
1. Abstract 

Groundwater modelling is plagued by the increased 
uncertainty concerning the properties (hydraulic conductivity, 
porosity, geometry) and the conditions (boundary conditions, 
initial conditions, stresses) of aquifers. Some studies suggest 
that the magnitude of this uncertainty does not justify such a 
level of detailed representation and simulation employed by 
groundwater models that numerically solve differential 
equations. Rozos and Koutsoyiannis (2010) suggested that 
multi-cell models should be considered as an alternative 
option in cases of increased uncertainty. This study extends 
that work by including solute transport in a multi-cell model 
that allows discretization of the flow domain using a low 
number of cells of flexible geometry. This method was tested 
in a case study that has analytical solution. 

2. Dispersion – diffusion 
Molecular diffusion is the solute-spreading caused by the random 
molecular motion and collisions of the particles themselves. 

Kinematic (or mechanical) dispersion is the spreading, or mixing 
phenomenon, caused by the variability of the complex, microscopic 
velocities through the pores in the medium (Logah, 2001). 

Hydrodynamic dispersion is the spreading (at the macroscopic level) 
of the solute front during transport resulting from both mechanical 
dispersion and molecular diffusion (EPA, 2002). 

Dispersivity: Is the ratio of the mechanical dispersion coefficient to the 
average linear groundwater velocity (Fetter, 2001). 

Numerical dispersion is a nonphysical effect inherently present in 
finite-difference time-domain algorithms, which is manifested either as 
a dependence of wave propagation velocity on frequency (Juntunen 
and Tsiboukis, 2000) or as oscillations (Hundsdorfer, 2000). 

Numerical diffusion (or dissipation) is a nonphysical effect inherently 
present in the finite-difference schemes based on first order upwind 
discretization, which is manifested as smearing of concentration 
profile (Handsdorfer, 2000). 

3. Solute transport in multi-cell model 

This study presents an algorithm that can simulate the solute 
transport advection/diffusion processes in steady state flow 
using the results of the  multi-cell model described in the 
publication of Rozos and Koutsoyiannis (2010) the output of 
which are the volume of water Vi inside cell i, and the volume 
of water Qijdt exchanged between cells i,j at each time step. 
These two are necessary to calculate the mass balance of a 
solute with concentration ci at cell i. For steady state flow 
conditions, 1D discretization, flow from left to right, 
dispersion coefficient D and cross section A the mass balance 
equation is:  

4. Tackling numerical diffusion 

In the previous equation, an upwind scheme is used to 
estimate the first order space derivative (advection term). This 
approach, according to Hundsdorfer (2000), suffers from 
numerical diffusion proportional to the length dx of 
discretization cells. This means that the coarser the 
discretization the larger the error due to numerical diffusion. 
However, the numerical experiments performed in this study 
demonstrated that this side effect can be tackled using a lag h 
in the estimation of this derivative. If the time derivative of the 
concentration is calculated using forward scheme and 
DAX=DA/Δx then the solute balance equation becomes: 

 

5. Synthetic case studies 

The approach described previously was tested in a 
hypothetical confined aquifer with length, width and thickness 
of 38 km, 100 m and 1 km, respectively. The hydraulic 
boundary conditions were constant head equal to 2190 m at the 
left end and a series of drains at 100 m at the right end. Two 
cases of solute boundary conditions were examined, constant 
injection and pulse injection at the left end. The former was 
discretized with 38 equally sized cells whereas the latter with 
149 equally sized cells. Two dispersivities were assumed for 
the hypothetic aquifer, 1 m and 10 m. The results of the 
numerical model were tested against analytical solutions 
provided by Bear (1979) for the continuous injection in a semi-
confined infinite aquifer (equation 7-134) and the pulse 
injection in a semiconfined infinite aquifer (equation 7-123). 

6. Continuous injection, dispersivity 1 m 
Lag (d): 0, 

Significant 

improvement when 

dispersivity < 1 m 

Lag (d): 800, 

7. Continuous injection, dispersivity 10 m 

Minor improvement 

when dispersivity 

>= 10m 

Lag (d): 0, 

Lag (d): 800, 

8. Pulse injection, dispresivity 1 m 

Significant 

improvement when 

dispersivity<= 1m 

Lag (d): 0, 

Lag (d):400, 

9. Pulse injection, dispresivity 10 m 

No improvement 

when dispersivity 

>= 10 m 

Lag (d): 0, 

Lag (d):400, 

10. Optimum lag 

The numerical diffusion is decreasing monotonically with the 
lag. To estimate the optimum lag the second order spatial 
derivative (dispersion) should be estimated with lag, like the 
first order derivative (advection). Then, the optimum lag is the 
value that yields oscillation-free results. 

Increasing lag 

beyond a threshold 

results in 

oscillations 

Lag (d): 320, Lag (d): 340, 

11. Conclusions 

• Numerical diffusion can be reduced if a time lag is used in the 
estimation of the first order space-derivative of concentration. 

• The error due to numerical diffusion decreases with the 
dispersivity; so does the usefulness of the method described 
here. 

• The optimum time lag depends on discretization, boundary 
conditions and dispersivity.  

• The optimum time lag can be estimated as the greatest value 
that yields results without oscillations when space derivatives 
are lagged (both in advection and dispersion). 

• The methodology presented here was tested in a simple 1D 
case study. However, this methodology is readily applicable in 
more realistic applications with arbitrarily shaped aquifers. 
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