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Further (monofractal) Limitations of Climactograms

S. Lovejoy, D. Schertzer, I. Tchigirinskaya

In the comment “Multifractality Requires At Least Three Parameters! ” (hereafter SLT)
it was pointed out that due to multifractality, exponents other than second order were
required to characterize the statistics of scaling processes. But beyond this, using
the authors’ “climactogram”, there is serious problem with the determination of the
even the second order moments, even in quasi-Gaussian processes where there is
no multifractality (this includes fractional Brownian motion, here rebaptized as Hurst-
Kolmogorov processes)! We would therefore like to take this opportunity to make a
short comment about additional serious limitations of the climactogram and point out a
straightforward alternative, Haar fluctuations and structure functions.

As the authors point out, for scaling processes, the standard deviation of the process
at a degraded resolution (previously called the Aggregated Standard Deviation (ASD,
[Koutsoyiannis and Montanari, 2007])), now called the "climactogram" is only related
to the autocorrelation and the spectrum for a narrow range of scaling exponents 0<
Hclim <1 (the authors’ exponent “H” that we denote “Hclim” is the same as H in SLT).
For scaling, Gaussian processes (e.g. in 1-D, a Gaussian white noise filtered by ω−β/2

where ω is the frequency), when for −1 < β < 1 this corresponds to spectral exponent
β = 2Hclim − 1. When β is outside this range, then the relationship between β and
Hclim breaks down. The reason is simple: the fluctuations at scale ∆t are no longer
dominated by frequencies 1/∆t so that spectral and real space exponents are no longer
linked. In particular, if β > 1, then the autocorrelation is dominated by the lowest
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frequencies present in the series. Although for finite data, one obtains a finite result,
it is spurious in the sense that it depends on the details of the series, in particular,
it’s length. Any useful scale information is lost. The problem with the climactogram -
independently of the fact that it is inadequate for multifractal processes - is therefore
that if it is applied to series with β > 1 then the scaling exponents will be spurious.
However this is by no means an exceptional situation, on the contrary, β > 1, H > 0,
is quite generally the case for atmospheric fields at weather scales (in space up to the
size of the planet, in time up to about 10 days), as well as at climate scales (longer than
10-30 years). In fact, the only atmospheric regime where the climatactogram will give
useful estimates is in the intermediate macroweather regime where atmospheric fields
generally have −1 < H < 0 so that 0 < Hclim < 1; indeed this is the regime where
it has been most successfully applied. In addition, for climactogram applications, it
is fortuitous that empirically the macroweather regime is also characterized by weak
multifractality [Lovejoy and Schertzer, 2013].

To better understand the limitations of the climactogram, it is useful to put it in the
framework of wavelet analysis. In this case, the climactogram corresponds to the sec-
ond order moment (“structure function”) of the tendency fluctuation ∆X:

(∆X(t,∆t))tend =
1

∆t

∫ t+∆t

t
X ′(t′) dt′; X ′ = X − E(X) (1)

where (∆X(t,∆t))tend is the tendency function at time t, lag (scale) ∆t, E indicates
"expectation". In a scaling regime we have:

E((∆X(t,∆t))qtend ∝ ∆tξ(q); ξ(q) = qH −Kn(q) (2)

where ξ(q) is the generalized structure function exponent and we have used Kn(q),
the nonlinear part of the exponent K(q) of a pure conservative multiplicative cascade
which satisfies Kn(q)=1. For q = 2, the above is the climactogram defined in eq.4 of the
discussion paper. As pointed out in [Lovejoy and Schertzer, 2012; 2013], Hclim = 1 +
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ξ(2)/2 so that Hclim = H + 1−Kn(2)/2 and Kn(q) are due to multifractal intermittency
(see STL). However, to simplify the discussion, here we will ignore this and focus on
the linear scaling part, the exponent H.

As mentioned, for some applications - such as macroweather - the climactogram may
be adequate. However, for studying other regimes, we need a tool that is useful over a
wider range of exponents. Traditionally, one uses fluctuations defined as differences:

(∆X(t,∆t))diff = X(t+ ∆t)−X(t) (3)

(the "poor man’s wavelet"), the moments E(∆X(t,∆t)qdiff ) being the usual structure
functions (q = 2; “generalized structure functions” q 6= 2). However this is only useful
for 0 < H < 1 (1 < β < 3; recall that "useful" means that the fluctuations at scale ∆t
are dominated by frequencies 1/∆t so that the spectral and real space exponents are
linked). In [Lovejoy and Schertzer, 2012] it was pointed out that a single tool - the Haar
fluctuation - conveniently covers the whole range −1 < H < 1 yet remains simple to
calculate and interpret:

(∆X(t,∆t))Haar =
2

∆t

∫ t+∆t/2

t
X(t′) dt′ − 2

∆t

∫ t+∆t

t+∆t/2
X(t′) dt′ (4)

i.e (∆X(t,∆t))Haar is simply the difference between the means of the first and second
halves of the interval ∆t. It is easy to show that in scaling regimes that:

E((∆X(t,∆t))qtend) ∝ E((∆X(t,∆t))qHaar); −1 < H < 0 (5)

E((∆X(t,∆t))qdiff ) ∝ E((∆X(t,∆t))qHaar); 0 < H < 1 (6)

Therefore, the climactogram could be considered as an (unnecessary) restriction of
the Haar fluctuations to monofractality (q = 2) and to processes with mean fluctuations
that decrease with scale (−1 < H < 0). In addition, if needed, it is easy to extend the
Haar fluctuations so as to cover arbitrarily wide ranges of exponents (although if this is
done, the simplicity of the interpretation is lost).
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