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Abstract We derive a new algorithm for calculating an exact confidence interval for a 

parameter of location or scale family, based on a two-sided hypothesis test on the parameter 

of interest, using some pivotal quantities. We use this algorithm to calculate approximate 

confidence intervals for the parameter or a function of the parameter of one-parameter 

continuous distributions. After appropriate heuristic modifications of the algorithm we use it 

to obtain approximate confidence intervals for a parameter or a function of parameters for 

multi-parameter continuous distributions. The advantage of the algorithm is that it is general 

and gives a fast approximation of an exact confidence interval. Some asymptotic (analytical) 

results are shown which validate the use of the method under certain regularity conditions. In 

addition, numerical results of the method compare well with those obtained by other known 

methods of the literature on the exponential, the normal, the gamma and the Weibull 

distribution. 
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1 Introduction 

Various general methods for the calculation of a confidence interval for a parameter of 

interest exist. Casella & Berger (2002, p.496-497) suggest the use of the asymptotic 

distribution of the maximum likelihood estimator (MLE) to construct a confidence interval for 

a function of the parameter of a one-parameter distribution. Wilks (1938) constructs a 

confidence interval based on the score statistic (see also Casella & Berger, 2002, p. 498). Kite 

(1988) gives approximate confidence intervals for the parameters of various distributions, by 

performing separate analyses for each distribution and each parameter estimation method. 

Garthwaite & Buckland (1992) make a new use of the Robbins-Monro search process to 

generate Monte Carlo confidence intervals for a one-parameter probability distribution. The 

Jacknife method is another general technique to obtain confidence intervals (see e.g. Román-

Montoya, 2008). Ripley (1987, p.176-178) constructs simple Monte Carlo confidence 

intervals which depend on the type of local properties (location or scale) of the parameter of 

interest. 

In this paper we generalize the method proposed by Ripley (1987) retaining its simplicity. 

The method we study here incorporates Ripley’s two suggested equations into one new 

equation. The algorithm of the method was derived by Koutsoyiannis & Kozanis (2005), has 

already been used (as an intuitive tool without mathematical proofs) by Koutsoyiannis et al. 

(2007) and is a main tool of the statistical software Hydrognomon (2009-2011). The method 

has a general character and does not make a distinction for location or scale family, while 

other methods make such distinction. It provides single results without requiring user choices. 

These are strong advantages which make the proposed method a useful statistical computation 

tool.  

Initially, we show that our algorithm is asymptotically equivalent to a Wald-type interval 

(Casella & Berger, 2002, p.499) of a parameter or a function of a parameter of any one-
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parameter probability distribution. We also show how this algorithm works for certain 

distributions. Then we generalize this new algorithm to construct confidence intervals for the 

parameters or functions of parameters for multi-parameter probability distributions. We show 

that these intervals are asymptotically equivalent to Wald-type intervals. We also show 

analytically how this algorithm works for the normal distribution. We compare the results of 

the algorithm with those obtained by other exact and approximate methods for the 

exponential, normal, gamma and Weibull distributions, and it turns out that the algorithm 

works well even for small samples. The approximate methods described here include Wald-

type intervals given in the literature or derived using the formula in Casella & Berger, 2002, 

p. 497, Ripley's two equations, and bias-corrected and accelerated (BCa) bootstrap non-

parametric intervals (see also DiCiccio 1984; Di Ciccio & Efron 1996; Di Ciccio & Romano 

1995; Efron 1987; Efron & Tibshirani 1993; Hall 1988; Kisielinska 2012). 

The proposed algorithm is partly heuristic and simultaneously so general that needs no 

assumptions about the statistical behaviour of the statistics under study, i.e. it can perform for 

any continuous distribution with any number of parameters, and for any distributional or 

derivative parameter. Only the theoretical probabilistic model is needed and all other 

calculations are done by a number of Monte Carlo simulations without additional 

assumptions. 

2 Terminology and notation 

We use the terminology of Casella & Berger (2002) as well as the Dutch convention for 

notation, according to which random variables are underlined (Hemelrijk, 1966). We recall 

that an interval estimate of a parameter θ  R is any pair of functions, l(x) and u(x), of a 

sample x = (x1,…,xn)  that satisfy l(x) ≤ u(x) for all x. If x is the random variable whose 

realization is x, the inference l(x) ≤ θ ≤ u(x) is made. The random interval [l(x),u(x)] is called 
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an interval estimator. 

The following result from Casella & Berger (2002, p. 421,422) is necessary for the proofs 

of the next section and shows how we can construct a confidence interval from a hypothesis 

testing procedure: 

 For each θ0  Θ  R, let A(θ0) be the acceptance region of a level α test of H0: θ  Θ0. For 

each x, we define an interval C(x) in the parameter space by 

 C(x) = {θ0: x  A(θ0)} (1) 

Then the random set C(x) is a 1 − α confidence interval. Conversely, let C(x) be a 1 − α 

confidence interval. For any θ0  Θ, we define 

 A(θ0) = {x: θ0  C(x)} (2) 

Then A(θ0) is the acceptance region of a level α test of H0: θ = θ0. Note that the above 

terminology is not precise when the test is randomized (Shao, 2003, p.477). 

3 Construction of confidence intervals for one-parameter distributions 

Now we proceed to the construction of a confidence interval for one-parameter continuous 

probability distributions. The following result which is a consequence of (1) and (2) is 

necessary for the construction of the confidence interval. 

 We suppose that b := b(x) is a MLE of the parameter θ of a one-parameter distribution with 

density f(x|θ). Then θ̂ = b(x) is the estimate of the parameter. We suppose now that the 

probability density of the statistic b(x) is g(b|θ). Then we seek two functions λ(θ), υ(θ) such 

that P{λ(θ) ≤ b(x) ≤ υ(θ)} = 1 − α. We define λ(θ), υ(θ) as those functions that satisfy: 

 P{b(x) < λ(θ)} = P{b(x) > υ(θ)} = α/2 (3) 

The above equation implies that: 

 λ(θ) = G
−1

(α/2|θ) and υ(θ) = G
−1

(1 − α/2|θ) (4) 
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where G
−1

(|θ) denotes the inverse of the distribution function G. 

 Now we construct a test H0: θ = θ̂ vs H1: θ ≠ θ̂ with acceptance region: 

 A(θ̂) = {x: G
−1

(α/2|θ̂) ≤ b(x) ≤ G
−1

(1 − α/2|θ̂)} (5) 

which is a size α test because β(θ̂) = 1 − P(G
−1

(α/2|θ̂) ≤ b(x) ≤ G
−1

(1 − α/2|θ̂)|θ = θ̂) = 1 − 

[G(G
−1

(1 − α/2|θ̂)|θ̂) − G(G
−1

(α/2|θ̂)|θ̂)] = 1 − (1 − α/2 − α/2) = α. From this test and according 

to (1) and (2) we obtain the following 1 − α confidence interval for θ: 

 C(x) = {θ̂: G
−1

(α/2|θ̂) ≤ b(x) ≤ G
−1

(1 − α/2|θ̂)} (6) 

 In our case we assume that we have an observation y = (y1,…,yn). We obtain the following 

1 − α confidence interval for θ: 

 C(y) = {θ: G
−1

(α/2|θ) ≤ b(y) ≤ G
−1

(1 − α/2|θ)} (7) 

Now we define l and u as the solutions of the equations: 

 υ(l) = b(y) and λ(u) = b(y) (8) 

From the above equation we obtain that: 

 G
−1

(α/2|u) = b(y) and G
−1

(1 − α/2|l) = b(y) (9) 

We assume that C(y) = [θ1,θ2] where θ1,θ2 are the solutions of the equations 

 G
−1

(α/2|θ2) = b(y) and G
−1

(1 − α/2|θ1) = b(y) (10) 

Now it is obvious that [l,u] is a 1 − α confidence interval estimate for θ. 

3.1 Construction of the confidence interval 

Having proved that [l,u] is a 1 − α confidence interval estimate for θ, we can use it to 

construct an approximate confidence interval that can be easily computed numerically. From 

Figure 1 we observe that 



6 

 6
 

 
υ(θ̂) – θ̂

θ̂ – l
 = 

CA

CB
 ≈ (

dυ

dθ
)
|θ = θ

^ (11) 

Solving for l we find 

 l ≈ θ̂ + 
θ̂ – υ(θ̂)

(dυ/dθ)|θ = θ
^
 (12) 

and in a similar way we find that 

 u ≈ θ̂ + 
θ̂ – λ(θ̂)

(dλ/dθ)|θ = θ
^
 (13) 

We can thus claim that 

 [l(x),u(x)] = [b(x) + 
b(x) – υ(b(x))

(dυ/dθ)|θ = b(x)
, b(x) + 

b(x) – λ(b(x))

(dλ/dθ)|θ = b(x)
] (14) 

is an approximate 1 − α confidence interval for θ. 
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Figure 1. Sketch explaining the determination of confidence limits l and u from an inversion of a hypothesis test. 

 Under suitable regularity conditions (i.e. Casella & Berger, 2002, p.516) the density of the 

MLE is given by Hillier & Armstrong (1999). The necessary conditions for the equations (12) 
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and (13) to hold are that λ and υ are continuous and differentiable at a region of θ̂ . The 

validity of these assumptions for certain cases could be investigated, using Hillier & 

Armstrong (1999) formula, but at such situations this is not always possible. 

3.2 Some theoretical results 

It is useful to find cases where the above derived confidence interval is exact (i.e. (12) and 

(13) are exact). We can easily prove that this happens in the case where υ(θ) = c1θ + c2, where 

c1 and c2 are any real numbers: 

(
dυ

dθ
)|θ = θ

^ = c1, and 
υ(θ̂) – θ̂

θ̂ – l
 = 

c1θ̂ + c2 – θ̂

θ̂ – [(θ̂ − c2)/c1]
 = c1 

(The proof for u can be conducted in a similar way and is omitted). Special cases of this are 

(i) when υ(θ) = θ + c, and (ii) when υ(θ) = cθ. These two correspond to the first and second 

method described by Ripley (1987) respectively (p.176, eq.3 and p.177, eq.6, after 

substitution of (
dυ

dθ
)|θ = θ

^ = c = υ(θ)/θ in (14)). We can also easily prove that location families 

correspond to the first case and scale families correspond to the second case. The proof is 

given below: 

(a) For location families the quantity μ − μ (where μ is a MLE of the location parameter μ) is a 

pivotal quantity (see Lawless, 2003, p.562). Then from (3) we have that P{μ < λ(μ)} = α/2, 

which implies that P{μ − μ < λ(μ) − μ} = α/2 and we obtain that λ(μ) = μ + G
−1

(α/2), where G 

is the distribution function of μ − μ that does not depend on μ. In a similar way we obtain that 

υ(μ) = μ + G
−1

(1 − α/2). Now it is obvious from (i) above that the confidence interval obtained 

by (14) is an exact confidence interval. 

(b) For scale families the quantity σ/σ (where σ is a MLE of the location parameter σ) is a 

pivotal quantity (see Lawless, 2003, p. 562). Then from (3) we have that P{σ < λ(σ)} = α/2, 

which implies that P{σ/σ < λ(σ)/σ} = α/2 and we obtain that λ(σ) = σ G
−1

(α/2), where G is the 
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distribution function of σ/σ and is independent of σ. In a similar way we obtain that υ(σ) = σ 

G
−1

(1 − α/2). Now it is obvious from (ii) above that the confidence interval obtained by (14) is 

an exact confidence interval. 

 While in the above cases our method provides exact confidence intervals, when the 

equation υ(θ) = c1θ + c2 does not hold, it can only provide approximate confidence intervals, 

where the level of approximation depends on the form of λ and υ and for certain cases will be 

examined in the next sections. It is also easy to prove that the confidence interval given by 

(14) is asymptotically equivalent to a Wald-type interval for any function of the parameter θ 

(and hence for the parameter itself) under certain regularity conditions. The proof is given 

below. 

 We want to find a confidence interval for a function h(θ) of θ. We assume that θ is a MLE 

of θ. Then according to Casella & Berger (2002, p.497) and Efron & Hinkley (1978), the 

variance of the function h(θ) can be approximated by 

 Var^ (h(θ)|θ) ≈ 
[h΄(θ)]

2
|θ = θ

^

−
∂

2

∂θ
2lnl(θ|x)|θ = θ

^

 (15) 

where θ̂ is the maximum likelihood estimate of θ and l(θ|x) the likelihood function of θ. Now 

according to Casella & Berger 2002, p.497) we have the following result: 

 
h(θ) – h(θ)

Var^ (h(θ)|θ)
 → N(0,1) (16) 

Then from (3) we get that P{h(θ) < λ(θ)} = α/2 and P{h(θ) > υ(θ)} = α/2 which imply that 

 λ(θ) = h(θ) + Var^ (h(θ)|θ)Φ
−1

(α/2) and υ(θ) = h(θ) + Var^ (h(θ)|θ)Φ
−1

(1 − α/2) (17) 

where Φ
−1

 denotes the inverse of the standard normal distribution function. If we substitute θ 

for h(θ) then (17) becomes identical to case (i) above. 
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3.3 Construction of the algorithm 

Having found an expression for the confidence interval, we can construct a Monte Carlo 

algorithm to calculate it when there do not exist analytical expressions for the functions of 

interest. The algorithm has the following steps: 

Step 1. We find the MLE of θ, and its maximum likelihood estimate say θ̂. 

Step 2. We produce k samples of size n, from f(x|θ̂). 

Step 3. We use these k samples to compute λ(θ̂) and υ(θ̂). 

Step 4. We produce additional k samples of size n, from f(x|θ̂+δθ), where δθ is a small 

increment.   

Step 5. We use these additional k samples to compute λ(θ̂+δθ) and υ(θ̂+δθ). 

Step 6. We substitute (
dυ

dθ
)|θ = θ

^ of (12) with [υ(θ̂+δθ) − υ(θ̂)]/dθ, and (
dλ

dθ
)|θ = θ

^ of (13) with [λ(θ̂

+δθ) − λ(θ̂)]/δθ. 

Step 7. We compute l and u from (12) and (13). 

 We conclude based on the construction of the algorithm that it could be applied to cases 

where θ is estimated by a different estimator. Below we give an application of the algorithm 

on the normal distribution where we used the unbiased estimator of θ and obtained good 

results. 

4 Construction of confidence intervals for multi-parameter probability 

distributions 

We assume now that we have a multi-parameter probability distribution with density f(x|θ) 

and parameter θ = (θ1, θ2, …, θk), whose estimator is T = (T1, T2, …, Tk). We wish to calculate 

a 1 − α confidence interval for a scalar function β := h(θ) of θ. If we assume that T is a MLE 

then b(x) := h(T) is a MLE for h(θ) and b(x) = h(t) is its estimate. To extend the method, 
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described by (12) and (13) in the multiple parameter case, the derivatives dλ/dθ and dυ/dθ 

should be evaluated at appropriate directions dλ and dυ. 

 Let γ := (λ, β, υ)
T
 where λ, υ have been defined by (3) and let Var(T) = diag(Var(Τ1), ..., 

Var(Τk)). The latter can be easily computed during the same Monte Carlo simulation that is 

performed to compute γ. It is reasonable to assume that dλ and dυ will depend on Var(T) as 

well as of the matrix of derivatives of γ, 

 
dγ

dθ
 =  











dλ

dθ

dβ

dθ

dυ

dθ

 = 











λ

θ1

λ

θ2


λ

θk

β

θ1

β

θ2


β

θk

υ

θ1

υ

θ2


υ

θk

 (18) 

 Heuristically, we can assume a simple relation of the form 

 dλ = Var(T) 






dγ

dθ

T

 eλ (19) 

where eλ is a size 3 vector of constants needed to transform the matrix product of the first two 

terms of the right hand side into a vector. The elements of this vector could be thought of as 

weights corresponding to each of the derivatives of the three elements of γ. The simplest 

choice is to assume equal weights, i.e. eλ = (1, 1, 1)
T
. However, numerical investigations 

showed that the choice eλ = (0, 1, 1)
T
 yields better approximations and the theoretical analysis 

below showed that it yields asymptotically good results under certain regularity conditions.  

 The derivatives of λ and β with respect to θ on direction dλ will then be 

 






dλ

dθ
 dλ = 







dλ

dθ
 Var(T) 







dγ

dθ

T

 eλ,     





dβ

dθ
 dλ = 







dβ

dθ
 Var(T) 







dγ

dθ

T

 eλ (20) 

and are both scalars, so by taking their ratio we can calculate dλ/dβ. By symmetry, similar 

relationships can be written for υ and dυ with eυ = (1, 1, 0)
T
. The two groups of relationships 

can be unified in terms of the 3 × 3 matrix q defined as 
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 q := 
dγ

dθ
 Var(T) 







dγ

dθ

T

 (21) 

It can then be easily shown that on the directions dλ and dυ, 

 
dλ

dβ
 = 

q12 + q13

q22 + q23
 ,     

dυ

dβ
 = 

q31 + q32

q21 + q22
 (22) 

 In Appendix A we show that the confidence interval for the parameter μ of a normal 

distribution N(μ,σ
2
) is asymptotically equivalent to a Wald-type interval. We also show that 

the confidence interval obtained by our method is asymptotically equivalent to a Wald-type 

interval for two-parameter regular distributions and hence for any multi-parameter 

distribution. 

4.1 Construction of the algorithm 

Now the algorithm for the calculation of the intervals follows: 

Step 1. We find the MLE of θ namely θ, and its maximum likelihood estimate say θ̂. 

Step 2. Τhe MLE of β is h(θ), and its maximum likelihood estimate is h(θ̂). 

Step 3. We produce m samples of size n, from f(x|θ̂). 

Step 4. We use these m samples to compute λ(θ̂), υ(θ̂), h(θ̂) and Var(T). 

Step 5. We produce additional m samples of size n, from f(x|θ̂+δθi), where δθi is a vector with 

all elements zero except the ith element, which is a small quantity δθi 

Step 6. We use these additional m samples to compute λ(θ̂+δθi), υ(θ̂+δθi) and h(θ̂+δθi). 

Step 7. We repeat steps 4 and 5 for i = 1,2,…,k. 

Step 8. We substitute in (18) [λ(θ̂+δθi) − λ(θ̂)]/δθi for 
∂λ

∂θi
, [υ(θ̂+δθi) − υ(θ̂)]/δθi for 

∂υ

∂θi
 and 

[h(θ̂+δθi) − h(θ̂)]/δθi for 
∂h

∂θi
. 

Step 9. We calculate q from (21). 



12 

 

1
2
 

Step 10. We compute l and u from (12) and (13). 

5 Simulation results 

To test the algorithm in specific cases, we construct confidence intervals for the scale 

parameter of the exponential distribution, the location parameter and the pth percentile of the 

normal distribution, the scale and shape parameter of the gamma distribution and the scale 

parameter and the pth percentile of the Weibull distribution. Then we compare the numerical 

results with known, mostly analytical, results from the literature. 

5.1 Confidence interval for the scale parameter of the exponential distribution 

The density of the exponential distribution is f(x|σ) = (1/σ)exp(−x/σ), x ≥ 0, σ > 0. The MLE of 

σ is σ = x
_
. A 1 − α Wald-type confidence interval (Papoulis & Pillai, 2002, p.310), is 

 [l(x),u(x)] = [
x
_

1 + Φ
-1

(1 − α/2)/ n
, 

x
_

1 − Φ
-1

(1 − α/2)/ n
] (23) 

 We find a 1 − α exact confidence interval, using the pivotal quantity σ/σ. The distribution 

of σ is gamma, with shape parameter n and scale parameter σ/n and a 1 − α exact confidence 

interval is obtained by the following equations. 

 F(x
_

|n,l/n) = 1 − α/2, F(x
_
|n,u/n) = α/2 (24) 

where F(x|k,θ) is the gamma distribution whose density is f(x|θ,k) = 
e

−x/θ
x

k−1

Γ(k)θ
k , x ≥ 0 where θ > 0 

is the scale parameter and k > 0 is the shape parameter. 

 The confidence interval obtained by (24) is exact and the confidence interval obtained by 

(23) is Wald-type. These two are intercompared also with the BCa bootstrap non-parametric 

interval, designated as "bootstrap", the two confidence intervals obtained by the two Ripley's 

methods, designated as "Ripley location" and "Ripley scale", respectively, and the confidence 
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interval obtained by our algorithm, designated as MCCI (Monte Carlo Confidence Interval). 

Figure 2 compares the confidence intervals obtained by all six methods for a simulated 

sample with 50 elements from an exponential distribution with σ = 1. For this sample σ̂ = 

1.002. As we see, MCCI is close to the exact and the "Ripley scale" and gives a better 

approximation than the Wald-type, the "bootstrap" and the "Ripley location". 
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Figure 2. Confidence intervals for the scale of an exponential distribution with n = 50, σ
^
 = 1.002. Here the 

number of samples k = 50 000 for MCCI, "Ripley location" and "Ripley scale" cases and δσ = 0.05. 

5.2 Confidence interval for the location parameter of the normal distribution 

The density of the normal distribution is f(x|μ,σ) = 
1

2πσ
2exp(

(x−μ)
2

2σ
2 ), where μ is the location 

parameter, and σ > 0 is the scale parameter. A 1 − α exact confidence interval (Papoulis & 

Pillai, 2002, p.309) is 

 [l(x),u(x)] = [x̄ − tn−1(1 − α/2) 
s

n
, x̄ + tn−1(1 − α/2) 

s

n
] (25) 

 A 1 − α Wald-type confidence interval (Papoulis & Pillai, 2002, p.309) is 

 [l(x),u(x)] = [x̄ − Φ
-1

(1 − α/2) 
s

n
,x̄ + Φ

-1
(1 − α/2) 

s

n
] (26) 

We compare the MCCI with the exact interval obtained by (25), as well as with the Wald-
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type interval, the BCa interval and the intervals obtained by Ripley’s two methods. Figure 3 

compares the confidence intervals obtained by the six methods for a simulated sample with 10 

elements from a normal distribution with μ = 0 and σ = 1. For this sample μ̂ = 0.026 and σ̂ = 

1.023. In this case for the calculation of the confidence interval we use the unbiased 

estimators of μ and σ
2
 (instead of the MLE). As we see, MCCI gives a better approximation 

than the other four approximate methods. 
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Figure 3. Confidence intervals for the location parameter of a normal distribution with n = 10, μ
^
 = 0.026 and σ

^
 = 

1.023. Here the number of samples k = 100 000 for MCCI, "Ripley location" and "Ripley scale" cases, δμ = 0.1 

and δσ = 0.1. 

5.3 Confidence interval for the percentile of the normal distribution 

The pth percentile is tp := μ + zpσ, where zp is pth percentile of the standard normal 

distribution. A 1 − α Wald-type confidence interval estimate is given by the following 

equation (e.g. Koutsoyiannis, 1997, p.69). 

 [l(x),u(x)] = [x̄ + zps − Φ
-1

(1 − α/2) 
s

n
1 + z

2

p/2, x̄ + zps + Φ
-1

(1 − α/2) 
s

n
1 + z

2

p/2] (27) 

Another way to obtain a confidence interval is by using Bayesian analysis (see Gelman et 

al., 2004, p.75,76). Then if we chose a prior P(μ,σ)  1/σ
2
, we can construct a sampler based 
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on the following mixture. 

 σ
2
|x  inv-χ

2
(n−1,s

2
) and μ|σ

2
,x  Ν(x̄,σ

2
/n) (28) 
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Figure 4. Confidence intervals for μ + 2σ of a normal distribution with n = 50, μ
^
 = −0.027 and σ

^
 = 0.998. Here 

the number of samples m = 50 000 for MCCI, "Ripley location" and "Ripley scale" cases, δμ = 0.1 and δσ = 0.1. 
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Figure 5. Confidence intervals with confidence coefficient 1−0.01 for μ + zσ of a normal distribution with n = 

50, μ
^
 = −0.027 and σ

^
 = 0.998. Here the number of samples m = 50 000 for MCCI, "Ripley location" and "Ripley 

scale" cases, δμ = 0.1 and δσ = 0.1. 

Thus, here we compare six confidence intervals, the Bayesian confidence region, the 

Wald-type of equation (27), the BCa interval, the intervals obtained by Ripley’s two methods, 

and the MCCI. Figure 4 compares the confidence intervals for μ + 2σ obtained by the six 
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methods for a simulated sample with 50 elements from a normal distribution with μ = 0 and σ 

= 1. For this sample μ̂ = −0.027 and σ̂ = 0.998. As we see, Bayesian and MCCI are almost 

indistinguishable, and MCCI is better when compared to "Ripley location" and "Ripley scale". 

"Ripley location" is close to the Wald-type and the "bootstrap". The same holds for Figure 5 

which compares all methods on the calculation of a 1−0.01 confidence interval, when zp 

varies from −3 to 3. 

5.4 Confidence interval for the scale parameter of the gamma distribution 

First we show how we can calculate an approximate confidence interval for the scale 

parameter of the gamma distribution. We define Rn := ln(x̄/x~), where x̄ and x~ are the 

arithmetic and the geometric mean of a size-n sample, which, according to Bhaumik et al. 

(2009) and Bain & Engelhardt (1975), has a distribution independent of the scale parameter. 

The maximum likelihood estimates of θ and k according to Bhaumik et al. (2009) and Choi & 

Wette (1969), denoted by k̂ and θ̂ are the solutions of the following equations: 

 Rn = ln(k) − ψ(k) and kθ = x̄ (29) 

where ψ denotes the digamma function. 

We have that 

 E(Rn) = −ln(n) − ψ(k) + ψ(nk) and Var(Rn) = (1/n)ψ΄(k) − ψ΄(nk) (30) 

We also define as c and v, functions of k and n, the solutions of the following system of 

equations 

 2nk E(Rn) = cv and (2nk)
2
Var(Rn) = 2c

2
v (31) 

From (31) we obtain 

 c = 
nkVar(Rn)

E(Rn)
 and v = 

2E
2
(Rn)

Var(Rn)
 (32) 
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For the construction of the confidence interval see Bhaumik et al. (2009) and Engelhardt & 

Bain (1977). The statistic z = 2x/θ has approximately a chi-square distribution with 2nk̂ 

degrees of freedom, specifically z ~ χ
2

2nk
^. The statistic T1 = 2nk̂Rn/c + z ~ χ

2

ν+2nk
^. Now using the 

T1 statistic we obtain the following 1 − α confidence interval for the scale parameter θ. 

 [l(x),u(x)] = [
2nx̄

 χ
2

ν+2nk
^(1 − α/2) − 2nk̂ Rn/c

,
2nx̄

 χ
2

ν+2nk
^(α/2) − 2nk̂ Rn/c

] (33) 

We will designate the confidence interval obtained by (33) as "approximate". Another way 

to obtain a confidence interval is by using Bayesian analysis (See Robert, 2007). According to 

Son & Oh (2006), if we chose a prior P(k,θ)  1/θ, we construct a Gibbs sampler using the 

following equations 

 θ|k,x  IG(nk,1/
i = 1

n

 xi) (34) 

where IG(a,b) denotes the inverse gamma distribution with parameters a and b, with density 

function f(x|a,b) = [Γ(a)b
a
]
−1

x
−(a+1)

exp(−1/bx), x, a, b > 0. Also 

 P(k|θ,x)  [Γ(k)]
−n
θ

−nk

i = 1

n

 x
k-1

i  (35) 

 A Wald-type interval is calculated, using the formula in Casella & Berger (2002, p. 497) 

 [l(x),u(x)] = [θ̂ − Φ
-1

(1 − α/2) −l''(θ̂), θ̂ + Φ
-1

(1 − α/2) −l''(θ̂)] (36) 

where − l''(θ̂) is an estimate of the Hessian at (k̂, θ̂), when optimizing the log-likelihood 

function. 

We designate the confidence region obtained by (34) and (35) as Bayesian, the BCa 

interval as "bootstrap", the confidence interval obtained by Ripley’s two methods as "Ripley 

location" and "Ripley scale" and the confidence interval obtained by our algorithm as MCCI. 
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Figure 6 compares the confidence intervals obtained by all seven methods for a simulated 

sample with 50 elements from a gamma distribution with k = 2 and θ = 3. For this sample k̂ = 

1.979 and θ̂ = 3.007. As we can see, the MCCI, "Ripley scale" and "bootstrap" limits are close 

to the Bayesian ones, but the approximate, "Wald-type and "Ripley location" limits lie far 

apart, which shows that they do not provide a satisfactory approximation (perhaps owing to 

too many assumptions involved in their derivation). 
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Figure 6. Confidence intervals for the scale parameter of a gamma distribution with n = 50, k
^
 = 1.979 and θ

^
 = 

3.007. Here the number of samples m = 20 000 for MCCI, "Ripley location" and "Ripley scale" cases, δk = 0.3 

and δθ = 0.3. 

5.5 Confidence interval for the shape parameter of the gamma distribution 

To obtain a 1 − α confidence interval for the shape parameter k, according to Bhaumik et al. 

(2009, see also Engelhardt & Bain, 1978), we use the statistic T1 = 2nkRn ~ cχ
2

ν, 

approximately. Then a 1 − α confidence interval corresponds to the following inequality 

 
Var(Rn)

E(Rn)
 χ

2

ν(α/2) < 2Rn < 
Var(Rn)

E(Rn)
 χ

2

ν(1 − α/2) (37) 

where we solve for k. 

 A Wald-type interval is calculated, using the formula in Casella & Berger (2002, p. 497) 
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 [l(x),u(x)]=[ k̂ − Φ
-1

(1 − α/2) −l''(k̂), k̂ + Φ
-1

(1 − α/2) −l''(k̂)] (38) 

where − l''(k̂) is an estimate of the Hessian at (k̂, θ̂), when optimizing the log-likelihood 

function. 

 We designate the confidence interval obtained by (37) as "approximate", the confidence 

region obtained by (34), (35) as Bayesian, the confidence interval obtained by (38) as Wald-

type, the BCa confidence interval as "bootstrap", the confidence intervals obtained by the two 

Ripley's methods as "Ripley location" and "Ripley scale" and the confidence interval obtained 

by our algorithm as MCCI. 
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Figure 7. Confidence intervals for the shape parameter of a gamma distribution with n = 50, k
^
 = 1.979 and θ

^
 = 

3.007. Here the number of samples m = 20 000 for MCCI, "Ripley location" and "Ripley scale" cases, δk = 0.3 

and δθ = 0.3. 

Figure 7 compares the confidence intervals obtained by all seven methods for a simulated 

sample with 50 elements from a gamma distribution with k = 2 and θ = 3. For this sample k̂ = 

1.979 and θ̂ = 3.007. As we can see, the "approximate", Wald-type, "Ripley location" and 

MCCI confidence intervals are close. The Bayesian confidence region is close to the 

"approximate" which, in our opinion, gives a good approximation of the exact confidence 

interval. "Ripley location" is far from the other intervals. 
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5.6 Confidence interval for the scale parameter of the Weibull distribution 

The density of the Weibull distribution is f(x|a,b) = 
b

a
 





x

a

b−1

exp[−





x

a

b

], x > 0 where a > 0 is 

the scale parameter and b > 0 is the shape parameter. According to Yang et al. (2007) first we 

must find a modified MLE of b, according to the following equation, which is a modification 

of the equations discussed in Cohen (1965). 

 l(b) := 
n − 2

b
 − (n

i = 1

n

 x
b

ilnxi)(
i = 1

n

 x
b

i)
−1

 + 
i = 1

n

 lnxi = 0 (39) 

We denote b̂ the modified maximum likelihood estimate given by (39) and â the modified 

maximum likelihood estimate given by the following equation. 

 â = [(1/n)
i = 1

n

 x
b
^

i]
1/b

^

 (40) 

We define S(b) := 
i = 1

n

 x
b

i  and c1 := 1 + 0.607927·0.422642
2
. Then a 1 − α confidence 

interval estimate is given by the following equation. 

 [l(x),u(x)] = [(
2S(b̂)

c1χ
2

2n(1 − α/2) − 2n(c1 − 1)
)
1/b

^

,(
2S(b̂)

c1χ
2

2n(α/2) − 2n(c1 − 1)
)
1/b

^

] (41) 

 A Wald-type interval is calculated, using the formula in Casella & Berger (2002, p. 497) 

 [l(x),u(x)]=[ â − Φ
-1

(1 − α/2) −l''(â), â + Φ
-1

(1 − α/2) −l''(â)] (42) 

where − l''(â) is an estimate of the Hessian at (â, b̂), when optimizing the log-likelihood 

function. 

We designate the interval obtained by (41) as "approximate", the interval obtained by (42)  

as Wald-type, the BCa interval as "bootstrap", the confidence interval obtained by Ripley’s 
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two method as "Ripley location" and "Ripley scale" and the confidence interval obtained by 

our algorithm as MCCI. 
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Figure 8. Confidence intervals for the scale parameter of a Weibull distribution with n = 50, a
^
 = 2.022 and b

^
 = 

3.097. Here the number of samples m = 20 000 for MCCI, "Ripley location" and "Ripley scale" cases, δa = 0.1 

and δb = 0.1. 

Figure 8 compares the confidence intervals obtained by the six methods for a simulated 

sample with 50 elements from a Weibull distribution with a = 2 and b = 3. For this sample â = 

2.022 and b̂ = 3.097. As we can see, the "approximate", "Ripley scale" and MCCI confidence 

intervals are almost indistinguishable and the Wald-type, "bootstrap" and "Ripley location" 

are far from the previous intervals. 

5.7 Confidence interval for the pth percentile of the Weibull distribution 

According to Yang et al. (2007) the pth percentile of the Weibull distribution is tp = 

a[−ln(1−p)]
1/b

. Then a 1 − α approximate confidence interval estimate is given by the 

following equation. 

 [l(x),u(x)] = [(− 
2S(b̂)ln(1−p)

c2χ
2

2n(1 − α/2) − 2n(c2 − 1)
)
1/b

^

,(− 
2S(b̂)ln(1−p)

c2χ
2

2n(α/2) − 2n(c2 − 1)
)
1/b

^

] (43) 

where c2 := 1 + 0.607927·{0.422642−ln[−ln(1−p)]}
2
. 
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Figure 9 compares the confidence intervals obtained by the five methods, the 

"approximate", the "bootstrap", the "Ripley location", the "Ripley scale" and the MCCI for a 

simulated sample with 50 elements from a Weibull distribution with a = 2 and b = 3. For this 

sample â = 2.022 and b̂ = 3.097. "Bootstrap" and "Ripley location" are close to each other but 

far from the other three confidence intervals. 
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Figure 9. Confidence intervals for the 75th percentile of a Weibull distribution with n = 50, a
^
 = 2.022 and b

^
 = 

3.097. Here the number of samples m = 20 000 for MCCI, "Ripley location" and "Ripley scale" cases, δa = 0.1 

and δb = 0.1. 

5.8 Summary results 

Table 1 shows the results of all previous methods summarized. MCCI is similar to "exact" 

(when "exact" can be calculated analytically, cases 1,2). MCCI is also similar to 

"approximate", in cases 5,6,7. In these cases "approximate" seems to be a good approximation 

of an exact confidence interval. This implies that MCCI is a good approximation of an exact 

confidence interval. 

 On the other hand in case 3 MCCI is almost identical to "Bayesian" which we think is a 

good property. In case 4, MCCI is closer to "Bayesian" than the "approximate". We believe 

that the "approximate" is not a good approximation of an exact confidence interval, because it 
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involves a lot of assumptions and transformations. MCCI was also better in our opinion than 

Wald-type and bootstrap intervals in all cases. We should also keep in mind that confidence 

intervals and Bayesian "confidence regions" are not directly comparable (see also the chapter 

dedicated to matching priors in Robert, 2007, p.137). 

 As an additional means of intercomparison, coverage probabilities using Monte Carlo 

methods were calculated for all methods except for the Bayesian confidence regions and the 

algorithm behaved relatively well in all cases (Table 2). MCCI was better when estimating the 

confidence intervals for the normal and the gamma distribution parameters, and had the best 

mean rank for all the examined cases. 

 An application of the algorithm, using historical river flow data is given in appendix B. 

Table 1. Summary results of the case studies examined. Smaller numbers mean that the corresponding result is 

better. Equal numbers mean that there is a similarity between the different results. For example, in the case of the 

percentile of the normal distribution, MCCI, "Ripley scale" and "Bayesian" methods (marked as 1) gave similar 

results, whereas Wald-type, "bootstrap" and "Ripley location" methods (marked as 2, 3 and 3 correspondingly) 

gave results worse than the former methods. 

    Methods 

Case Figure 

No 

Distribution Parameter Exact Bayesian Approximate Ripley 

location 

Ripley 

scale 

Wald-

type 

Bootstrap MCCI 

1 2 Exponential Scale 1   4 1 3 2 1 

2 3 Normal Location 1   2 2 2 3 1 

3 4 Normal Percentile  1  3 1 2 3 1 

4 6 Gamma Scale  1 3 2 1 2 1 1 

5 7 Gamma Shape  2 1 3 1 1 2 1 

6 8 Weibull Scale   1 2 1 2 2 1 

7 9 Weibull Percentile   1 2 1  2 1 

Table 2. Monte Carlo coverage probabilities and rank of each method when calculating 0.975 confidence 

intervals after 10 000 iterations (rank 1 is assigned to the method of best performance). 

      Coverage probabilities (with ranks in parentheses) for all 

methods 
Case Distribution Parameter Sample 

size 

Parameter 

value 

Parameter 

value 

Approximate Ripley 

location 

Ripley 

scale 

Wald-

type 

Bootstrap MCCI 

1 Exponential Scale 10 σ = 2   0.889 (5) 0.977 (2) 0.975 (1) 0.916 (4) 0.966 (3) 

2 Normal Location 10 μ = 0 σ = 1  0.946 (3) 0.946 (3) 0.947 (2) 0.931 (5) 0.968 (1) 

3 Normal Percentile 10 μ = 0 σ = 1  0.919 (4) 0.929 (2) 0.929 (2) 0.867 (5) 0.973 (1) 

4 Gamma Scale 50 k = 2 θ = 3 0.753 0.923 (5) 0.976 (1) 0.940 (4) 0.957 (3) 0.974 (1) 

5 Gamma Shape 50 k = 2 θ = 3 0.976 0.948 (5) 0.972 (2) 0.978 (2) 0.956 (4) 0.974 (1) 

6 Weibull Scale 50 a = 2 b = 3 0.971 0.969 (3) 0.970 (2) 0.966 (4) 0.965 (5) 0.973 (1) 

7 Weibull Percentile 50 a = 2 b = 3 0.971 0.968 (3) 0.970 (1)  0.961 (4) 0.969 (2) 

 mean rank     4.000 1.857 2.500 4.286 1.429 
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6 Sensitivity of the algorithm on the choice of the increment and the 

simulation sample size 

In this chapter we test the sensitivity of the algorithm on the choice of the increments δμ and 

δσ and the simulated sample size in the case of the location parameter and the percentile of 

the normal distribution. 
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Figure 10. 0.95 confidence intervals for a normal distribution estimated for different δμ and δσ (the parameter 

increments denoted in text as δθi): (upper) confidence interval for the location parameter μ from a sample with n 

= 10, μ
^
 = 0.026 and σ

^
 = 1.023 and number of samples drawn m = 100 000; (lower) confidence interval for the 

quantity μ + 2σ from a sample with n = 50, μ
^
 = −0.027 and σ

^
 = 0.998 and number of samples drawn m = 50 000. 

 Figure 10 tests the sensitivity of the algorithm on the choice of the increments δμ and δσ in 

the cases of the location and the percentile parameters of the normal distribution, for n = 10 



25 

 

2
5
 

(upper panel) and n = 50 (lower panel), where for the calculation of the confidence interval 

the unbiased estimators of μ and σ
2
 were used. As we see, the algorithm gives good 

approximations, regardless of the choice of δμ and δσ. For small n, a slight problem appears if 

δμ is too small (< 0.5). Figure 11 describes the convergence of the algorithm for the same 

cases. The speed of convergence is low since ~50 000 iterations are needed for its 

stabilization, although reasonable results are obtained even for ~10 000 iterations. 
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Figure 11. 0.95 confidence intervals for a normal distribution estimated for varying simulation sample size: 

(upper) confidence interval for the location parameter μ from a sample with n = 10, μ
^
 = 0.026 and σ

^
 = 1.023; 

(lower) confidence interval for the quantity μ + 2σ from a sample with n = 50, μ
^
 = −0.027 and σ

^
 = 0.998. 

7 Conclusions 

By modifying two Monte Carlo methods used by Ripley (1987), associated with the 
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computation of a confidence interval for a parameter of a probability distribution, we derive a 

new equation and a general algorithm which gives a single solution for a confidence interval, 

which combines the advantages of these two methods without requiring discrimination for the 

type of parameter. We show that this algorithm is exact for a single parameter of distribution 

of either location or scale family. It is also asymptotically equivalent to a Wald-type interval 

for parameters of regular continuous distributions. 

 After appropriate modification of the algorithm we make it appropriate for calculating 

confidence intervals for a parameter of multi-parameter distributions. We show that this 

algorithm is asymptotically equivalent to a Wald-type interval for regular distributions. 

 We tested the algorithm in seven cases, namely the construction of a confidence interval 

for the scale parameter of the exponential distribution, the location parameter and the pth 

percentile of the normal distribution, the scale and shape parameter of a gamma distribution, 

and the scale parameter and the pth percentile of the Weibull distribution. We found that in 

general this algorithm works well and results in correct coverage probabilities. 

 We propose the use of the algorithm for an approximation of a confidence interval of any 

parameter for any continuous distribution because it is easily applicable in every case and 

gives better approximations than other known algorithms as shown in specific cases above. 

An additional advantage compared to Ripley's two methods is that it is not needed to select 

one of the methods. Our algorithm worked equally well or better from the best of Ripley's 

methods in all the examined cases. Thanks to its generality, the algorithm has been 

implemented in a hydrometeorological software package (Hydrognomon, 2009-2012), which 

fits various distributions in data records and calculates point and interval estimates for 

parameters and distribution quantiles, which are then used for hydrological design.  

 The confidence intervals obtained by the algorithm are approximate and the algorithm was 

not developed with the intention to replace the exact confidence intervals, when their 
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calculation is possible. Further research is needed to evaluate the influence of the choice of 

the numerical parameters (increments δθi and the simulation sample size) to the results of the 

algorithm. A disadvantage of the algorithm is that a lot of repetitions are needed to converge. 

Acknowledgements The authors are grateful to two anonymous reviewers, for their positive 

comments which were very helpful for substantial improvement of the manuscript. 

Appendix A: Some theoretical results 

First we show that the confidence interval for the parameter μ of a normal distribution N(μ,σ
2
) 

is asymptotically equivalent to a Wald-type interval. For the normal distribution we define θ = 

(μ, σ), T(x) = (T1(x), T2(x)), where T1(x) = μ, and T2(x) = σ are the MLE of μ and σ 

respectively. 

 Then, following the notation of the preceding sections we have β := h(μ,σ) = μ, h(T) = T1 

and P(b(x) < λ(θ)) = α/2, P(b(x) > υ(θ)) = α/2 which imply that λ = μ + Φ
−1

(α/2)σ/ n and υ = 

μ + Φ
−1

(1 − α/2)σ/ n. Now from (18) we obtain 

 
dγ

dθ
 =  











dλ

dθ

dβ

dθ

dυ

dθ

 = 







1 Φ

−1
(α/2)/ n

1 0

1 Φ
−1

(1 − α/2)/ n

 (44) 

 It is also easy to prove that asymptotically 






μ − μ

σ − σ
 ~ N




 






0

0
,
σ

2

n
 











1 0

0 1/2
 , thus μ ~ 

N(μ, σ
2
/n) and σ ~ N(σ, σ

2
/2n). We also have that Φ

−1
(1 − α/2) = −Φ

−1
(α/2). 

 From (12), (13) we derive l = μ − 
σΦ

−1
(1 − α/2)

n 
dυ

dμ

 and u = μ + 
σΦ

−1
(1 − α/2)

n 
dλ

dμ

. From (22) we 

have that 
dλ

dμ
 = 

dυ

dμ
 = 1 − 

(Φ
−1

(1 − α/2))
2

4n
. A 1 − α confidence interval for μ is (μ − tn−1(1 − α/2) 
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σ

n
,μ + tn−1(1 − α/2) 

σ

n
) (e.g. Papoulis & Pillai, 2002, p. 309). Now we have that lim

n→∞

Φ
−1

(1 − α/2)/ (
dυ

dμ
 )

 tn−1(1 − α/2)
 = 1, which proves that the confidence interval obtained by (14) is 

asymptotically exact. 

 We will also show that the confidence interval obtained by our method is asymptotically 

equivalent to a Wald-type interval for two-parameter regular distributions. According to 

Casella & Berger (2002, p. 472) n(θ − θ) →
d

 N(0,I
 −1

), where θ is the MLE of θ, and I is the 

Fisher Information Matrix with elements Ijk = E(−
∂

2
lnf(x|θ)

∂θjθk
). This means that n(θ1 − θ1) →

d
 

N(0,I
−1

11) and n(θ2 − θ2) →
d

 N(0,I
−1

22). We conclude that n(β − β) →
d

 N(0,σ
2

β), where σ
2

β 

depends only on θ1 and θ2. Suppose that we seek a 1 − α confidence interval for β. Then it is 

easy to show that asymptotically λ(β) = β − Φ
−1

(1 − α/2)σβ/ n, υ(β) = β + Φ
−1

(1 − α/2)σβ/ n. 

Now we have Var(θ1) = I
−1

11/n, Var(θ2) = I
−1

22/n and 

 
dγ

dθ
 = 











dλ

dθ

dβ

dθ

dυ

dθ

 = 











∂β

∂θ1
 − Φ

−1
(1 − α/2)

∂σβ
∂θ1

/ n
∂β

∂θ2
 − Φ

−1
(1 − α/2)

∂σβ
∂θ2

/ n

∂β

∂θ1

∂β

∂θ2

∂β

∂θ1
 + Φ

−1
(1 − α/2)

∂σβ
∂θ1

/ n
∂β

∂θ2
 + Φ

−1
(1 − α/2)

∂σβ
∂θ2

/ n

 (45) 

 
q31 + q32

q21 + q22
 = 

[Φ
−1

(1 − α/2)]
2
[(

∂σβ
∂θ1

)
2
I

−1

11 + (
∂σβ
∂θ2

)
2
I

−1

22] − Φ
−1

(1 − α/2) n[ 
∂σβ
∂θ1

∂β

∂θ1
I

−1

11 + 
∂σβ
∂θ2

∂β

∂θ2
I

−1

22]

n[Φ
−1

(1 − α/2)(
∂σβ
∂θ1

∂β

∂θ1
 + 

∂σβ
∂θ2

∂β

∂θ2
) − 2 n((

∂β

∂θ1
)
2
I

−1

11 + (
∂β

∂θ2
)
2
I

−1

22)] 

 − 

− 

2n((
∂β

∂θ1
)
2
I

−1

11 + (
∂β

∂θ2
)
2
I

−1

22)

n[Φ
−1

(1 − α/2)(
∂σβ
∂θ1

∂β

∂θ1
 + 

∂σβ
∂θ2

∂β

∂θ2
) − 2 n((

∂β

∂θ1
)
2
I

−1

11 + (
∂β

∂θ2
)
2
I

−1

22)] 

 (46) 
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 It is obvious that lim
n→∞

dυ

dβ
 = lim

n→∞

q31 + q32

q21 + q22
 = 1. In a similar way we can find that lim

n→∞

dλ

dβ
 = 

lim
n→∞

q12 + q13

q22 + q23
 = 1. Now substituting to (12), (13) we obtain l = β − Φ

-1
(1 − α/2)σβ/ n, u = β + 

Φ
-1

(1 − α/2)σβ/ n which is an asymptotically equivalent to a Wald-type interval according to 

Casella & Berger (2002, p.497). 

Repeating the same procedure for three-parameter distributions, we obtain the same 

results. 

Appendix B: Application of the algorithm on a historical river flows dataset  

In this Appendix we apply the algorithm on a historical river flow data set using the 

hydrological statistical software Hydrognomon (2009-2012), suitable for the processing and 

the analysis of hydrological time series, which has already incorporated the proposed method. 

The case study is performed on an important basin in Greece, which is currently part of the 

water supply system of Athens and has a history, as regards hydraulic infrastructure and 

management, that goes back to at least 3500 years ago. Modelling attempts with good 

performance have already been done on the hydrosystem (Rozos et al. 2004). A long-term 

dataset of the catchment runoff, extending from 1906 to 2008, is available. The example 

presented in Figure 12 is for the January monthly flow record at the Boeoticos Kephisos river 

outlet at the Karditsa station measured in hm
3
. The gamma distribution is often used to model 

monthly river flows. Confidence limits of quantiles of distributions are of interest to 

hydrologists. Here we derived confidence intervals for the scale and the shape parameters of 

the gamma distribution. Comparison of the results of the different methods used show that the 

MCCI and "Ripley scale" limits are close to the Bayesian ones. In addition, Figure 13 gives 

confidence limits of the distribution percentiles using the same dataset, this time constructed 

using Hydrognomon (2009-2012). 
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Figure 12. Confidence intervals for the scale (upper) and shape (lower) parameter of a gamma distribution, used 

to model the Boeoticos Kephisos river January monthly flows  with n = 102, k
^
 = 3.842 and θ

^
 = 15.218. Here the 

number of samples m = 120 000 for MCCI and m = 60 000 for the "Ripley location" and "Ripley scale" cases, δk 

= 0.3 and δθ = 0.3. 
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Figure 13. A graph (normal probability plot) produced by the Hydrognomon software referring to the monthly 

flow of Boeoticos Kephisos river for the month of January (1993-2006). The sample (dots plotted using Weibul 

plotting positions) was modelled by a gamma distribution (central line) with k
^
 = 3.842 and θ

^
 = 15.218. Dotted 

lines represent 95% prediction intervals for these parameter values (denoted as λ and υ in the text) and dashed 

lines represent 95% confidence intervals (MCCI denoted as l and u in the text) for the distribution percentiles. 
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