting; in fact, they
are often referred to with the distinct term nowcasting (Atkinson and Gadd
1986, 126-128). Nowcasting actually refers to how the weather is now, which
is non-trivial to determine since there are gaps in the coverage of observing
stations. Nowcasting is mainly achieved with weather radars and satellite im-
ages. Weather radars trace clouds and rainfall, and can even estimate the rate
of rainfall. Nowcasting techniques are also used for very-short-range forecasts
by extrapolating the movement of cloud or rainfall patterns revealed either by
Doppler radars or by sequences of radar or satellite images. An example of a
nowcasting application is a weather radar used by the BBC during the tennis
tournament at Wimbledon (Fox 1999).

Some experiments using artificial neural networks for short-term precipita-
tion forecasting have also been performed. For example, Kuligowski and Bar-
ros (1998) have created models that make predictions in the 0-6 hour range
from the measurements of numerous precipitation gauges and from wind direc-
tion measurements.

All these methods, for either short- or medium- or long-range forecasts, make
use of spatial data. The models developed in this project, however, use data
from only one point; the measurements for a number of variables from a single
gauging station are used. This idea is not new; sea-weeds hung out of the
window, man-made devices that change colour or have little people appear,
dressed for rain or sunshine, and other simple means, have been used for centuries
as indications of the kind of weather to be expected; those methods are mosty
indirect observations of humidity, some of them also taking barometric pressure
into account. Our models are, of course, more complex, making use of wind speed
and direction, temperature, and rainfall, in addition to humidity and pressure,
which are measured at a specific gauging station, and predict rain at that same
point.

Neither can we compete with the spatial methods nor do we aspire to do
so; nevertheless, it is interesting to explore what happens at a single point. It
might turn out that there is more information at one point than we previously
thought, and other ways of exploiting that information could subsequently be
found. The models developed have an error too large to be of any practical use,
but still sufficiently small to show that there is indeed an interesting amount of
information at the site considered. What makes these results more important is
that rain at that site is an irregular and unpredictable phenomenon. The site
and this difficulty are presented in the following section.

1.2 Rain in the meteorological station of NTUA

The data used are from the Meteorological Station of the National Technical Uni-
versity of Athens (NTUA). The station is described by Mamassis et al. (2000),
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and also in the station’s web pages, http://www.hydro.ntua.gr/meteo/en/.!
It was installed in 1993 in the University Campus of NTUA at Zografou, Athens,
Greece, about 4.5 km east of the centre of Athens, at the west feet of Mount
Hymettus, one of the four mountains that surround Athens. It is fully auto-
matic, logging the measurements of the sensors every ten minutes and trans-
mitting them to the Hydraulics Building. The configuration of the station has
undergone changes during these seven years, but what matters here is that there
is a good, publicly available record of 10-minute measurements for the variables
of interest.? In the models described in the following chapters, hourly values
have been used.

The climate in Athens is summarised in Table 1.1. It changes significantly
through the year, but it is mostly warm and dry. In the hottest days of July and
August the temperature reaches 39-40°C; in the coldest days of winter, it goes
down to 2°C or less. Due to the low humidity, heat is tolerable, whereas cold is
penetrating.

Mean Mean  Average Mean Average Mean
min. max. relative precipi-  number sunshine
temp. temp. humidity tation of rainy duration
(°C) (°C) (%) (mm) days (hours/day)
Jan 6.5 12.9 73 51.7 15 4.2
Feb 6.8 13.7 71 42.4 13 5.1
Mar 8.1 15.8 68 40.1 11 5.9
Apr 11.5 20.3 62 25.1 10 7.8
May 15.6 25.2 58 19.8 8 9.4
Jun 20.1 29.8 52 11.6 5 11.1
Jul 22.6 32.9 48 4.9 2 12.0
Aug 22.5 32.7 48 5.8 2 11.5
Sep 19.2 28.9 56 13.6 3 9.4
Oct 15.1 23.4 66 49.3 9 6.9
Nov 11.5 18.6 73 53.1 12 5.1
Dec 8.3 14.7 74 68.8 14 4.1
Year 14.0 22.4 62 386.4 105 7.7

Table 1.1: Weather conditions in Athens, Greece, for the period 1931-1990
The measurements are from the station of the National Observatory of Athens,
which is near the city centre. The original table is available by the Observatory
at http://www.meteo.noa.gr/noa/climatological.html.

Precipitation in Athens is generally low, but considerable, about 350-400 mm
per year. As a comparison, in Manchester, UK, it rains about 800 mm per
year, and in London about 600 mm.? What is notable, however, is that rain in

!This URL will probably change to http://www.meteo.ntua.gr/ in late 2000 or early 2001.

2Except for wind speed, wind direction, temperature, humidity, barometric pressure and
rainfall, which have been used in the models, it would be interesting to include solar radiation
as well; however, the solar radiation sensor was only added in 1999. A sunshine duration sensor,
on the other hand, had been installed early enough, but its measurements were problematic.

3Britain’s reputation for rain is unjustified. It rains far less in Britain than, for example, in
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Athens varies highly with the season. The precipitation in June, July, August
and September is next to negligible; the most rainy months are November and
December, but close to them come October, January, February and March; and
in April and May rainfall gradually decreases as summer approaches. In the
most rainy month, December, it rains 14 times as much as it does in the driest,
July; the equivalent factor in the UK is less than 2 in all locations. (Statistical
meteorological data for the UK is available by the UK Meteorological Office,
http://www.met-office.gov.uk/ukclimate/averages_sites.html.)

There are about 100 rainy days in the year, i.e. 27%. Here, however, we are
working on an hourly basis. In the rainy days, it usually rains only for a few
hours in the day. As a result, in the 8,760 hours of the year, there are only about
250 rainy hours, i.e. 3%. For many days, or weeks, rain can stay at zero, then
rise to some nonzero value. These sudden changes are difficult to predict, and
make the problem especially challenging.

1.3 Neural networks in meteorology and hydrology

Since the publication of Parallel Distributed Processing by D. E. Rumelhart and
J. L. McClelland in 1986, which is considered to mark the beginning of the
new connectionist era, the capabilities of artificial neural networks have been
explored in all sciences, meteorology and hydrology being no exception. The
work by Kuligowski and Barros (1998) has already been mentioned. There are
a number of other works, of which a sample of the most recent will be presented
here.

Khotanzad et al. (1996) have developed a model that predicts the hourly
time series of temperature for the next seven days. The inputs to the model are
the hourly time series of the previous day and the weather service’s predictions
for high and low temperatures for the days to be forecast. This system, which
they claim to be of particular interest to electric companies, can hardly be said to
be really a forecaster, as the most important part of the job, i.e. the prediction
of the temperature extremes, has already been done by the weather service.
However, the work demonstrates a simple meteorological application of neural
networks.*

River level and discharge are of great interest in hydrology, since water from
rivers is used in such activities as irrigation and power production, and because
floods can cause damage to property or even deaths. Thus, the prediction of
river level occupies a large part of the literature. See and Openshaw (1999), for
example, have attempted to enhance flood forecasting by using a combination
of soft modelling techniques, namely neural networks, fuzzy logic, and genetic
algorithms. The input to their overall system is the current river level and
rainfall time series. The output of each part of the model is fed into the next
part, the overall output being an estimation of the danger of flooding. A number

western Greece, where the annual rainfall exceeds 1,200 mm.

4Throughout this text, the term “neural network” is used where the more accurate “artificial
neural network” is intended. This clarification is necessary because artificial neural networks,
though having largely been inspired by their biological counterparts, have very little in common
with them.
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of works, such as that by Atiya et al. (1999) concern the River Nile, for which
longer-term forecasts, such as for a month ahead, are interesting; the Nile’s flow
is predictable on the short term, whereas it is Egypt’s only source of water,
making long-term predictions especially important.

What has made neural networks largely successful in this area is that hydro-
logical and meteorological phenomena are very complex. Neural networks, while
being essentially simple, are capable of implementing extremely complex input-
output mappings; the work by Lapedes and Farber (1988) provides a simple
theoretical explanation for this capability. Techniques such as the backpropaga-
tion algorithm enable the models to detect the relation between input and output
and thus automatically estimate the parameters, a process which is designated
by the occasionally confusing terms training and learning. Thus, in many cases
neural networks are appropriate for modelling phenomena of great complexity.

The traditional simple devices that are used to indicate weather make very
simple mappings. If humidity is high, or if barometric pressure is low, the
probability of rain is higher. Although this may be correct, it rarely works in
practice. There may, however, be more knowledge in more variables. It might
be, for example, that a drop in pressure, accompanied by a drop in temperature
and a certain change in wind speed and direction, constitute a “signature” of
impending rain. In this work, we try to have neural networks determine whether
such a signature exists and recognise it. Rain has been chosen as the output
variable, because the prediction of rain is the most interesting and probably the
most useful.
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Chapter 2

Methodology

In this chapter essential background that underlies all experiments of the follow-
ing chapters is given. The input and output of the models is explained, as well
as the various data sets. An overview of the way performance is evaluated and
of the baseline models that are used as reference is also presented.

2.1 Patterns and pre-processing

A number of experiments will be presented in the following chapter. Each ex-
periment uses a set of patterns, each pattern being a set of values. For example,
in most experiments the pattern consists of six real input values (temperature,
humidity, barometric pressure, rainfall, and two co-ordinates of wind vector)
and one binary output value (whether it will rain or not). Not all experiments
make use of the same data. A general description of the patterns follows, and
the specific details of each experiment are mentioned later.

There is always one output value, which may be either the quantity of rain in
the next hour, or a binary value, 1 or 0, standing for nonzero or zero rain in the
next one or six hours. The number of input values depends on the model, but
generally it is the last few measurements of wind vector, temperature, humidity,
barometric pressure, and rain. In most cases, the last hourly value is used.
In some experiments, the values for the previous hours are used as well. Ten-
minute measurements have also been attempted, and the effects of using the
current time and season have also been examined.

In theory, a neural network with an adequate number of hidden layers and
nodes can perform any kind of mapping between the input and output variables.
In most cases, however, some pre-processing of the input is necessary. Chapter 8
of Bishop (1995) explains in detail why this is the case; the basic idea is that with
pre-processing we can incorporate some prior knowledge in the input, which may
be very hard for the model to determine. In our case, pre-processing involves
the following procedures:

e The transformation of wind speed and direction, in other words of the
polar co-ordinates of the wind vector, into Cartesian co-ordinates.

e The substitution of the co-ordinates of a unit vector in place of current

19



20 CHAPTER 2. METHODOLOGY

time and current season.
e The normalisation of variables.

The original wind variables are wind speed and wind direction. Wind direc-
tion is given in degrees, where 0 is north and 90 is east. Wind direction is highly
nonlinear, its problem being the discontinuity at the north; a wind direction of
359° is pretty much the same as 0°. Using Cartesian co-ordinates in place of the
wind speed s and the wind direction ¢ is better, since Cartesian co-ordinates are
continuous. The x direction is defined as east-west, where positive is east, and
y as north-south, where positive is south. The conversion is done as follows:

r = —ssing

Yy = —SCoS

A similar problem exists in the representation of the time of day. If, for
example, the number of minutes since midnight is used, then there is a discon-
tinuity at midnight, where from 1439 minutes we jump back to 0. The solution
is to arrange the hours in a circle with unit radius, like a 24-hour clock, with 0
hours at the top and then clockwise from 1 through 23, and use the Cartesian
co-ordinates of the vector that points to the current time. If ¢ is the current
minute of day, then these co-ordinates are:

x = sin(t/1440 x 2m)
y = cos(t/1440 x 2m)

Likewise, the season is the number of month, from 1 to 12. If months are
arranged like a 12-hour clock, the co-ordinates of month m are

x =sin(m/12 x 27)
y = cos(m/12 x 2m)

Normalisation has been done so that the values of the variables are in the
(0, 1) range, except for the wind co-ordinates, the normalised values of which
are in the (-1, 1) range. If m is the minimum value of a variable z, and m + r
is the maximum (r is the range), then the normalised value may be defined as
(x—m)/r. Usually we use a somewhat smaller, rounded value in place of m, and
a larger, rounded value in place of r. In all cases, normalisation is virtually a
change in the unit of measurement, and is thus certain not to have any unwanted
effects. For the wind co-ordinates, a different sign indicates an opposite direction,
and thus the sign has been preserved after normalising, making the normalised
co-ordinates being in the (-1, 1) range. The minimum and maximum values
of the variables in their original units, together with some other statistics, are
shown in Table 2.1. The values have been normalised as shown in Table 2.2.
The co-ordinates of the unit time and season vectors have been left as they are,
in the (-1, 1) range.
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Variable Unit | Minimum  Maximum  Mean  St. dev
Wind z m/s —8.2 81 —0.3 1.5
Wind y m/s —11.5 10.5 —0.6 2.9
Temperature °C —-1.5 41.8 16.6 7.5
Humidity % 13.7 98.6 58.5 17.4
Barom. pressure hPa 960.2 1007.1 989.3 5.7
Rainfall mm 0 38.5 0.05 0.66
Nonzero rainfall mm 0.1 38.5 1.79 3.48

Table 2.1: Statistical characteristics of variables
(on an hourly basis)

Variable How normalised
Wind component x/40
Temperature (x +5)/50
Humidity x/100
Barom. pressure (x —960)/50
Rainfall x/100

Table 2.2: Normalisation of variables

2.2 Pattern sets and error types

The six years of measurements available, excluding some periods of malfunction,
allow for a data set of about 40,000 patterns. This will be named the entire
pattern set. The future value of rain (that of the next hour) is zero in most of
these patterns, being it nonzero in only 1,138 patterns.

Since the entire pattern set is heavily biased towards zero rain, the reduced
pattern set is usually used. The definition of the reduced pattern set differs
from experiment to experiment, but it generally consists of the 1,138 nonzero
rain patterns plus a randomly selected sample of 1 or 2 thousand zero rain
patterns. Since the distribution of rain is not uniform through the year, the
random selection of the patterns with zero rain must not be uniform either. The
actual distribution of rain is shown in Table 2.3. The selection of the zero rain
patterns that are included in the reduced pattern set is made at random, but
following that distribution.

The reduced pattern set is partitioned into a training set and a walidation
set, usually by dividing into halves or thirds (one third for training and two for
validation).

The way performance is evaluated is discussed in detail in Section 2.3 below,
but evaluation is generally based on the mean absolute or square error. Accord-
ing to the pattern set on which they are measured, error figures are divided into
the following categories:

Training error This is the error measured on the training set, typically during
training.

Validation error It is measured after training, on the validation set.
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Number of patterns
Jan 199
Feb 90
Mar 170
Apr 94
May 59
Jun 10
Jul 5
Aug 18
Sep 20
Oct 81
Nov 101
Dec 291

Table 2.3: Distribution of rain patterns in months

Test error The entire pattern set has different characteristics than the reduced,
thus it is important to measure performance on that as well; the resulting
figure is called the test error. In some models, the test error is measured
only on a subset of (e.g. half) the entire pattern set, the rest of it being used
to determine some parameters (e.g. the ratio of nonzero to zero rainfall).

2.3 Performance evaluation and baseline models

When the model predicts state, i.e. 1 for a prediction of rain and 0 for a prediction
of no rain, the mean absolute error, or MAE, is used for evaluating performance:

1 n
MAE = =Y |t; — o;
ni:l‘Z OZ’

where n is the size of the data set, o; is the output of the model and ¢; is the
target output; ¢t; and o; have a value of 1 or 0. Depending on the type of error,
the data set can be the entire (or part of), validation, or training, as described
in the previous section.

For models that predict value, i.e. a prediction of the rainfall depth, the mean
square error, or MSE, is used:

1 n
MSE = E Z(tz - Oi)2

=1

where, this time, t; and o; are real values. The square root of the MSE is the
standard error. The standard error is usually denormalised, so that its units of
measurements are the original, i.e. mm of rain.

The mean absolute and mean square error, however, are not adequate indi-
cators. One of the oldest known misuses of the mean absolute error occurred
in 1884 (Murphy 1997), when J. P. Finley, while making similar experiments,
determined the mean absolute error of his forecasts of tornadoes or no tornadoes
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to be 3.4%; it was soon pointed out that a baseline model always predicting no
tornadoes produced an error of only 1.8%. It is thus important to interpret the
MAE and MSE only in reference to the errors of baseline models.

Different baseline models are specified for different experiments, but the types
of baseline models are generally the following:

No change This model predicts that it will rain if and only if it currently
rains; or that the amount of rain in the next hour equals the amount in
the previous hour. This is the baseline model that performs best in most
cases.

Zero rain This model always predicts no rain.

Rain This is the opposite of the zero rain model; it always predicts rain. It is
used only when predicting state.

Random The prediction of rain at random is performed by assigning a proba-
bility of rain equal to the ratio of rain to no rain outputs in the data set.
Also used for state predictions only.

Average It is used only when predicting value, and makes a prediction equal
to the expected value of rain. It is very much like the zero rain model,
but it should perform somewhat better, since the mean value minimises
the MSE. The prediction of this model is different for the validation and
the test sets; expected value of rain is 0.6 mm for the validation set and
0.05 mm for the entire set.
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Chapter 3

Experiments

There are two possible kinds of experiments: (a) State prediction, that is, models
that predict whether it is going to rain or not, regardless of the rainfall depth;
(b) Value prediction, that is, models that predict the rainfall depth. The latter
is only mentioned in the Appendix, as most experiments have been with state.
These are presented in this chapter. First, some preliminary experiments are
discussed where state is predicted for the hour that follows. These are refined
in some significant details in the next section. After that we deal with state
prediction for six hours.

3.1 Preliminary experiments

A number of experiments have been performed initially, with generally poor
results. They are briefly mentioned here for completeness, although most of the
outcomes of the experiments are tabulated in the Appendix.

3.1.1 Perceptrons

The first experiments have been performed with simple perceptrons which were
trained to classify their input according to whether it will rain or not. The input
is the last measurements of wind vector, temperature, humidity, barometric
pressure, and, optionally, rain. More details, as well as results, are given in the
Appendix.

Perceptrons do not converge well. As can be seen in Figure 3.1, the training
error oscillates with epochs. The reason for this oscillation is the nature of the
perceptron training algorithm, which always changes the weights by an equal
quantity when it gets the wrong output. The results tabulated in the Appendix
have been obtained by seeing that training is interrupted when the oscillation is
at a low point.

3.1.2 Simple feedforward networks

In order to eliminate the problems of the perceptron training algorithm, networks
with similar architecture with perceptrons have been developed, which, however,

25
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o Performance-is-0.247059,-Goal-is-0
10 T T T T T

Training-Blue

10 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900
990-Epochs

Figure 3.1: Perc-30 training error

instead of a hard limiting transfer function, use the logistic sigmoid:

1
logsi =—
ogsis(e) = 17—
The shape of this function is shown in Figure 3.2 in comparison to a hard limiting
function. The use of a continuous function makes possible the use of a gradient
descent training algorithm.

1 1
0.5 0.5
0 0
-1 -0.5 0 0.5 1 -5 0 5
(a) Hard limiting (b) Logistic sigmoid

Figure 3.2: Different kinds of transfer functions

The output of the transfer function is between 0 and 1 exclusive. During
training, the extreme values of 1 and 0, standing for rain and no rain, are still
given as target outputs. During simulation, the output of the sigmoid function
has to be passed through a hard limiting function. An initial choice for the
threshold could be 0.5. Alternatively, the threshold can be specified so that
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when the model simulates the entire pattern set, the ratio of nonzero to zero
rain predictions is the same as that of the set. This method has been used in
the experiments. Half the entire pattern set has been used to determine the
threshold, and the test error has been determined by simulating the other half.
There is more discussion on threshold determination in Section 4.2.

The models developed and the results obtained are presented in the Ap-
pendix. Although, as Figure 3.3 suggests, the gradient descent converges better
than the perceptron training algorithm, the results are still unsatisfactory. In
the experiments described in the following section, the main improvement has
been training and simulating separate networks for the cases when it is and it is
not raining now. This, in turn, enables a better interpretation of the MAE and
other similar errors, allowing for a better evaluation of performance.

0 Performance-is-0.092234,-Goal-is-0
10 T T T T T

Training-Blue
5
T
L

10 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

500-Epochs

Figure 3.3: FF-6 training error

3.2 Basic state prediction

3.2.1 Introduction

Rain, especially at the site under consideration, is an irregular and difficult to
predict phenomenon. For many hours, days, and even weeks, it stays at zero,
then suddenly it rises to some nonzero value. It is this change in conditions
that we are trying to predict. Thus, rather than creating models that output
whether it is going to rain or not, we could try outputting whether current rain
conditions are going to continue or not, that is, if rain is going to stop or begin.

The two cases, rain beginning and rain stopping, must be studied separately;
conditions that cause rain to begin are different than those that cause rain to
stop. Thus, we must create two networks in each experiment: one will examine
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the situation when it is not raining, predicting whether rain is going to begin or
not; the other will examine the situation when it is raining, predicting whether
rain is going to stop or not. The networks, pattern sets, etc., that have to do
with these two cases will be denoted by NR and R respectively.

We now observe that, having divided the problem in these two subproblems
to be studied separately, there is no difference as to whether we predict rain or
change. In the R case, a prediction of rain is a prediction of no change, and
vice-versa; in the NR case, predicting rain and change are identical. Thus, the
important step is to recognise the necessity of distinguishing cases R and NR;
we will continue to use output 1 for rain and 0 for no rain.

3.2.2 Pattern sets and error types

The number of patterns available is shown in Table 3.1.

Now raining Now not raining
Will rain 723 415 | 1,138
Will not rain 419 38,154 | 38,573
1,142 38,669 | 39,711

Table 3.1: Patterns available for one hour prediction

The R-entire set will be the 1,142 patterns in which it is currently raining;
the NR-entire set will be the 38,569 patterns in which it is currently not raining.
The R-reduced pattern set will be the same as the R-entire set; the NR-reduced
set will be the 415 patterns in which rain is going to begin plus twice as many
(830) patterns in which it continues not to rain. These 830 patterns are chosen
at random among the 38,154 available, but with the same distribution through
the year as the 415 involving change. In both cases, R and NR, the reduced
pattern set will usually be divided into a training set and a validation set. The
MAE on these sets will be named the training and the wvalidation error. The
MAE on the NR-entire set will be the test error. There will be no such error
for the R case (or it will be considered the same as the validation error), due to
insufficient number of available data.

The R-no-change model is the same as the R-rain model; the NR-no-change
model is the same as the NR-no-rain model. Since in both cases the no change
model performs better than the alternative, this will be used as the baseline
model in all cases. The performance of this model is shown in Table 3.2.

‘ Validation error Test error
R 0.37 (0.37)
NR 0.33 0.01

Table 3.2: Performance of the no change baseline model for one hour prediction

3.2.3 Simple feedforward networks

The following models have been attempted:
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R-FF-6 This is a one layer feedforward network with 6 inputs and 1 output.
Its inputs are the last hourly measurement of wind vector, temperature,
humidity, barometric pressure, and rain. Its output, a sigmoid passed
through a thresholding function, is 1 for a prediction of rain and 0 oth-
erwise. R-FF-6 is only trained and simulated with the R-pattern sets,
patterns in which the last measurement of rain is nonzero.

NR-FF-5 This is almost identical to R-FF-6, but it is trained and simulated
with the NR~pattern sets, the patterns of which always have a zero current
rainfall. Since this is always zero, there is no point in including it as an
input, thus NR-FF-5 only has 5 inputs.

Results are shown in Table 3.3.

R-no-change R-FF-6 | NR-no-change NR-FF-5
Threshold 0.56 0.85
Training error 0.22 0.15
Validation error 0.37 0.31 0.33 0.32
Valid. err. given will rain 0 0.15 1 0.94
Valid. err. giv. won’t rain 1 0.57 0 0.016
Test error 0.011 0.016
Test error given will rain 1 0.94
Test error giv. won’t rain 0 0.007
No rain given pred. rain 0.92

Table 3.3: Performance of feedforward networks for one hour prediction
These results are an indication, as different results are obtained each time the
models are run.

The last row of the table is the probability that it will not rain given that the
model predicted it will rain. In other words, if the test error given it will rain is
P(P|R), then the last row of the table gives P(R|P).

We can see that R-FF-6 performs somewhat better than the baseline model,
but not significantly so. For the more difficult and challenging case of NR, we
see that NR-FF-5 performs interestingly in the validation set. In the test set,
its overall performance is significantly worse than that of the baseline model,
with an error of 1.6% instead of 1.1%. However, the conditional errors for the
cases where it is or is not going to rain deserve more attention. For those cases,
the baseline model tells us nothing. A random model, on the other hand, which
would predict rain with a probability of 1.1%, would have an error of 1.1% given
it will not rain and 98.9% given it will rain; this performance is worse than that
of NR-FF-5.

We see, however, that the numbers are very small, because the data are
not enough for more detailed analysis. Rain is a rare phenomenon. We may
have 40,000 patterns in total, but only 1140 involve rain, and of those 415
only are changes from no rain to rain. A possible next step in our attempt to
improve model performance could be to create a seasonal model, that is, divide
the year into seasons (e.g. into 12 months) and use a different model for each
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one. Conditions that cause rain to begin may be different in winter than in the
summer, and a seasonal model might be able to account for those differences.
However, it is not possible to do any further analysis in our case, since a seasonal
model would mean using an even smaller sample. On the other hand, the pattern
set we have used so far is strongly biased towards winter, and a seasonal model
might not make much difference.

In the following section, a closer examination of the above results reveals
additional problems. Some improvements to the models are also suggested and
attempted.

3.3 Improved state prediction

3.3.1 Sensitivity analysis

Sensitivity analysis has been performed in order to determine the effect of each
individual variable on the prediction of NR-FF-5. There are a number of ways
to perform sensitivity analysis, of which a simple one has been followed: 5 new
models have been created, almost alike NR-FF-5, but with one of the input
variables missing in each one.

The results, tabulated in the Appendix, show that the most significant vari-
able is humidity. It is of great interest to examine, therefore, what a prediction
based on humidity alone would be. Thus, a simple model has been tested, which
merely thresholds the value of its only input, that of relative humidity. The
threshold is set, as in the previous models, so that the model’s probability of
predicting rain equals the probability that it will rain; this assigns it the value
of 93%. Thus, the simple model predicts rain if the value of relative humidity
exceeds 93%. Its performance is shown in Table 3.4. It can be seen that the
simple humidity-only model performs approximately the same as NR-FF-5, in-
dicating that either there is no additional information in the variables besides
humidity, or that NR-FF-5 may not identify that information.

NR-no-change NR-FF-5 Hum only
Threshold 0.85 0.93
Training error 0.15
Validation error (VE) 0.33 0.32 0.32
VE given will rain 1 0.94 0.94
VE giv. won’t rain 0 0.016 0.005
Test error (TE) 0.011 0.016 0.014
TE given will rain 1 0.94 0.95
TE giv. won’t rain 0 0.007 0.004
No rain giv. pred. rain 0.92 0.89

Table 3.4: Performance of the humidity-only model for one hour prediction
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3.3.2 Six-hour state prediction

The results obtained so far suggest that it is not possible to get any reasonable
performance when trying to predict one hour ahead. The possibility of improving
performance by adding hidden layers or adjusting the threshold differently is
discussed in Chapter 4, but no substantial improvement has been achieved.

The poor performance may be due to an inherent degree of unpredictability
of rainfall. In the experiments presented above, we have asked the models not
only to recognise rainy situations, but to predict exactly the hour in which the
rain is going to begin. This task, challenging even for radars, has proven to
verge on the impossible for our models. In the experiments presented below, the
rules have been relaxed and the models are now asked to make a more general
prediction, for the next 6 hours. The output of the NR models is now 1 or 0
standing for whether it is going to begin to rain or not sometime within the next
6 hours; this means that the models are asked to recognise rainy conditions, but
not the exact hour of rainfall.

The number of patterns available is shown in Table 3.5.

Now raining Now not raining
Will rain 889 1,735 | 2,624
Will not rain 229 35,919 | 36,148
1,118 37,654 | 38,772

Table 3.5: Patterns available for six hour prediction

The main model developed is denoted NR-6-FF-5; it is identical with NR-
FF-5, only it is trained and tested with the new pattern sets. Results are shown
in Table 3.6.

NR-6-no-change NR-6-FF-5
Threshold 0.65
Training error 0.18
Validation error 0.35 0.31
Valid. err. given will rain 1 0.83
Valid. err. giv. won’t rain 0 0.042
Test error 0.045 0.059
Test error given will rain 1 0.85
Test error giv. won’t rain 0 0.021
No rain giv. pred. rain 0.75

Table 3.6: Performance of feedforward networks for six hour prediction
These results are an indication, as different results are obtained each time the
models are run. The validation error of NR-no-change, in particular, is expected
to be 0.33; however, it happened to be 0.35 on that particular validation set.
The NR-6-FF-5 values shown for comparison have been determined on exactly
the same sets.

Sensitivity analysis has been performed as described above; results are shown
in Table 3.7.
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Variable missing

NR-6-FF-5 | Windz Windy  Tem Hum Pres
Threshold 0.65 0.65 0.63 0.65 0.62 0.55
Training error 0.18 0.18 0.18 0.18 0.19 0.20
Validation error (VE) 0.31 0.32 031 032 032 0.33
VE given will rain 0.83 0.84 0.84 0.84 0.84 0.89
VE giv. won’t rain 0.042 | 0.042 0.038 0.043 0.052 0.029
Test error (TE) 0.059 | 0.060 0.060 0.060 0.078 0.057
TE given will rain 0.85 0.86 0.86 0.86 0.85 0.90
TE giv. won’t rain 0.021 | 0.022 0.021 0.022 0.030 0.017
No rain giv. pred. rain 0.75 0.77 0.77 077 081 0.77

Table 3.7: MAE of various sensitivity analysis models

A simple humidity model has also been tested, and its results are shown
in Table 3.8. In this 6 hour prediction, our neural network seems to perform
slightly better than the humidity only model.

NR-6-no-change NR-6-FF-5 Hum only
Threshold 0.65 0.87
Training error 0.18
Validation error (VE) 0.35 0.31 0.33
VE given will rain 1 0.83 0.88
VE giv. won’t rain 0 0.042 0.040
Test error (TE) 0.045 0.059 0.059
TE given will rain 1 0.85 0.90
TE giv. won’t rain 0 0.021 0.019
No rain giv. pred. rain 0.75 0.79

Table 3.8: Performance of the humidity-only model for six hour prediction

3.3.3 Using the change in pressure

Barometric pressure is a relative quantity. The average barometric pressure at
sea level is 1,015 hPa, but if the pressure at a certain point is lower than average,
and the pressure around that point is even lower, then that point is considered a
high pressure. Our models cannot know whether the point considered is a high
or a low pressure, since there is no spatial data available. However, it may be
significantly more informative to know what the change in pressure has been
during the last hour, than the absolute value of pressure.

Model NR-6-FF-5P has thus been developed, which is identical to NR-6-FF-
5, the only difference being that the barometric pressure input has been substi-
tuted by the change in pressure. If x1 and xo are the last and the last but one
hourly measurements of barometric pressure, then the input under consideration
is

(1 —22)/3
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The division by 3 serves to normalise the value (x; and x5 are given in hPa) and
make it be in the [—1, 1] interval.

Results are shown in Table 3.9. Although the validation error is the same,
NR-6-FF-5P has done slightly better in the test set.

NR-6-no-change NR-6-FF-5 NR-6-FF-5P
Threshold 0.65 0.56
Training error 0.18 0.19
Validation error 0.35 0.31 0.31
Valid. err. given will rain 1 0.83 0.85
Valid. err. giv. won’t rain 0 0.042 0.026
Test error 0.045 0.059 0.052
Test error given will rain 1 0.85 0.86
Test error giv. won’t rain 0 0.021 0.014
No rain giv. pred. rain 0.75 0.67

Table 3.9: Performance of NR-6-FF-5P
NR-6-FF-5P is different from NR-6-FF-5 in that it uses the change in pressure
during the last hour instead of the absolute value of pressure.
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Chapter 4

Conclusions and further work

Some conclusions have already been mentioned in the previous chapters; the
main points are recapitulated here. Some less important, additional experiments
that have been made are discussed, leading the way into suggestions for further
research possibilities.

4.1

Conclusions

The main conclusions of the experiments are the following:

It seems preferable to divide the pattern set into those patterns where the
last measurement of rain is zero and those where it is nonzero, and to
train different networks for each case. It is thus predicted whether rain is
going to begin or stop, rather than whether it is going to rain or not. In
the models developed, this improves the results. It also makes the error
figures provide greater insight.

In the case when it is not currently raining, humidity is the variable to
which the models developed are most sensitive.

In predictions of whether rain will begin within an hour, the neural net-
works developed do not perform any better than a simple humidity-only
model. Tt is likely that this situation cannot improve considerably by elab-
orating the models, since rainfall is a phenomenon with an inherent degree
of unpredictability.

In predictions of whether rain will begin within six hours, the models devel-
oped seem to perform better than the baseline, but only in the validation
set.

Pressure change is probably more important than the absolute value of
pressure.

The main constraint is the lack of data. Increasing the model complexity
by adding hidden layers or by taking more inputs into account, such as
10-minute data or more previous measurements, is hardly possible, as the

35
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amount of data does not allow for a significant increase in the degrees of
freedom. Unfortunately, there are very few sites in Greece with a good
record of measurements for some decades, which would be necessary for
further investigation.

The error figures may seem discouraging, but, as stated in the Introduction,
our aim is not so much to get good results, which would certainly be inferior
to those of existing nowcasting methods, but rather to explore the amount of
information in our single point of interest. In addition, we have made things
gradually more difficult, by setting up baseline models which, though essentially
telling nothing, have a very low error. At the site under consideration it rarely
rains, thus it is extremely hard to outperform a baseline model that predicts
that it never rains. And yet, when our models indicated, by means of sensitivity
analysis, that humidity is the most important variable, the simple humidity-only
model was set up, which is even harder to beat. It remains true, however, that
the models, in their present form, are of little practical value. Some suggestions
for improvement are made in the following sections.

4.2 Additional results

4.2.1 Hidden layers

It has been attempted to add hidden layers to models such as NR-FF-5 and NR-
S-FF-5P. It has been found that some configurations, such two hidden layers
with 3 and 2 nodes, may have some effect on the result, but at present this effect
is very small and does not justify the greater model complexity.

4.2.2 Radial basis networks

Different network architectures are interesting alternatives. Radial basis net-
works, in particular, have some benefits; they have one hidden layer the nodes
of which use a radial basis transfer function, usually of the following form:

flz)=e*

A plot of this function is shown in Figure 4.1. The main feature of such a
node is that it gives a high output whenever its inputs are close to a “perfect”
pattern; the output quickly drops to zero at both directions. In contrast, a
logistic sigmoid transfer function constantly increases in one direction.

An experiment with radial basis networks has been attempted. Its results,
tabulated in the Appendix (Table A.6), are comparable to those of NR-FF-5.

4.2.3 Thresholds

As has already been mentioned, the threshold of any model is determined so
that the ratio of nonzero to zero rain predictions is the same as the probability
of rain. Though this way of determination is simple and reasonable, there is
no compelling why it should necessarily be so. An alternative which has been
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Figure 4.1: Radial basis function in comparison to a logistic sigmoid

attempted is to set the threshold so that the error is minimised. Table 4.1 shows
some results. As can be seen, minimising the test error almost reduces the model
to the baseline which predicts that it never rains. Minimising the validation error
increases the test error.

What is minimised

NR-S-FF-5 | Validation error Test error
Threshold 0.65 0.43 0.94
Validation error 0.31 0.27 0.35
Valid. err. given will rain 0.83 0.57 0.997
Valid. err. giv. won’t rain 0.042 0.115 0
Test error 0.059 0.108 0.045
Test error given will rain 0.85 0.60 0.996
Test error giv. won’t rain 0.021 0.085 0.0001
No rain giv. pred. rain 0.75 0.81 0.40

Table 4.1: Performance of NR-S-FF-5 with different thresholds

4.2.4 Automatic relevance determination

The technique of automatic relevance determination has been attempted as an
alternative to sensitivity analysis; this is discussed extensively in the Appendix.
It has been concluded that this technique does not work well, its main problem
being that it does not account for correlations between the input variables.

4.2.5 Value prediction

In all experiments mentioned so far we have made a distinction between cases
when it rains and cases when it does not rain, implying that these cases are clear-
cut. However, there is a degree of fuziness in the concept of precipitation. Any
rainfall sensor or gauge has a resolution, and the particular sensor used in NTUA
has a resolution of 0.1 mm. Thus, a measurement of zero does not necessarily
mean no rain; it might be 0.05 mm. The slight fuziness does not, however,
depend only on sensor accuracy, but is natural. A rainfall rate of 0.1 mm per
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hour would probably not affect any human action, and no-one would bother
opening their umbrella, so such a rate can hardly be classified as rain. In fact,
whether a certain intensity is classified as rain or not depends on the reason
for which we use this information. An intensity of 0.1 mm per hour is a very
different thing, and a very different phenomenon, than an intensity of 50 mm
per hour, which is heavy rain. And yet, in all models examined so far, we have
treated both these values as a mere “yes”, as opposed to 0, “no”, without making
any distinction.

The obvious way to predict the amount, rather than the possibility, of rain,
is to remove the hard-limiting function, using the output of the sigmoid func-
tion, and train the network with real rather than boolean values. A few such
experiments have been performed, and are presented in the Appendix, but their
results are poor. It is, however, a matter most worth of further investigation.

4.3 Further possibilities

Except for alternative network architectures, different ways of determining thresh-
olds, and making a value rather than a state prediction, which have all been
discussed in the previous section, there are also some additional matters which
may be considered in further research.

First, in most experiments mentioned, only the last hourly measurements
have been considered; it has only been in one of the preliminary experiments
(model Perc-30, mentioned in the Appendix) that measurements from the pre-
vious hours have been taken into account. It may be, for example, that a drop
in the pressure increases the probability of rain sometime later. This may be
one reason why the six hour models perform better than the one hour ones. The
instabilities of the forecasting models, already mentioned in the Introduction,
are another indication of this problem. It would be interesting to explore in
detail the extent to which the incorporation of earlier measurements could affect
the performace of our models.

Another class of data that has remained unexploited is the 10-minute mea-
surements (the hourly data are derived from those). Only hourly data has been
used in the models, although the original measurements were also available;
some attempts at using them did not seem to improve performance, whereas
they greatly increased model complexity.

Finally, in order to obtain better results, it may be beneficial to combine
several models. If, for example, a value predicting model does not perform well,
it may be better if a state model is first used, and an attempt to predict the
amount of rain is made only if a rain state is predicted. Similar alternatives
are to use other classifiers (neural networks or simple models) at a first stage of
processing, such as a threshold on humidity.
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A.1 Perceptrons

During the preliminary experiments with perceptrons, the following models have
been developed:

Perc-30 It has 30 inputs, i.e. the last 6 hourly measurements of wind vector,
temperature, humidity and barometric pressure.

Perc-5 It has 5 inputs, i.e. only the last hourly measurement of the above
variables.

Perc-6 It has 6 inputs, i.e. the last hourly measurement of all variables, includ-
ing rainfall.

The reduced set for these experiments consists of the 1,138 nonzero future
rain patterns and twice as many zero rain patterns. The latter have been chosen
by picking up one zero rain pattern in the entire pattern set every 17 zero rain
patterns. The selected rain patterns are thus uniformly distributed through
the year in this first experiment; subsequent experiments use better distributed
reduced pattern sets, as described in Section 2.2. Training has been done with
half the reduced set, and validation with the other half. The performance of
the baseline models is shown in Table A.1. The performance of perceptrons is
shown in Table A.3.

| Validation error  Test error
Zero 0.33 0.03
No change 0.14 0.02

Table A.2: Performance of baseline models
The validation error is the error on the reduced set. The reduced set in that case
consists of twice as many zero rain patterns as nonzero rain patterns. Whenever
the reduced set is defined differently, the performance of the baseline models
must be re-evaluated.

The reason for the apparently good performance of Perc-30 is to a large
extent that it predicts no rain most of the time. For the entire pattern set, it
predicts nonzero rain for 471 patterns, whereas in reality there are 1,138 nonzero
rain patterns. In the 471 predictions of rain, only 167 are correct.
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Zero No change
(baseline) Pere-30  Pere-5 (baseline) Perc-6
Training error 0.25 0.25 0.24
Validation error 0.33 0.22 0.18 0.14 0.18
Test error 0.03 0.03 0.16 0.02 0.15

Table A.3: Performance of perceptrons
Baseline models are shown for comparison. Since Perc-30 and Perc-5 do not
use any knowledge about previous rainfall, they should be compared against the
zero rain model. Perc-6, on the other hand, must be compared against the no
change model.

A.2 Simple networks

In this preliminary experiment, three models have been developed, equivalent to
the perceptrons described above:

FF-30 Similar to Perc-30
FF-5 Similar to Perc-5
FF-6 Similar to Perc-6

Except for the sigmoid output, these models are identical to the perceptrons,
and the same reduced set has been used. Results are shown in Table A.4.

Zero No change
(baseline) FF-30° FF-5 (baseline) -6
Threshold 0.80  0.81 0.71
Training error 0.13 0.13 0.10
Validation error 0.33 0.24  0.25 0.14 0.14
Test error 0.03 0.03  0.03 0.02 0.02
Test error given will rain N/A 0.65  0.70 0.37 0.38

Table A.4: Performance of feedforward networks
Results vary slightly in each execution, but the overall picture is always the
same.

A.3 Sensitivity analysis for one hour prediction

In order to examine the effect of each input variable on the NR-FF-5’s perfor-
mance, five models have been created, almost identical to NR-FF-5, but with
only four inputs each; one of the input variables is missing in each model. Their
performance is shown in Table A.5 in comparison to NR-FF-5.

A.4 Radial basis networks

Two radial basis networks (RBN) have been created for one hour state pre-
diction; the pattern sets used the same as those described in subsection 3.2.2
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Variable missing

NR-FF-5 | Wind x Windy Tem  Hum  Pres
Threshold 0.85 0.85 0.83 084 0.82 0.73
Training error 0.15 0.15 0.16 0.16 0.17 0.17
Validation error (VE) 0.32 0.32 032 032 033 0.32
VE given will rain 0.94 0.94 092 093 095 0.95
VE giv. won’t rain 0.016 0.016 0.021 0.021 0.021 0.005
Test error (TE) 0.016 0.016 0.015 0.016 0.019 0.014
TE given will rain 0.94 0.94 093 093 095 0.96
TE giv. won’t rain 0.007 0.007  0.006 0.007 0.010 0.004
No rain giv. pred. rain 0.92 0.92 0.89 090 0.95 0.90

Table A.5: Performance of sensitivity analysis models for one hour prediction

(page 28).

e RBN-5 has been created with a target mean square error of 250, resulting
in 5 nodes in the hidden layer.

e RBN-87 has been created with a target mean square error of 200, resulting
in 87 nodes in the hidden layer.

Performance is shown in Table A.6.

5-3-3 RBN 87 RBNS5
Threshold 0.85 0.77 0.69
Training error 200 250
Validation error (VE) | 0.31 0.32 0.32
VE given will rain 0.90 0.89 0.88
VE giv. won’t rain 0.016 0.016 0.024
Test error (TE) 0.011 0.037 0.035
TE given will rain 0.93 0.89 0.90
TE giv. won’t rain 0.002 0.014 0.012
No rain giv. pred. rain | 0.72 0.83 0.81

Table A.6: Performance of radial basis networks

A.5 One-hour value prediction

It is not clear whether we should create two different models, one for the case of
raining now, and one for the case of not raining now. Thus, we both ways are
attempted. The names of the models are preceeded by R or NR as previously,
or by S for the case of a single network. The R case is not be considered.

The no change, zero rain, and average baseline models can be used. Their
performance is shown in Table A.7.

Two models have been developed, the S-FFR-6 and NR-FFR-5, which are al-
most identical to FF-6 and NR-FF-5, the only difference being that their output
is not passed through a hard limiting function. Results are shown in Table A.8.
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Validation — Test
S - No change 2.34 0.69
S - Zero rain 2.51 0.66
S - Average 2.41 0.66
NR - No change 2.56 0.35
NR - Zero rain 2.56 0.35
NR - Average 2.18 0.35

Table A.7: Standard error of the baseline models
(mm of rain)

‘ Best baseline S-FFR-6 ‘ Best baseline NR-FFR-5
Validation error 2.34 2.00 2.18 1.99
Test error 0.66 0.82 0.35 0.67

Table A.8: Standard error of feedforward networks
(mm of rain)

A.6 Automatic relevance determination

A.6.1 Introduction

The Bayesian technique of automatic relevance determination provides a means
to dismiss the irrelevant inputs. An introduction to Bayesian techniques is
given by Bishop (1995). Automatic relevance determination is described by
MacKay (1995). The basic idea behind Bayesian techniques is to provide a
probability distribution for the network parameters, rather than a single set of
values.

In Bayesian techniques, the network error function is generally given by
S(w) = BEp + aEw

where SEp is an error term, whereas aFy is a regularisation term, which is
usually defined so that it penalises large weight values, e.g.

EW = %ZwQ

The hyperparameters o and 3 are also determined with Bayesian techniques and
assigned probability distributions. In automatic relevance determination each
node (input nodes and neurons) is assigned a different «. Inputs with large o’s
are judged as irrelevant.

It is claimed (Bishop 1995) that the Bayesian approach allows different mod-
els to be compared using only the training data, without using a validation set.
However, in order to have results that are comparable to those of the other mod-
els that have been developed, the same division of the reduced pattern set into
a training and a validation set will be used in the Bayesian approaches.
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A.6.2 Models and results

The following models have been created for automatic relevance determination,
all with one hidden layer:

ARD-10 This model is based on FF-6, but in addition to the values of the
meteorological variables for the last hour, the time of day and season are
also used as inputs. Versions with 1 through 3 hidden nodes have been
attempted, which are denoted with ARD-10(1), ARD-10(2), and ARD-
10(3). ARD-10(1) is very much like a single layer network.

ARD-40 This is the same as ARD-10, but the last 6 hourly measurements are
given, not only of the last hour. Thus there are 6 x 6 = 36 inputs for the
6 meteorological variables and 4 for the time and season.

Results for ARD-10 are shown in Table A.9. We can make the following
observations:

e The results are comparable to FF-6. Although the validation error is high,
the test error and the test error given rain is approximately the same as
in FF-6.

e Rainfall, as expected, is the most relevant input. Humidity and barometric
pressure are also relevant, as is temperature (although, according to ARD-
10(1), it is less relevant). For the other variables there is disagreement
among the model versions.

No change

(baseline) ARD-10(1) ARD-10(2) ARD-10(3)
Threshold 0.77 0.78 0.79
Validation error 0.15 0.20 0.20 0.19
Test error 0.02 0.02 0.02 0.02
Test error given rain 0.37 0.41 0.40 0.43
a wind x 4935 2.2 240.0
a wind y 162 4.7 37.7
« temperature 65 0.1 0.9
a humidity 3 4.8 0.6
« pressure 9 1.5 0.2
« rainfall 0 0.0 0.0
a time x 2126 1444.2 126.7
a time y 2351 201.0 45.6
Q season X 5468 4.5 2.9
o season y 48537 2.0 20.6

Table A.9: Results of ARD-10

Results and o’s for ARD-40 are given in Tables A.10 and A.11.
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No change

(baseline) ARD-40
Threshold 0.88
Validation error 0.15 0.20
Test error 0.02 0.03
Test error given rain 0.37 0.41

Table A.10: Results of ARD-40

Hours ago | Wind z  Windy Temp. Hum. Pres. Rain
0 2.1 2.1 0.3 0.2 0.5 0.0
1 11.1 3.5 0.9 0.5 0.5 0.1
2 1.5 1.9 4.2 1.1 0.5 0.2
3 77.6 7.1 1.9  39.7 6.3 1.2
4 6.2 4.5 0.6 1.6 5.2 0.5
5 1.7 107.8 1.2 1.2 1.0 0.3

Time vector Month vector
170.8 1750.6 4.3 5.9

Table A.11: « for the various inputs for ARD-40

A.6.3 Discussion

It can be seen that there are some problems in this method. First, we observe
that one version of a model produces completely different results from another,
similar model. There does exist an explanation for this: input variable A alone
might be irrelevant, input variable B alone might be irrelevant, but some nonlin-
ear function f(A, B) might be relevant. For a model to correctly determine the
relevance of A and B in that case, both variables must be given as inputs, and
the model must be complex enough to determine the nonlinear function f. It is
thus expected that the results of ARD-10(3), which has more hidden layers and
can create more complex relations, are better than those of the other models.
However, this explanation can hardly account for all the differences in the three
versions of ARD-10.

Perhaps the most important problem of ARD is that it does not account
for correlations of the input variables. If in an ARD model two of the input
variables are identical, then the model would find them to be equally relevant,
and it might be that they would both be very relevant; however, we could safely
get rid of one of them. Similarly, humidity is correlated with rainfall; when
it rains, humidity frequently approaches 100%. As a result, although ARD-10
finds humidity to be very relevant, it offers little additional information. It may
thus better to use other methods in place of ARD, such as sensitivity analysis
or principal component analysis.
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