

Estimation of hydraulic parameters of a confined aquifer from slug test in fully penetrating well using a complete Quasi-Steady flow model in an inverse optimal estimation procedure

EGU General Assembly 2013 Vienna, Austria, 7-12 April 2013 **Session HS 8.1.2 Hydrogeophysics**

MOTIVATION

Slug tests allow fast and economical estimation of an aquifer's hydraulic parameters. When the radial hydraulic conductivity K_r and the specific storage coefficient S_s are estimated by slug tests performed in wells fully penetrating confined aquifers, the data are evaluated with the transient-flow model of Cooper et al. (1967). That analytical solution, however, is computationally involved and awkward, so groundwater professionals fit the data by rough visual matching procedure using few type-curves.

SCOPE: Presentation of test results of automated inverse procedure for estimating optimally the hydraulic formation parameters K_r and S_s from slug test observations for the over-damped case.

This procedure is embedded in a stand-alone application that is based on the Octave 3.6.2 engine [it does not require installing Octave or Matlab]. The software couples the Shuffled Complex Evolution (SCE) optimization method of Duan et al. (1992) with the mathematically simple quasi-steady flow solution of Koussis & Akylas (2012) that is computationally efficient, yet approximates the solution of Cooper et al. (1967) closely.

THE QUASI-STEADY (QS) METHOD (Koussis & Akylas, 2012)

By including a storage balance inside the confined aquifer, Koussis and Akylas derived a complete **Quasi-Steady**^{*} flow solution for the response of a slug-test well fully penetrating the aquifer, $H(t)/H_0 = f(\alpha, \beta)$, where $\beta = K_r bt/r_c^2$ is dimensionless time and $\alpha = r_c^2 S_s b/r_c^2$ a dimensionless storage parameter; b is the formation thickness, r_s the effective radius of well screen and r_c the effective radius of well casing.

The operational equations of the QS flow model are given below, in which R(t) is the unknown time-varying radial distance to the edge of the QS flow domain, where the head in the aquifer vanishes, h(R) = 0.

$$\frac{H_{\rm o} - H(t)}{H(t)} = \frac{bS_{\rm s}r_{\rm s}^2}{r_{\rm c}^2} \left(\frac{(R(t)/r_{\rm s})^2 - 2\ln(R(t)/r_{\rm s}) - 1}{2\ln(R(t)/r_{\rm s})}\right)$$

[•] In a quasi-steady solution, a series of steady states substitutes the transient process, considering the physical system to evolve in abrupt steps from one steady state to the next one.

Solution Algorithm

The above system of two non-linear equations is solved numerically with the following algorithm: • Set the variable $y := R/r_s$, which is computed in *n* non-constant increments, i.e., $y_i = y_{i-1} + \Delta y_i$ with $y_0 = 1$, $\Delta y_i = 1$ 0.015 exp(0.015 j) and j = 0, 1, ...n (n should be large enough to ensure that θ_n is greater than the maximum dimensionless time of measurements).

• For each value y_i , calculate an $F(y_i)$ value by the formula $F(y_i) = 0.5 (y_i^2 - 2 \ln y_i - 1)/\ln y_i$ (this is the term in parentheses on the right-hand side of the first operational equation above). • Set HHO_i := $H(\beta_i)/H_o$, i.e., the value of H/H_o at the dimensionless time β_i . Then, estimate the pairs (HHO_i, β_i), which give the curves of the Quasi-Steady (QS) solution, with the following formulae: HHO_i = $[\alpha F(y_i) + 1]^{-1}; \quad \beta_i = \beta_{i-1} + \Delta \beta_i; \Delta \beta_i = 0.5 \ln[(y_{i-1} + y_i)/2] (\ln[\alpha F(y_{i-1}) + 1] - \ln[\alpha F(y_i) + 1]) \text{ and } \beta_0 = 0.$

Slug test (figure adapted from www.waterra-in-situ.com)

PROCEDURE

Real measurements: The set of real measurements were taken from Butler (1998), who studied the results of a slug test at the Lincoln county monitoring site.

	K (m/d)	2.02×10 ⁻⁴
a		
10 ^{.1}		
10 ⁻²		
10 ⁻³		
10 ⁻⁴		
10 ⁻⁵		
10 ⁻⁶		
10 ⁻⁷		

Objective function of the optimization: Objective function was the RMS error between measurements and H/H_0 values calculated by the QS method. Because the dimensionless times β_i of the H/H_0 values and the measurements are not expected to coincide, we used linear interpolation. The arguments of the objective function were the log-values of K_r and S_s, instead of plain values, to tackle the wide parameter range, extending over several orders of magnitude (Efstratiadis et al., 2008). Only measurements with $H/H_0 > 0.33$ were used in the optimization. This was dictated by the QS method's lesser accuracy for $H/H_0 < 0.33$ (see Fig. 2 of Koussis & Akylas, 2012).

Measurements $(H/H_0, t)$ -Geometry (r_s, r_c, b)

Estimation error: For each one of the 35 synthetic measurements plus the real observations, the optimization algorithm estimated the K_r, S_s pair that minimized an objective function. The estimated pair was compared against the reference (a priori known) values of the corresponding data. The estimation error was calculated as:

Error = --

Estimation-Reference min(Reference, Estimation)

Evangelos Rozos¹, Evangelos Akylas² and Antonis D. Koussis³ **1** Dpt. Water Resources & Environmental Engineering, National Technical University of Athens, **2** Dpt. Civil Engineering & Geomatics, Cyprus University of Technology, 3 Institute for Environmental Research & Sustainable Development, National Observatory of Athens

> **Synthetic measurements:** Synthetic data were produced using Cooper's type curves for a combination of seven α values and five a priori assumed K_r . The result was the 35 pairs of references values that are shown in the table bellow.

Reference S_{s} calculated from α values i.e. $S_{\rm s} = \alpha r_{\rm c}^2 / (r_{\rm s}^2 b).$ The values of r_s and r_c were 0.071 and 0.025 m respectively

 H/H_0 values were obtained from Table 5.14.1a of Todd and Mays (2005). A priori assumed K_r values were used to calculate the time t of H/H_0 values i.e. $t = \beta r_c^2/(Kr b)$. The value of *b* was 3.05 m.

Implementation: The QS method, the objective function and support scripts (~100 lines code) were implemented in Matlab m files, compatible with GNU Octave. The SCE algorithm was obtained from MATLAB CENTRAL (2013). For results visualization (fit of QS curve to measurements), comma-separated files were prepared, which were plotted and analyzed in a spreadsheet.

RESULTS

The left figure below shows how the estimation error of K_r varies with S_s for the QS-optimization & Hvorslev-Butler methods. The right figure shows how the S_s estimation error varies with S_s in the QS optimization.

To test the influence of measurement noise on the efficiency of the automated method, we used 20 time series of white noise ξ on the synthetic data produced from the reference values $K_r = 2.02 \times 10^{-4} \text{ m/d}$ and S_s = 4.07×10⁻⁵ m⁻¹. ξ follows the normal distribution N (0, 0.025) normalized by H_0 , taken as 2 m; σ = 0.025 m corresponds to the worst precision mentioned by Sorensen & Butcher (2011). The noisy series were calculated as $HN_{noise} = H/H_0 + \xi_0$; H/H_0 from Cooper et al (1967).

Figure below displays (left) the K_r estimation errors when using the 20 synthetic data series with noise and (right) the S_s estimation errors.

CONCLUSIONS

- The reliability of the K_r-estimates of the Quasi-Steady method coupled with the SCE algorithm is influenced only marginally by S_s.
- The reliability of the Hvorslev-Butler K_r -estimates depends on S_s .
- The magnitude of K_r does not influence K_r -estimates of either method.
- The Quasi-Steady method exploits much more of available information.
- The error of S_s-estimates of Quasi-Steady method increases sharply (especially for low K_r) beyond a specific threshold (~5×10⁻⁷ m⁻¹).

References

Butler, J.J. Jr. 1998. The Design, Performance, and Analysis of Slug Tests. Boca Raton, Florida: Lewis Publishers

- Cooper, H.H., J.D. Bredehoeft and I.S. Papadopulos (1967) Response of a finite-diameter well to an instantaneous charge of water, *Water Resour. Res.* **3**(1): 263–269.
- Duan, Q., S. Sorooshian and V. Gupta (1992) Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), pp. 1015–1031.
- Efstratiadis, A., Nalbantis, I. Koukouvinos, A. Rozos, E. and Koutsoyiannis, D. 2008.
- HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006.
- Koussis A.D. and E. Akylas (2012) Slug test analysis for confined aquifers in the over-damped case: Quasi-steady flow model, with estimation of the specific storage coefficient, Ground Water, **50**(4): 608–613.
- MATLAB CENTRAL. 2013. Shuffled Complex Evolution (SCE-UA) Method by Qingyun Duan, http://www.mathworks.com/matlabcentral/fileexchange/7671, accessed January 2013. Sorensen, J.P.R., and Butcher, A.S. (2011), Water Level Monitoring Pressure Transducers, A Need for Industry-Wide Standards, Ground Water Monitoring & Remed., 31, no. 4, pp. 56-62. Todd, D.K. and L.W. Mays (2005) Groundwater Hydrology, J. Wiley & Sons, New York.