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Abstract We overview studies of the natural variability of past climate, as seen from available proxy 

information, and its attribution to deterministic or stochastic controls. Furthermore, we characterize this 

variability over the widest possible range of scales that the available information allows and we try to 

connect the deterministic Milankovitch cycles with the Hurst-Kolmogorov (HK) stochastic dynamics. 

To this aim, we analyze two instrumental series of global temperature and eight proxy series with 

varying lengths from 2 thousand to 500 million years. In our analysis we use a simple tool, the 

climacogram, which is the logarithmic plot of standard deviation versus time scale, and its slope can be 

used to identify the presence of HK dynamics. By superimposing the climacograms of the different 

series we obtain an impressive overview of the variability for time scales spanning almost 9 orders of 

magnitude—from 1 month to 50 million years. An overall climacogram slope of –0.08 supports the 

presence of HK dynamics with Hurst coefficient of at least 0.92. The orbital forcing (Milankovitch 

cycles) is also evident in the combined climacogram at time scales between 10 and 100 thousand years. 

While orbital forcing favours predictability at the scales it acts, the overview of climate variability at all 

scales suggests a big picture of irregular change and uncertainty of Earth’s climate.  

Keywords: Hurst-Kolmogorov dynamics, climate variability, Milankovitch theory, paleoclimate, long 

term persistence, climate reconstructions  
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1 Introduction  

If you thought before science was certain — well, that is just an error on your part.  

Richard Feynman, The Character of Physical Law (1994 p. 71). 

 

In the first half of 19
th

 century, geologic evidence indicated that at least one glacial period existed in 

Earth’s geological history (Agassiz 1840; from Imbrie 1982). Some decades later it became clear that 

during the Pleistocene (2 588 000 – 12 000 years before present time—BP), there were many glacial 

periods, known also as ice ages, followed by shorter interglacials, such as the one we experience since 

the onset of human civilization. Ice age lengths ranged from 35–45 thousand years in early Pleistocene 

to 90–120 thousand years in the last million years. During glacial periods, continental glaciers enlarged 

in length and volume, reaching the 40
th

 parallel in some regions of the northern hemisphere, while 

similar phenomena have been identified in the southern hemisphere, too. Milankovitch (1941) provided 

an explanation for the ice ages based on Earth’s orbit variations, which was confirmed after some years 

by the first temperature reconstructions.  

It is now well known that succession of glaciation and deglaciation periods has not occurred 

all the time, but only in large periods defining an ‘icehouse climate’, such as the current (Pliocene-

Quaternary) icehouse period that started about 2.5 million years ago, as well as the Ordovician and the 

Carboniferous icehouse periods each of which lasted 50–100 million years (Crowell and Frakes, 1970). 

In contrast, the ‘hothouse climates’ are characterized by warmer temperatures, abundance of carbon 

dioxide (concentrations up to 20–25 times higher than current), and complete disappearance of polar 

icecaps and continental glaciers. Recently, cosmic ray flux was proposed as the controlling factor of the 

transition between these states (Shaviv and Veizer 2003). As underlined by Kirkby (2007), this theory 

was both disputed (Rahmostorf et al. 2004; Royer et al. 2004) and supported (Wallmann 2004; Gies 

and Helsel 2005). 

Additional findings showed that the climate of the Holocene (the last 12 000 years), earlier 

regarded static, was characterized by many climatic events, such as ‘Little Ice Age’, ‘Medieval Warm 

Period’, ‘Holocene Optimum’, ‘8 200 Holocene Event’ and ‘Bond Events’, deviating from ‘normal’ 

conditions for hundreds or thousands of years (Bond et al. 2001). For example, during ‘Little Ice Age’ 

(1450–1850) the temperature of the Northern hemisphere was about 0.6
o
C below 1961–1990 average 
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(Moberg et al. 2005; Pollack and Smerdon 2004), while the ‘Medieval Warm Period’ (950–1250), was 

a period of warm climate in Europe and North America and has been related to other climatic events at 

various regions around the world (Grove and Switsur 1994), including China (Long et al. 2011), New 

Zealand (Cook et al. 2002) or even Antarctica (Hass et al. 2008). 

The preceding ‘Younger Dryas’ episode is an even more impressive case of abrupt climate 

change that has occurred in the relatively recent climatic history. At the end of Pleistocene, when the 

last ice age ended and the retreat of the glaciers had begun, a rapid fall of temperature led the climatic 

system back to glacial conditions. The ‘Younger Dryas’ episode lasted for approximately 1300 years 

(starting at ~12 800 BP), covered spatially both hemispheres and ended even more suddenly than it 

emerged when temperature increased regionally up to 15
o
C in few decades (Alley et al. 1993). 

Although the cause for this short return to an ice age period is still under debate, it has become clear 

that it is not associated to a single catastrophic event (such as the release of freshwater from the lake 

Agassiz in Gulf of Mexico or the impact of a comet) but is rather regarded as an integral part of natural 

variability (Broecker et al. 2010, Mangerud et al. 2010).  

All these relatively recent events cannot be attributed to the Milankovitch cycles, whose 

periods are much longer (see below). Thus, it is very difficult to attribute the climate variability at 

multiple time scales (from decades to many millions of years) to specific quantifiable causal 

mechanisms that would be applicable ubiquitously. A more modest goal, which is the purpose of this 

study, would be to characterize this variability over the widest possible range of scales that the 

available evidence allows. Such characterization unavoidably uses stochastic descriptions and tools, but 

without neglecting the influence of identifiable deterministic forcings, such as the variations in Earth’s 

orbit.  

Such stochastic descriptions are related to the natural behaviour discovered by the hydrologist 

H. E. Hurst at the same period of Milankovitch’ discovery. Hurst (1951), motivated by the design of 

High Aswan Dam in Nile and after studying numerous geophysical records, observed that “although in 

random events groups of high or low values do occur, their tendency to occur in natural events is 

greater. This is the main difference between natural and random events”. In other words, in a natural 

process (e.g. river flow) events of similar type are more likely to occur in groups (e.g. a series of 

consecutive low flow years) compared to a purely random process (white noise) where grouping of 

similar states is less frequent. 
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Unknowingly to Hurst, A. Kolmogorov had already proposed a stochastic process that 

described this behaviour a decade earlier (Kolmogorov 1940), although both the process and the natural 

behaviour became widely known after the works of Mandelbrot and Wallis (1968), Klemes (1974) and 

Leland et al. (1994, 1995). Over the years, this mathematical process (or variants thereof) has be given 

many names, such as fractional Gaussian noise (FGN), brown noise, fractional ARIMA process 

(FARIMA) or self-similar process, while the natural behaviour has been called the Hurst phenomenon, 

long-range dependence (or memory), long term persistence or scaling behaviour (Koutsoyiannis and 

Cohn 2008). Here, when referring to the relevant natural behaviour, the stochastic process (definition 

of which will be given in section 5.1), or the related stochastic dynamics, we prefix them with the term 

Hurst-Kolmogorov (HK) in order to acknowledge the contribution of the two pioneering researchers.  

The HK behaviour, detected in numerous time series, as detailed in section 3 below, indicates 

fluctuations at different time scales, which may reflect the long term variability of several factors such 

as solar irradiance, volcanic activity and so forth (Koutsoyiannis and Montanari 2006). The multi-scale 

fluctuations cannot be described adequately by classical statistics, as the latter assumes independence 

(or weak dependence) and underestimates the system’s uncertainty on long time scales, sometimes by 

two, or even more, orders of magnitude (Koutsoyiannis and Montanari 2007). This underestimation, 

which some regard counterintuitive, will be further demonstrated below in section 6. Moreover, 

traditional stochastic autoregressive (AR) models cannot describe these fluctuations in an adequate 

way, because the autocorrelation functions of these models decay faster than those of the processes 

they try to model (Beran 1994).  

The study of natural variability of past climate can now be based on a lot of available proxy 

records, some of which are discussed in section 4 and analysed in subsequent sections of this study. 

These proxies are free of anthropogenic influences that could allegedly contribute to the observed 

changes. It is our aim to demonstrate some evidence of the presence of HK dynamics at different time 

scales (spanning 9 orders of magnitude). We also examine the coexistence of deterministic controls 

(due to orbital forcing) and stochastic dynamics, and try to identify possible connections between this 

stochastic dynamics and the modern, obliquity-dominated, orbital theory.  
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2 The orbital theory 

We use the term ‘orbital theory’, originally proposed by Bolshakov (2008), to describe the 

hypothesis that global climate is affected by changes in Earth’s orbital characteristics, such as the 

eccentricity, the precession of the equinoxes and the axial tilt or obliquity, at scales ranging from 20 to 

100 thousand years or even more (Berger, 1978). This hypothesis was set forth by Milankovitch 

(1941), following the theoretical ideas of Adhemar (1842; from Imbrie 1982) and Croll (1864; from 

Imbrie 1982). According to it, the intensity of incoming solar radiation during the summer solstice at 

high latitudes (65
o
) of the northern hemisphere (Figure 1a) causes the glaciation and deglaciation 

periods. Direct insolation changes by eccentricity or insolation at the southern hemisphere are not 

regarded to have a clear effect to climate as underlined by several researchers (Imbrie et al. 1993; Liu 

and Chao 1998; Balshakov 2008; Huybers 2009), despite the fact that it has been shown that the 

glaciations were almost synchronous in both hemispheres (Kawamura et al. 2007). Rather, glaciation 

cycles are mainly affected by precession forcing (19 and 24 thousand years) and obliquity forcing 

(41 thousand years). Thorough reviews of the historical development of the theory, as well as a full 

description of the celestial mechanics, are presented by Imbrie (1982), Bolshakov (2008) and Paillard 

(2010). 

Recently, the orbital climate theory has been challenged by several studies arguing that it 

cannot sufficiently describe the links between climate and insolation variations (Winograd et al. 1992; 

Muller and MacDonald 2000; Elkibbi and Rial 2001; Wunsch 2004; Bolshakov 2008). A well-known 

example of the weaknesses of the orbital theory is the mid-Pleistocene transition (MPT), which refers 

to the switch, around 900 thousand years BP, from predominant 41 thousand years glaciation cycles to 

100 thousand years glaciation cycles. This transition occurred without a corresponding change in 

orbital forcing (Pisias and Moore 1981) and the duration of each of the last four glacial cycles 

increased from 80 to 130 thousand years, which suggests that major climate shifts were aperiodic 

(Winograd et al. 1992). Till today, there is no confirmed explanation for MPT, although some efforts 

have been made and some hypotheses have been formulated, including those of a glacial-modulated 

threshold (Paillard 1998), frequency modulation (Rial 1999), possible CO2 correlation (Berger et al. 

1999) and obliquity-modulated threshold (Huybers 2006).  
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An alternative path to the understanding of the global climate cycles was based on stochastic 

dynamics (Petersen and Larsen 1978; Kominz and Pisias 1979; Benzi et al. 1982; Saltzman 1982; 

Pelletier 2003; Ditlevsen 2009). In this concept, insolation forcing could have a minor role in the 

glaciation cycles, or even could have no role at all, whereas the self-sustained internal variability of the 

climate system could be the actual driver of the glaciations (Ashkenazy and Tziperman 2004). Small 

periodic perturbations could be amplified by the variability of the climate system through the 

mechanism of stochastic resonance (Benzi et al. 1982), which was based on the works of Hasselmann 

(1976) and Sutera (1981). The former demonstrated that short-time-scale phenomena, modelled as 

stochastic perturbations, could affect long-term climate variations. The latter showed that if such 

stochastic perturbations are imported into an energy balance model with no other forcing, they could 

lead to random transitions between the equilibrium states of the model. 

In the last few years, there has been an effort to bridge the gap between the classical orbital 

theory and stochastic dynamics. Huybers and Wunsch (2005) proposed that obliquity may be a more 

important mechanism of glacial dynamics, in a nonlinear way though, and showed that the integrated 

summer insolation at high latitudes is relevant to the obliquity cycle (Figure 1b). Their suggestion was 

supported recently by high resolution empirical data (Liu et al. 2007; Suwa and Bender 2008; Drysdale 

et al. 2009; Naish et al. 2009; Lourens et al. 2010) and as Paillard (2010) highlights: “the relative 

weight of 23 000 and 41 000 years periodicities is quite different with such a definition of the 

astronomical forcing, pleading for a more prominent role of obliquity on climate than usually 

assumed”. An important addition to the development of modern orbital theory is the mechanism of 

nonlinear phase locking, describing a mechanism in which obliquity can act as a pace maker for the 

glacial periods, amplified by the internal system dynamics (Gildor and Tziperman 2000; 

Ashkenazy 2006; Tziperman et al. 2006). On the other hand, Roe (2006) showed that insolation is in 

good agreement with the change in ice volume (dV/dt) for the last million years, which led to further 

investigation of possible combination of obliquity and precession forcing (Huybers and Tziperman 

2008, Huybers 2011). 

A simple comparison (Figure 2) between the spectra of Milankovitch’ insolation (Laskar et al. 

2004), integrated insolation (Huybers 2006) and a temperature reconstruction (Huybers 2007) indicates 

some resemblance between the spectra of integrated insolation and temperature in terms of merely the 
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obliquity cycle. Namely, they all share a peak at the periodicity of 41 thousand years, but the last one 

has also one at 100 thousand years. To see whether peaks in the spectrum of the latter series represent 

regular periodicities or are the result of random effects, we can divide the time series whose spectrum 

is presented in Figure 2c in two or three equal parts and then compare the power spectra of the different 

parts: If a peak spotted in the spectrum represents a true deterministic periodicity, then it should be 

found in the spectra of all parts, while peaks that are due to random perturbations or random sampling 

would not appear in some of the parts. (We could continue this technique by splitting to four parts, etc., 

but this would reduce the sub-sample size and the reliability of statistical estimates too much). 

In this case, the only signal that remains detectable in almost all spectral densities is the one 

from obliquity (Figures 3 and 4, respectively). Even in the obliquity signal, in one of the sub-samples 

corresponding to the earliest period of the proxy record, the 41 thousand years periodicity disappears 

(the amplitude vanishes off) or shifts to lower values (around 38 thousand years; Figure 4). Through 

this simple analysis we can verify that the 41-thousand-year signal is most likely to represent a real 

periodicity, which is also supported by other widely used reconstructions of this period, like that of 

Lisiecki and Raymo (2005) and findings using wavelet analysis (Liu and Chao, 1998). 

In conclusion, the debate about the exact physical mechanisms which influence the emergence 

of glaciation and deglaciation is still ongoing. This extends to a wider discussion about the overall 

deterministic or stochastic character of the glacial periods and the possible links between them. In this 

dissent, one has to notice that determinism and uncertainty should not necessarily be regarded as two 

opposite notions (Koutsoyiannis 2010), but rather as the two sides of the same coin. Here the metaphor 

of a coin with its two sides may prompt us to think that its trajectory when flipped, although far too 

simpler than climate evolution, ironically, has an outcome that nobody is keen to describe 

deterministically.  

3 The omnipresence of the HK behaviour  

In contrast to the orbital theory, which suggests a link between a few characteristic periodicities in 

insolation and the climate system, the HK behaviour is related to irregular fluctuations on all time 

scales. Since its original discovery by Hurst, the HK behaviour has been identified in several 

hydrological studies regarding the flows of several rivers such as the Nile (Hurst 1951; Eltahir 1996; 
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Koutsoyiannis 2002), Warta, Poland (Radziejewski and Kundzewicz 1997), Boeoticos Kephisos, 

Greece (Koutsoyiannis 2003a), Nemunas, Lithuania (Sakalauskienė 2003) and Yangtze, China (Jiang  

et al. 2005; Wang et al. 2006); low flows in 250 hydrometric stations in Canada (Ehsanzadeh amd 

Adamowski 2010); monthly runoff data in Malaysia (Ramachandra Rao et al. 2011); the inflows of 

Lake Maggiore, Italy (Montanari et al. 1997); and droughts in Europe (Bordi et al. 2009) and North 

America (Padmanabhan et al. 2008).  

In addition, the HK behaviour has gained new interest today due to its relation to climate 

changes (e.g. Evans, 1996; Koutsoyiannis, 2003a, b). Indeed, the HK behaviour has been identified in 

many climatic or meteorological quantities such as in wind power (Haslett and Raftery 1989, Bouette 

et al. 2006, Bakker and Hurk 2011); atmospheric or oceanic processes and temperature in particular 

(Bloomfield 1992; Koscielny-Bunde et al. 1998; Koutsoyiannis 2003a,b, Fraedrich and Blender 2003, 

Yano et al. 2004, Varotsos and Kirk-Davidoff 2006, Alvarez-Ramirez et al. 2008, Fraedrich et al. 

2009); regional and global convective precipitation (Riemann-Campe et al. 2011) and regional 

precipitation measured by radars (Maurizio et al. 2011); and indices of North Atlantic Oscillation 

(Stephenson et al. 2000) and Pacific Decadal Oscillation (Khaliq and Gachon 2010). Bunde et al. 

(2005) found that the scaling behaviour leads to pronounced clustering of extreme events and 

demonstrated that this can be seen in long climate records, while Lennartz and Bunde (2011) examined 

how this affects the recent trends in global temperature, precipitation and runoff.  

HK dynamics is not restricted only to hydro-meteorological processes, but it is present in other 

natural processes, including geological phenomena like seismicity (Teleska et al. 2000, Mukhopadhyay 

et al. 2008). It is also found in phenomena of biological character such as the patterns of DNA 

sequences (Peng et al. 1994, Stanley et al. 1996); the molecular motion in cell membranes (Sheng et al. 

2011); medical indices for heart failure (Lin et al. 2001, Beckers et al. 2006); brain aging (Bernard et 

al. 2006); and immature preterm infants breathing patterns (Navarro et al. 2011). The latest findings in 

the field of neurobiology concerning the functional Magnetic Resonance Imaging technique, suggest 

that the Hurst coefficient (see definition below) can be used as a biomarker for certain disorders 

including Alzheimer (Maxim et al. 2005), Parkinson (Rassouli 2006), autism (Lai 2010) and impulsive 

traits (Hahn et al. 2012). Finally, it is remarkable that scaling behaviour has been also identified in 

certain artificial processes, such as network traffic (Leeland 1994, Karagiannis et al. 2004) or 

econometrics (Lo 1991, Baille 1996, Serinaldi 2010). For instance, in the field of economy, the scaling 
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behaviour has been detected in energy prices (Serletis and Rosenberg 2007), financial markets (Gama 

et al. 2008) and Spanish electricity spot market (Norouzzadeh et al. 2007). 

 In the field of paleoclimatology, several studies have examined the long term statistical 

properties of proxy data and their possible consistency with the HK dynamics. Shackleton and Imbrie 

(1990) were the first to investigate spectral properties of eight of the first available climatic proxy 

datasets, over a range of 340 thousand to 130 million years. Their spectra appeared to have negative 

slopes, which is typical in HK dynamics (Beran 1994); however, their sample sizes where small (~440 

on average). Their findings were supported by Pelletier (1997), who divided the power spectrum of 

atmospheric temperatures in four regions of power-law behaviour for the last million years. Moreover 

Richards (1994), detected an HK behaviour for the ice core proxy data from Greenland (GRIP data set; 

see below), which was also confirmed by more recent findings for another data set from Greenland 

(GISP2 data; Koutsoyiannis et al. 2009; see also below). Similar results were obtained from other ice 

core data from Antarctica and Greenland at time scales of 1-100 thousand years (Ashkenazy et 

al. 2003). Furthermore, Koutsoyiannis (2002) detected HK behaviour in tree-ring proxies, while Rybski 

et al. (2006) followed by Koutsoyiannis and Montanari (2007) examined six multi-proxy time series, 

spanning from 580 to about 2000 years, all of which were found to exhibit HK behaviour.  

 A possible explanation for the presence of HK dynamics in so many different processes can be 

found by examining the related statistical behaviour. Koutsoyiannis (2002) proposed that HK dynamics 

could be the outcome of fluctuations of the process at a multitude of time scales; an idea also found in 

the work of Klemes (1974) and Mesa and Poveda (1993). Namely, Koutsoyiannis (2002) demonstrated 

that if we add three Markov (AR(1)) processes with different autocorrelation coefficients (representing 

three time scales), then their sum approximates a HK process. Moreover, Koutsoyiannis (2011a) has 

shown that application of the principle of the maximum entropy production in a stochastic framework 

can result in HK dynamics. 

 In this study we provide a more extensive investigation of the possible presence of HK 

dynamics in paleoclimatic series and instrumental data sets. In particular, the proxy records we 

examine cover a much larger period going back up to ~500 million years as described below. 
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4 Data used  

Since instrumental data are available only for a very short period of the recent past 

(Broehan et al. 2006), new methods have been developed in the last 35 years to explore climatic 

variability at larger scales. Paleoclimatic reconstructions of local or global climatic variables use proxy 

data such as the 
18

O/
16

O isotope ratio (or its relative difference, δ
18

O, from a standard, such as the 

Vienna Standard Mean Ocean Water), pollen records, tree rings and many other, to infer the values of 

climatic variables, i.e. temperature, humidity, etc. Each of these proxy time series types has different 

time length, temporal coverage and time resolution, depicting only a part of the total climatic 

variability. For a more general overview, in our study we use ten temperature-related time series with 

time steps spanning from monthly to 500 thousand years and overall lengths from 30 years to ~500 

million years, as summarized in Table 1 (labelled by the name of first author or project). 

The highest resolution time series used are instrumental, based on satellite (NSSTC) and 

ground (CRU) data (Figure 5a). The satellite record is characterized by global spatial coverage, while 

CRU data represent a fivefold time length (161 years against 32 of NSSTC). To reduce the effect of 

seasonality (within-year variability), both time series whose time step is monthly are temperature 

deviations from monthly averages (of the reference period 1961-1990). The temperature deviations 

measured by satellites have a rising trend of 1.37°C/century whereas station data for the same period 

indicate a somewhat larger trend.  

We can move to a coarser scale with the help of the annual-scale, multi-proxy, global 

temperature reconstructions of Moberg (2005) and Lohle (2007) (Figure 5b), where the former is based 

on tree-rings, boreholes, cave stalagmites and sediment data, while the latter adds pollen data but 

leaves out tree ring data. In these series, in addition to the recent warming trend, we observe that rising 

or falling trends are also present in other periods. For example, in the Moberg reconstruction at a 30–

year time window we can locate a 1.7°C/century rise before the Medieval Warm Period (MWP) or a 

2.2°C/century decrease before the Little Ice Age (LIA) in the 16
th

 century. These become milder in the 

Lohle reconstruction, which is expected because that series is smoothed at the 30-year scale.  

Ice cores give us information for the last 800 000 years (Figure 6) by the use of the isotope 

deuterium (δD) or the isotope ratio δ
18

Ο/δ
16

Ο, which is assumed to be linearly proportional to 

temperature (Dansgaard et al. 1993; Steig et al. 1999; Jouzel et al. 2007). We have used proxy data 
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extracted from three one-site ice cores: Taylor Dome in Antarctica for the 10 000 years of the 

undergoing interglacial period (Figure 6a), GRIP in Greenland for the last 100 000 years (Figure 6b) 

and EPICA, also in Antarctica, for the last 9 glaciations/deglaciations (Figure 6c). The ice-core and 

sediment reconstructions had varying time step and were converted by linear interpolation to constant 

time step, close to the largest value of the varying raw time step. The interpolation does not alter the 

results as will be demonstrated below. To maintain a satisfactory sample size, in the cases of Taylor 

and GRIP reconstructions, we used only the highest resolution fraction of each time series (note that 

the time step increases at the earliest times of the series; see Table 1). 

Finally, to see farther in the past, we use global reconstructions from multi-site ocean sediment 

depositions, based also on the δ
18

Ο/δ
16

Ο ratio (Figure 7). The oscillating pattern of glaciers’ extension 

and retreat, already seen in EPICA and GRIP data (Figures 6b and 6c), becomes even more evident in 

the Huybers time series in the last 2.5 million years (Figure 7a). A 0.2°C/million years decreasing trend 

in global temperature has been prevailing in the last 50 million years (Figure 7b), while the most 

important events in the last 500 million years are the icehouse periods described above, which are seen 

in the Veizer time series as low-temperature periods (Figure 7c). This decreasing trend and the 

icehouse periods demonstrate that time scales of fluctuation, represented by HK dynamics, can be very 

large. 

5 Methods of analysis 

5.1 Multiscale representation of stochastic processes  

By its definition, climate involves averaging of a continuous time process x(t), such as air temperature, 

at various time scales k (notice the notational convenience, known as the Dutch convention, to 

underline random variables and stochastic processes; here x(t) is assumed to be a scalar quantity).  

 The transformation of the instantaneous-time process x(t) into a discrete time process xi
(k)

 at 

time i and scale k, is given as  

 




ik

ki

k
i dttx

k
x

)1(

)(
)(

1
:  (1) 

and is referred to as the averaged process at time scale k. While the instantaneous process x(t) 
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represents the “weather”, for sufficiently large k (e.g., k > 30 years), xi
(k)

 represents the climate.  

The climatic variability is naturally quantified by the standard deviation σ
(k)

 of xi
(k)

. A key tool 

that provides a multi-scale stochastic characterization is the plot (typically double logarithmic) of σ
(k)

 

versus k, which has been termed the climacogram (from the Greek climax, i.e., scale; Koutsoyiannis, 

2010—not to be confused with the climatogram). The climacogram resembles the fluctuation function 

used in the detrended fluctuation analysis (DFA), and, in particular, the so-denoted DFA0 method, in 

which no trend filtering is used (Eichner et al., 2003). Yet the two notions have some differences. 

Namely, the climacogram uses just one single notion, the standard deviation, with its exact meaning in 

probability and statistics. Consequently, the standard deviation σ
(k)

, as a function of k, can be calculated 

for a certain theoretical model using probability theory and in this case we call it the “theoretical 

climacogram”. It can also be estimated by statistical calculations (i.e. from the standard estimator of 

standard deviation) using data (time series) and in this case we call it the “empirical climacogram”. 

The climacogram is simpler and more robust than other commonly used stochastic tools, i.e., 

the power spectrum (already used in several studies as discussed above) and the autocorrelogram, and 

it is related to them by simple transformations (Koutsoyiannis 2010). In addition, as will be seen below, 

the climacogram is powerful, offering easy means to combine views of different time series in a single 

graph (Figure 9 to be discussed later). 

 A fully deterministic, strictly periodic process composed of a single harmonic with period T 

has a climacogram of the form (see Appendix A) 

 σ
(k) 

= |sinc(k/T)| = [T
 
/
 
(π

 
k)] |sin(π

 
k/T)| (2) 

where sinc denotes the normalized sine-counting function. However, in a process affected by many 

cycles with different periods T, the climacogram, obtained by considerations of extremal entropy 

production (Koutsoyiannis 2011a), is given by the simple power-law relationship 

 σ
(k) 

= k
H – 1

 σ (3) 

where σ ≡ σ
(1)

 and H is the entropy production in logarithmic time, more commonly known as the Hurst 

coefficient and takes on values between 0 and 1. Thus, (3) represents a natural behaviour (the HK 

behaviour, described in section 3), defines a stochastic process exhibiting this behaviour (the HK 

process), and describes the stochastic dynamics of this process (the HK dynamics).  

In Figure 8, some typical mathematical processes are illustrated in terms of their 
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climacograms, starting with the common white noise process, which is characterized by independence 

in time. This purely random process is a specific case of the HK process, in which H = 0.5, so that 

σ
(k)

 = σ/k
0.5

, which implies a constant slope θ = –0.5 in the climacogram (where generally the slope is 

defined as θ := d(ln σ
(k)

) / d(ln
 
k)). On the other hand, in the deterministic, periodic process of equation 

(2) with period T (=100 in Figure 8) the climacogram has an oscillating shape with an upper envelope 

with a steep slope θ = –1, but the local slope can be even steeper, tending to ±∞ at values of k that are 

integer multiples of T (see proof in Appendix A and illustration in Figure 8).Another common 

stochastic process is the simple Markov process or, in discrete time i, the autoregressive process of 

order 1 (AR(1)), which exhibits dependence expressed at scale 1 as 

  xi
 
= ρ xi – 1 +

 
vi (4) 

where ρ stands for the lag-one autocorrelation coefficient (–1 < ρ < 1) and vi (i = 1, 2, …) are 

independent, identically distributed, random variables. In this case the climacogram is given by the 

equation (Koutsoyiannis 2002) 

 
2

2
)(

)1(

/)1(2)1(

ρ

kρρρ

k

σ
σ

k
k




  (5) 

which in the example plotted in Figure 8 (for ρ = 0.75) decays to a slope equal to that of a purely 

random process (θ = –0.5, Koutsoyiannis 2002) for scales larger than ~10. In contrast, the climacogram 

of the HK process maintains a constant slope θ = H – 1, as inferred from equation (3). When H > 0.5, 

this slope becomes milder (θ > –0.5) than in a purely random process and indicates long-term 

persistence, as contrasted to the short-term persistence represented by the AR(1) model. This is 

illustrated in the example of Figure 8, in which H = 0.9, so that the lag-one autocorrelation coefficient 

is roughely the same as in the AR(1) model, i.e. ρ = 0.75. For small scales the climacograms of the 

AR(1) and HK models are almost identical but for large time scales they markedly diverge. HK 

processes with H in the range 0.5 to 1 result in climacogram slopes θ between –0.5 and 0 and are called 

persistent (whereas HK processes with H < 0.5 are called anti-persistent). For large (climatic) scales k 

these are less predictable than white noise or Markov processes, in which θ = –0.5, because their 

standard deviation of the averaged process is reduced by a smaller rate as scale k increases. This 

indicates that the variation of standard deviation with scale becomes important in characterizing 

predictability, particularly at large (climatic) scales. 
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5.2 Construction of the combined climacogram 

Theoretical climacograms, like those of Figure 8, are readily constructed as the theoretical standard 

deviation of any specific stochastic process at any scale is easy to calculate. Likewise, a specific time 

series can give an empirical climacogram based on the classical sample estimates of the standard 

deviation σ
(k)

 for several aggregate scales k. 

 Thus, each of the ten data series allows the construction of an empirical climacogram for 

aggregate scales k spanning from the available resolution Δ (shown in Table 1) up to k = L/10 (with L 

being the total length of the time series shown in Table 1). With the latter choice the sample of the 

averaged process x
(k)

 has at least 10 data points for the estimation of σ
(k)

, as proposed by Koutsoyiannis 

(2002). Thus, to construct the empirical climacogram we calculate an averaged time series for each 

scale (k = 1, 2, 3, ..., L/10) and then calculate the sample estimate of the standard deviation σ
(k)

. In 

order to confirm that linear interpolation on the data does not introduce an error on the climacogram, 

we compared it with the closest-point estimation (see Appendix B). 

 Once we have calculated the climacograms of all ten time series, we can superimpose them to 

construct a combined climacogram representative for time scales ranging from monthly to 50 million 

years (i.e., one tenth of the length of Veizer series which is ~500 million years). Since the units of the 

various series differ, those of standard deviations will differ too. For this reason, the climacograms of 

the different series are not fully compatible to each other, but appropriate linear transformations thereof 

should be compatible as they all reflect temperature.  

 Here we are interested in the variation of standard deviation with scale, rather than the precise 

values of standard deviation. Thus, we can impose normalization by multiplying each climacogram by 

a constant value, determined so as to match the different climacograms. Assuming that a time series 

y(t) is a proxy of a process x(t) and the two are, as an approximation, connected by a linear relationship 

x(t) = a y(t) + b, the two climacograms σx
(k)

 and σy
(k)

 will be related as σx
(k)

 = a σy
(k)

. For the first time 

series (NSSTC) we arbitrarily selected a1 so that σ1
(k)

 = 1 for k = 1/12 year (1 month). For the other 

nine series we calculated a unique set of weights a2, ..., a10, by minimizing the departures among the 

σ
(k)

 of the different series for the same scale k. Specifically, we have chosen characteristic time scales kl 

= 2
l
 years with l varying from –3 to 22 (kl varying from 0.125 to 4194304 years) and we interpolated 

each climacogram at those points kl that fall into the domain of the empirical climacogram (as depicted 

in Figure 9). For each kl we formed a sample of empirical climacogram values obtained by each of the 
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different series that were overlapping at a range containing the point kl. We then estimated the sample 

standard deviations at all points kl and we minimized their sum for all kl. For the (unconstrained) 

minimization we used the Generalized Reduced Gradient method (Lasdon et al., 1978; Lasdon and 

Smith, 1992) which is one of the most robust and reliable approaches to nonlinear optimization and has 

become commercially available as an easy Solver tool embedded in EXCEL. By direct application of 

this Solver we obtained a unique set of the ten weights a1, ..., a10 that minimizes the above sample of 

standard deviations. With this set of weights we made the logarithmic plot shown in Figure 9.  

6 Discussion 

The combined climacogram of Figure 9 gives us an impressive overview of climatic variability 

spanning almost 9 orders of magnitude—from 1 month to 50 million years. We observe that, for this 

huge variation of the scale k, the σ
(k)

 of all series range in a small interval, varying less than an order of 

magnitude (between 0.1 and 1). This can be contrasted to a purely random climate, which would entail 

a climacogram quickly descending (with slope –0.5, also depicted in Figure 9) to lower orders of 

magnitude. Overall, the combined climacogram indicates a very mild slope of about –0.08, suggesting 

a strong HK behaviour. A slope of –0.08 in a theoretical climacogram would correspond to H = 0.92, 

but here the climacogram is empirical and thus possibly negatively biased (Koutsoyiannis 2003). Thus, 

we can regard the value 0.92 as a lower bound of H and this suffices for the purpose of the paper which 

is to demonstrate the presence of HK behaviour rather than to propose an exact model. However, even 

this lower bound is a very high value, yet compatible with previous results (e.g. Koutsoyiannis and 

Montanari 2007) and implies spectacular differences from the classical statistics (in which the 

consecutive values are independent), as well as from typical stochastic processes like the Markov 

process. Classical statistics has served as the common basis of interpreting climate behaviours, and 

performing statistical tasks such as estimation and hypothesis testing.   

 The horizontal line in Figure 9 (drawn from the rightmost point of the straight line fitted to the 

empirical climacogram, which has slope -0.08) shows that the climatic variability at the scale of 100 

million years is about 19% of the variability at the monthly scale. If climate was consistent with 

classical statistics, the reduction of variability to 19% (from 100% in the monthly scale) would appear 

at the scale of 28 months (the intersection of the horizontal line with the line with slope –0.5). This 

dramatic difference (28 months vs. 100 million years), suggests enhanced change particularly at large 
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time scales and, hence, enhanced unpredictability, as climatic variability remains high even for the 

largest time scales. This should help us understand that the classical statistical thinking may be 

inappropriate for climate and that the classical dichotomy of weather versus climate may be 

misleading.  

 Several “imperfections” can be observed in the matching of the climacograms of the different 

time series in Figure 9. These are not unexpected, and they themselves are the result of data 

uncertainties (both in sampling and aging) combined with the bias and enhanced uncertainty, which are 

implied by the long-term persistence in statistical estimation (Koutsoyiannis 2003, 2011b). In some 

cases, the right part of a climacogram is too flat, as for example in Zachos and CRU time series. The 

reason for a flat right part is related to the fact that the entire time series length is located on a branch of 

the process with a monotonic trend (Figure 7). When a longer time series is viewed (Veizer for Zachos, 

Moberg and Lohle for CRU), which shows that the monotonic trend is in fact part of a longer 

fluctuation, the flat climacogram problem is remedied. 

 One of the most prominent “imperfections” of Figure 9 is related to the Huybers and EPICA 

climacograms, both of which have leftmost and rightmost parts with slopes milder and steeper, 

respectively, than the general slope. Particularly in the EPICA case, the rightmost part has a slope 

steeper than –0.5, which could be interpreted as indicating anti-persistence. However, this behaviour 

can be attributed to the combined effect of statistical bias and the influence of the orbital forcing. To 

demonstrate that the “imperfection” is in fact the result of the Milankovitch cycles acting at time scales 

in the range of 10
4

 – 10
5
 years, we have constructed an explanatory toy model, from which we 

constructed the climacograms of Figure 10. This toy model represents the synthesis of the theoretical 

climacograms of three components. Namely, we consider the sum of an HK process with H = 0.92 and 

two harmonics with periods 100 and 41 thousand years with weights shown in the figure caption. We 

note that this toy model is not unique; several other could be constructed by also including a 21 

thousand years harmonic and by changing the weighs of the three or four components. We selected to 

present the one in Figure 10 (as an explanatory tool and not as a model to be used in applications), 

because it is the most parsimonious among those examined and corresponds to the dominant role 

obliquity in modern orbital theory. 

 The theoretical climacogram of the toy model (whose mathematical expression is simply x(t) = 

aHxH(t) + a1x1(t) + a2x2(t), where xH(t) is an HK process, x1(t) and x2(t) are harmonics with periods 100 
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and 41 thousand years, respectively, and the values of the coefficients aH, a1, a2 are given in the caption 

of Figure 10) can be readily calculated from (2) and (3). As a result of the two harmonics, the slope of 

the theoretical climacogram at scales approaching 10
5
 years is much steeper than –0.08, showing a 

similar shape to the real-world climacogram. In addition, using the toy model we can generate a series 

with resolution and length equal to those of the EPICA series, in order to explore the statistical effects 

and particularly the negative bias. The resulting empirical climacogram of one synthetic time series, 

also plotted in Figure 10, resembles the real EPICA climacogram of Figure 9.  

 Generally, the steeper slope at time scales between 10 and 100 thousand years suggests higher 

predictability over those scales in comparison to shorter or longer scales, but again this does not 

counteract the enhanced uncertainty and unpredictability entailed by the overall HK dynamics. This 

uncertainty is magnified by the fact that, as already mentioned, the orbital forcing cycles are not 

apparent all the time and are not strictly periodic (see also Richards 1994; Ashkenazy et al. 2003).  

 Interestingly, similar behaviours, represented by a climacogram with a similar shape can be 

found in other natural processes as well, such as the sunspot number (Figure 11). In this case, the 

steeper slope emerges at scales between 5 and 13 years (55 and 143 months), reflecting the connection 

between the 11 year sunspot ‘cycle’ and the stochastic behaviour of the phenomenon in the same 

manner exhibited by the toy model in Figure 10. 

7 Conclusions 

The available instrumental data of the last 160 years allow us to see that there occurred climatic 

fluctuations with a prevailing warming trend in the most recent past. However, when this period is 

examined in the light of the evidence provided by paleoclimate reconstructions, it appears to be a part 

of more systematic fluctuations; specifically, it is a warming period after the 200-year ‘Little Ice Age’ 

cold period, during a 12 000-year interglacial, which is located in the third major icehouse period of the 

Phanerozoic Eon. The variability implied by these multi-scale fluctuations, typical for Earth’s climate, 

can be investigated by combining the empirical climacograms of different paleoclimatic 

reconstructions of temperature. By superimposing the different climacograms we obtain an impressive 

overview of the variability for time scales spanning almost 9 orders of magnitude—from 1 month to 50 

million years.  

Two prominent features of this overview are (a) an overall climacogram slope of –0.08, 
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supporting the presence of HK dynamics with Hurst coefficient of at least 0.92, and (b) strong evidence 

of the presence of orbital forcing (Milankovitch cycles) at time scales between 10 and 100 thousand 

years. While orbital forcing favours predictability at the scales it acts, the overview of climate 

variability at all scales clearly suggests a big picture of enhanced change and enhanced unpredictability 

of Earth’s climate, which could be also the cause of our difficulties to formulate a purely deterministic, 

solid orbital theory (either obliquity or precession dominated). Endeavours to describe the climatic 

variability in deterministic terms are equally misleading as those to describe it using classical statistics. 

Connecting deterministic controls, such as the Milankovitch cycles, with the Hurst-Kolmogorov 

stochastic dynamics seems to provide a promising path for understanding and modelling climate. 
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Appendix A. Proof of equation (2) 

We assume a fully deterministic, strictly periodic process composed of a single harmonic with period 

T, described by,  

 x(t) = 2  cos(2 π t / T + b) (A1) 

It can be seen that during the time interval [t1, t2], where 2 π t1,2 / T + b = ±arccos(x/ 2 ), the process 

x(t) takes on values greater than or equal to x, provided that – 2  ≤ x ≤ 2  (see Fig. A1). The length 

of the interval [t1, t2] is (T/π) arccos(x/ 2 ). Consequently, if we treat the process x(t) stochastically, it 

follows that its marginal distribution function is 

 F(x) = 1 – arccos(x/ 2 )/π,  – 2  ≤ x ≤ 2  (A2) 

 

Figure A1 Sketch to illustrate the proof of (A2). For the ease of the illustration it was assumed b = π, 

but this does not affect the result neither the length of the time interval, which does not depend on b. 

 

Taking its derivative with respect to x, we find its marginal density function as 

 f(x) = 1/(π
22 x ),  – 2  ≤ x ≤ 2  (A3) 

By application of definitions of mean and variance, we readily obtain that the mean of the process is 0, 
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and its variance is 1. Likewise, the process autocovariance is:  

 R(τ) = cov[x(t), x(t + τ)] = E[x(t) x(t + τ)] (A4) 

where τ is lag time. If x(t) = x then t = (T / 2π) [–b + arccos(x/ 2 )] (one of the infinitely many 

possibilities), so that t + τ = (T / 2π) [–b + arccos(x/ 2 )] + τ and x(t + τ) = 2  cos[2 π τ / T + 

arccos(x/ 2 )]. Consequently,  

 R(τ) = 2  


2

2

x cos[2πτ/T + arccos(x/ 2 )] f(x) dx (A5) 

which after algebraic manipulations becomes 

 R(τ) = cos(2
 
π

 
τ

 
/
 
T) (A6) 

Interestingly, this does not depend on t, thus behaving like a stationary process.  

 The climacogram value at scale k can be calculated from the variance Var[
)(k

ix ], i.e., 

 Var[
)(k

ix ] = E[{
)(k

ix }
2

] = 
2

1

k 
k

0


k

0

E[x(t) x(s)] dt ds (A7) 

or  

 Var[
)(k

ix ]= 
2

1

k 
k

0


k

0

 R(t – s) dt ds = 
2

1

k 
k

0


k

0

cos[2
 
π

 
(t – s)

 
/
 
T] dt ds (A8) 

which after algebraic manipulations becomes  

 Var[
)(k

ix ]= [T
 
/
 
(π

 
k)]

2
 sin

2
(π

 
k/T) (A9) 

By taking the square root of Var[
)(k

ix ], which by definition is the standard deviation σ(k), this gives 

equation (2). 

From (2) we readily infer that for increasing k there appears a series of maxima at values 

k = αT/2, with α any odd integer, so that |sin(π
 
k/T)| = 1. This series is described by σ

(k) 
= T

 
/
 
(π

 
k), which 

is an upper envelope curve of the climacogram. Obviously, across this envelope, θ = d(ln σ
(k)

) / d(ln
 
k) 

= –1. However, the local slope of the climacogram is not constant but varies. We can easily determine 

it from  
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 θ := d(ln σ
(k)

) / d(ln
 
k)) = (k/2) d{ln [σ

(k)
)

2
]} / dk = (k/2) d(ln {[T

 
/
 
(π

 
k)]

2
 sin

2
(π

 
k/T)} / dk(A10) 

which after algebraic manipulations becomes 

 θ = (π k/T) cot(π
 
k/T) – 1  (A11) 

It can be seen that θ tends to ± ∞ whenever k/T is integer. 

 

Appendix B. Assessment of the interpolation effect on 

the climacogram  

In order to examine possible effects of the linear interpolation to the data we compared it with the 

closest-point estimation. In the latter, we estimate the unknown value at a specific time using the value 

of the given time series at the point closest to this specific time (without doing any calculation). As 

shown in Figure B1, where the climacograms estimated by both interpolation methods for the GRIP 

time series are depicted, the results of the two methods are virtually indistinguishable, which means 

that in the case examined the climacogram is practically indifferent to the type of interpolation. 

 

Fig. B1 Climacogram for the GRIP data set calculated from the time series constructed by linear 

interpolation in comparison to that of the time series constructed by closest-point estimation.  
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Table 1. Instrumental and proxy time series of global temperature used in the study. 

Abbre-

viation 

Type of data (unit) Total 

length, L 

(years) 

Original 

resolution range 

(years)** 

Regularized 

resolution, Δ 

(years) 

Reference Data availability from 

NSSTC Satellite (
o
C) 32 1/12 1/12  www.nsstc.uah.edu/ data/msu/t2lt/ 

CRU Instrumental (
o
C) 

(weather stations) 

161 1/12 1/12 
Brohan et al. 

(2006) 

www.cru.uea.ac.uk/cru/data/temperature/ 

Moberg Multi-proxy (
o
C) 2×10

3
 1 1 

Moberg 

(2005) 

www.ncdc.noaa.gov/paleo/pubs/moberg

2005/moberg2005.html 

Lohle Multi-proxy (
o
C) 2×10

3 
1 30* 

Lohle (2007) 
www.ncasi.org/programs/areas/climate/L

oehleE&E2007.csv 

Taylor Single-proxy ice 

core (δ
18

O) 

10×10
3
 1.4–96.1 100 

Steig et al. 

(1999) 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/ic

ecore/antarctica/taylor/hi18o_td.txt 

GRIP Single-proxy ice 

core (δ
18

O) 

100×10
3
 0.9–172  

(3.6%) 

100 
Dansgaard et 

al. (1993) 

www.ncdc.noaa.gov/paleo/icecore/greenl

and/summit/document/gripisot.htm 

EPICA Single-proxy ice 

core (
o
C) 

800×10
3
 8.2–1364  

(6.4%) 

500 
Jouzel et al. 

(2007) 

www.ncdc.noaa.gov/paleo/pubs/jouzel20

07/jouzel2007.html 

Huybers Multi-proxy 

sediment (δ
18

O) 

2.6×10
6
 10

3
 10

3
 

Huybers 

(2007) 

www.people.fas.harvard.edu/~phuybers/

Progression/Averages.txt 

Lisiecki - 

Raymo 

Multi-proxy 

sediment (δ
18

O) 

3×10
6
 1–2.5×10

3
 2.5×10

3
 

Lisiecki and 

Raymo (2005) 

http://lorraine-

lisiecki.com/LR04stack.txt 

Zachos Multi-proxy 

sediment (δ
18

O) 

60×10
6
 1–120×10

3 

(0.4%) 

50×10
3
 

Zachos et al. 

(2001) 

www.ncdc.noaa.gov/paleo/metadata/noa

a-ocean-8674.html 

Veizer Multi-proxy 

sediment (
o
C) 

480×10
6
 2–

16 050×10
3*** 

(1.1%) 

500×10
3
 

Veizer et al. 

(2000) 

mysite.science.uottawa.ca/jveizer/isotope

_data/index.html 

*Scales of 1 to 30 years were not included because the series is smoothed by Lohle (2007) at the 30-year scale. 

** In parenthesis the percent of time steps of the original series that are greater than the chosen regularized resolution, Δ.  

*** This high value results from a single large gap in the series.  
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Fig. 1 Summer insolation at 65

o
N: (a) on the day of summer solstice, and (b) integrated over summer. 

Series (a), calculated by Laskar et al. (2004) and corresponding to Milankovitch’ insolation, shows 19–

24 thousand-year periodicities and is precession-dependent, whereas in series (b), calculated by 

Huybers (2006), the periodicity shifts to 41 thousand years, thus reflecting the obliquity band.  
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Fig. 2 Power spectra of: (a) insolation forcing in June at 65

o
N (classical orbital theory; Laskar et al. 

2004), (b) integrated summer insolation at 65
o
N (modern orbital theory; Huybers 2006), and (c) two-

million year temperature reconstruction (Huybers 2007). In (a) the obliquity cycle at 41 thousand years 

(marked as 2), and the precession cycles at 19 and 24 thousand years (marked as 3) have similar 

amplitude, whereas in (b) only the obliquity constituent is dominant. The power spectrum of 

temperature reconstruction (c) agrees with (b) and (c) in terms of the obliquity cycle, while it contains 

an additional peak at 100 thousand years (marked as 1) which does not appear in (a) or (b). 
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Fig. 3 Spectral analysis of the temperature reconstructions by (a) Huybers (2007) and (b) Lisiecki and 

Raymo (2005). Each of the reconstructions was split into two equal parts, and their power spectra were 

calculated separately. The eccentricity signal (marked as 1) appears strong in the first part of both 

reconstructions (a) and (b), but disappears in the second; the obliquity signal (marked as 2) is strong in 

each part of reconstruction (b); precession (marked as 3) is very weak in all cases. 
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Fig. 4 Spectral analysis of the temperature reconstructions by (a) Huybers (2007) and (b) Lisiecki and 

Raymo (2005), as in Figure 3 except that each of the reconstructions was split into three equal parts.  
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 Fig. 5 Global temperature series of: (a) instrumental data going back to 32 and 160 years, respectively, 

and (b) multi-proxy reconstructions going back up to 2000 years (see Table 1). The gray area indicates 

the link of the time period of the series with the one before it.  

 

Fig. 6 Global temperature series from ice core reconstructions going back up to about 800 thousand 

years BP (see Table 1). The gray areas provide the links of the time period of each series with the one 

before it (with Figure 5(b) for (a)). 
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 Fig. 7 Global temperature series from sediment reconstructions going back up to about 500 million 

years BP (see Table 1). The gray areas indicates the links of the time period of each series with the one 

before it (with Figure 6(c) for (a)).  

 Fig. 8 Climacograms for: (a) a white noise (purely random) process, (b) a purely periodic process with 

period 100, (c) an AR(1) (Markov) process with ρ = 0.75, and (d) an HK process with H = 0.9.  
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Fig. 9 Combined climacogram of the ten temperature observation series and proxies. The dotted line 

with slope –0.5 represents the climacogram of a purely random process. The horizontal dashed-dotted 

line represents the climatic variability at 100 million years, while the vertical dashed-dotted line at 28 

months, represents the corresponding scale to the 100-million-year variability if climate was random 

(classical statistics approach).  For explanation about the groups of points departing from the solid 

straight line (with slope -0.08) see Fig. 10 and its description in text.  
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Fig. 10 Theoretical climacograms of an HK process with H = 0.92 and two periodic processes with 

periods 100 and 41 thousand years, all having unit standard deviation at monthly scale, along with the 

climacogram of the synthesis (weighted sum) of these three components with weights 0.95, 0.30 and 

0.15, respectively; the empirical climacogram of a time series simulated from the synthesis process 

with time step and length equal to those of the EPICA series is also plotted.  

 

Fig. 11 Climacogram of sunspot number from original data (shown in the embedded graph) from the 

Royal Greenwich Observatory & USAF/NOAA (http://solarscience.msfc.nasa.gov/ 

greenwch/spot_num.txt).  
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