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Visualization of diversity and heterogeneity 
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Macroscopic: Gully erosion 

Lavrio, Photo by author 

www.purewest.ca/compost/s
oilsprout.jpg 
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Mesoscopic: Snowflakes and soil structure 

Satellite image from 
visibleearth.nasa.gov/view.php?id=55161 

Megascopic: Po river basin  

Microscopic: Molecules 
of gases in motion 

Simulation, 
see below 



Microscopic world: Gas molecules in motion 
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Computer 
simulation 
of 20 
molecules 
in motion 

(10 heavy,  
10 light). 

 

phet.colorado.edu/en/simulation
/gas-properties 



Contemplating on snapshots of gas motion 
simulation 
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Time: t1 

Both heavy and light 
molecules are 
irregularly distributed 
and tend to cover all 
available space  

Time: t2 
All heavy molecules lie in 
the lower part while the 
upper-right part is free 
even of light molecules 
(but such patterns would 
hardly appear for larger N) 

Time: ? 
Regular/uniform 
arrangement of 
molecules (this one is fake—
not constructed by simulation; 
perhaps the age of universe is 
not enough for this to appear) 



Deterministic inhomogeneity and nonstationarity 
vs. statistical homogeneity and stationarity 
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Positions and velocities irregularly 
and non-uniformly distributed 

Time t1 

Abstract random fields uniformly 
distributed in space (homogeneity) 

Time t2 



Probability theory and the notion of random 
variable 
 By its definition, probability constitutes a mapping of sets into numbers: 

for a set (event) A, the probability P(A) is a number in the interval [0, 1].  

 By its definition, a random variable is not a single number but some 
function of elementary events; despite its name, a random variable does 
not necessarily describe anything random. 

 Analogy: the equation 𝑥2 𝑥 − 1 3 = 0 has a double root x = 0 and a triple 
root x = 1; the notion “root of the equation” has, at the same time, the 
values x = 0 and x = 1, the first twice and the second thrice.  

 In the above analogy, the “root of the equation” can be represented as a 
random variable x taking on both values 0 and 1 with P{x = 0} = 2/5 and 
P{x = 1} = 3/5.  

 Note: A random variable needs a special notation to distinguish it from a 
regular variable x; the best notation devised is the so-called Dutch 
convention (Hemelrijk, 1966), according to which random variables are 
underlined, i.e. x. 
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Basic quantities associated to a random 
variable 
 Continuing the same logic we can proceed from single-valued variables x 

to infinite-times-valued variables, or random variables x, discrete or 
continuous, which are always associated with a probability distribution 
function, a function of a regular (real  or vector) variable x ∈ X defined as: 

F(x) := P{x ≤ x} 

 Probability mass function of a discrete random variable (DRV) x: 

 p(x) := P{x = x} 

 Probability density function of a continuous random variable (CRV) x: 

f(x) := P{x ≤ x ≤ x + dx} / dx 

 Expectation of any deterministic function g(x) of the random variable x: 

(DRV) E[g(x)] := ∑X g(x) p(x);     (CRV) E[g(x)] := ∫X g(x) f(x) dx  

 Entropy:  

(DRV) φ[x] = Ε[–ln p(x)];    (CRV) φ[x] = Ε[–ln(f(x)/h(x))]  

where h(x) is a reference density (usually the Lebesgue density, i.e. a 
constant h = 1 with dimensions identical with those of f(x)) 
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Homogeneous description of gas in motion: 
quantities invariant in space and time 
 Volume per particle v := dV/E[dN] and density ρ := Ε[dm]/dV=  

m0 E[dN]/dV = m0/v where dm is the mass contained in in volume dV, m0 
the mass of a particle (here assumed to be of one kind only), dN the 
number of particles in dV. 

 Entropy (per particle): φ = Ε[–ln(f(z)/h)]  
where z is the vector of random variables describing the random position 
and velocity of the particle; f(z) is the probability density function of the 
random vector z; and h is a standardizing constant with units identical to 
those of f. 

 Temperature: 1/θ := ∂φ/∂ε  

where ε is the internal energy of the particle. 

 Pressure:  p := E[dF/ds] = 2 E[dq]/dt ds  

where dF represents force perpendicular to the areal element ds due to 
collision of molecules and dq is the momentum of molecules colliding at 
the areal element ds during time dt 

 Note: Natural units are used, i.e. entropy is dimensionless and 
temperature is in energy units (Koutsoyiannis 2011). 
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Some deterministic laws resulting from a 
stochastic framework  
 Basic principle: Entropy is as high as possible (principle of maximum 

entropy). 

 Energy distribution: the total kinetic energy (thermal energy) is equally 
distributed among different molecules (whether of the same kind or 
different kinds). 

 Equipartition: the kinetic energy is equally distributed among the 
different degrees of freedom of a molecule. 

 Law of ideal gases: p v = θ 

 Law of adiabatic change in gases: θA
1 + β/2/pA = θB

1 + β/2/pB 

where β is the number of degrees of freedom of the motion of a particle. 

 Law of phase change (relationship between the equilibrium partial 
pressure p of and temperature θ—the Clausius-Clapeyron equation): 
p = p0 e ξ/θ0 (1 – θ0/θ) (θ0/θ) (βL/2 – βG/2 – 1) where βL and βG are the degrees of 
freedom in the liquid and gaseous phase, respectively, ξ is the amount of 
energy per molecule required to break the bonds between molecules of the 
liquid phase and (θ0, p0 := p(θ0)) is an anchor point (Koutsoyiannis, 2012). 
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Phase change of water: Impressive agreement 
of observations with theoretical results based 
on entropy maximization 
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p = p0 e ξ/θ0 (1 – θ0/θ) × 

(θ0/θ) (βL/2 – βG/2 – 1) 
(Koutsoyiannis, 2012) 

Error ≈ 0 

Standard version of textbooks:  
p = p0 e ξ/θ0 (1 – θ0/θ) 

Error up to 7% 



A note about expected values and accuracy 

 Strictly speaking, expected values are abstract quantities referring 
to random variables and corresponding to ensembles or 
realizations. 

 The number of particles in macroscopic quantities of gases is 
tremendous, N ≈ 1027 per kmol; in addition, they are identical to 
each other (or of a few kinds) and the random variables describing 
their states can be regarded independent to each other. 

 According to the law of large numbers, the expected values can be 
estimated with negligible error from typical statistical estimators 
for a single realization of the N particles. 

 This make the expected values observable macroscopic quantities. 

 However, this does not apply to small N, particularly when there is 
dependence among the different random variables. In such a case, 
expected values remain abstract and non-observable quantities.  

 For small N, we rather measure realizations rather than expected 
values and we cannot anticipate high accuracy of estimates. 
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Mesoscopic world: flow in porous medium  
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D1 D2 

D3 

Image adapted from 
www.terragis.bees.unsw.edu.au/terraGIS_soil
/sp_water-water_flow.html 

Flow paths through a saturated 
porous medium (soil) 

Delineation of an irregular pipe of 
varying cross section 

Approximation of the irregular 
pipe by cylindrical pipe segments 



A detailed toy model of an irregular pipe 

 A pipe with length  L = 10 m and variable cross section is 
considered; this length is divided into segments of equal 
length δL = 10 mm, each one assumed to be cylindrical pipe 
with constant area A. 

 In each segment, the quantity 𝐴 is assumed to be a 
realization of a log-normally distributed variable w with 
mean μ = 1 mm and standard deviation σ = 0.5 mm; variables 
wi in consecutive segments i are linearly correlated with a 
Hurst-Kolmogorov structure with Hurst coefficient H = 0.75. 

 The discharge is Q = 10 mm3/s, which for a characteristic 
area of 1 mm2 gives a characteristic mean velocity of 10 
mm/s. 

 Under these conditions, a characteristic Reynolds number is 
Re = 10, which indicates that the flow is laminar.  
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The velocity profile in laminar flow in a 
cylindrical pipe 

 Laminar flow 
has a velocity 
profile with 
steep 
gradients 
(strongly 
non-
uniform). 

 Yet it is 
convenient 
to use in 
applications 
the average 
velocity V. 
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Model of head losses in the irregular pipe 

 Major losses in laminar flow (theoretically derived equation): 

 ℎf =
8π𝜈𝐿

𝑔𝐴
 V =

8π𝜈𝐿

𝑔𝐴2  Q  

where π = 3.14…, ν is the kinematic viscosity, g is the gravity 
acceleration, L and A are the length and cross-section area of 
the pipe, respectively, and V is the flow velocity, spatially 
averaged over the cross-section. 

 Minor losses: 

 ℎL = min
1

2
+

𝑉u

𝑉d
, 1  

𝑉u−𝑉d
2

2𝑔
  

where Vu and Vd is the velocity upstream and downstream, 
respectively.  
Note: this simple equation constitutes a satisfactory 
approximation of graphical or tabulated results commonly 
referred to in textbooks  
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One realization of (part of) the pipe and the 
resulting variation of head loss 
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Two realizations of the heterogeneous toy 
model and two homogeneous models 
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Conclusion:  
Stochastic 
homogeneity 
works perfect; 
details are 
useless. 

A daring determinist would “homogenize” the entire pipe 

using as A the average area of the pipe, so that ℎf =
8π𝜈𝐿

𝑔𝐴2  Q. 
A stochastics-
zealot will 
always dare 
homogenize, 
obtaining the 
correct 
equation 
E[ℎf] =
8π𝜈𝐿

𝑔
E[𝐴−2] Q 
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Predictions based on observations 
 Realization 1 is assumed to be the true representation. 

 Three measurements are assumed in points shown in figure. 

 A prediction at point x = 0 is sought.  

 In a deterministic approach the three measurements allow the assumption 
of different properties for the left and the right halves (heterogeneity) 

 

D. Koutsoyiannis, From deterministic heterogeneity to stochastic homogeneity 18 

 Stochastic 
homogeneity 
gives a better 
prediction than 
deterministic 
inhomogeneity. 

 In the 
stochastic 
approach the 
error is 
expected and 
quantifiable. 

 



Macro- and mega-scales 

Depiction of the Po river discharge 
time series 

Q2: Could any model predict these 
patterns if the basin were ungauged? 
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www.flickr.com/photos/giopac/3440592865/sizes/z/in/
photostream/ 

Source: Montanari (2012) 

Po river 

Q1: Would it ever be possible to model 
all details in the river basin and would 
this have any value for prediction? 



All errors and uncertainties taken into account: 
stochastic process-based hydrology modelling  
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Conclusions and discussion 
 The real world is characterized by diversity—from micro- to mega-scales. 

 Models of the real world can be homogeneous and need not describe the 
diversity of the details (heterogeneity). 

 Probability theory and stochastics provide the tools to tackle the non-
conformity between the homogeneous models with the heterogeneous 
reality. 

 Only trivially simple systems (e.g. two bodies, harmonic oscillators) can 
be studied purely deterministically. 

 Only in microscopic scales is deduction possible and requires physical 
laws both deterministic (Newton’s) and stochastic (maximum entropy). 

 In meso-, macro- and mega-scales inference relies on induction, based on 
data, and its theory is none other than stochastics. 

 In models in these scales, error is inescapable and uncertainty is 
impossible to exterminate.  

 However it is possible to quantify uncertainty through probability 
distribution functions of predictors and predictands. 

 The only way to make reliable predictions in ungauged basins is to 
convert them to gauged basins (sorry about that!). 
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