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Outline 
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• The reason for fitting a statistical model to data is to make conclusions 
about some essential characteristics of the natural process which the data 
refer to. 
 

• Such conclusions can be sensitive to the degree to which the datasets reflect 
the salient features of the process.  
 

• Natural processes evolve in continuous time but their observation is 
inevitably made at discrete time, and it has finite length.  
 

• Both time discretization and finite length may strongly affect the stochastic 
properties inferred from the data. 
 

• We propose a new modelling strategy, in which the stochastic model is by 
definition a continuous-time process and the distortion due to discretization 
and finite-period observation is explicitly taken into account in model 
calibration. 



Local averages 
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• Natural processes x(t) typically evolve in continuous time t, but their analysis 
is usually carried out in discrete-time j = 1, 2, …; practical interest often 
revolves around local average xj

(Δ) or aggregates of RVs over a time span Δ. 
 

• Indeed, available data series generally consist of n = T/Δ time steps of xj
(Δ) in 

a finite observation period To, and T =  To/Δ  Δ is the observation period 
rounded off to an integer multiple of Δ (i.e., 1/Δ is the sampling frequency). 
 
 

 



Methodology 
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• We put the emphasis on autocorrelations and spectra, because they are the 
most extensively used concepts in the applications of stochastic processes 
(Papoulis, 1991). 
 

• These concepts involve only second-order moments. Specifically, we focus 
on the power spectrum as well as the climacogram (Koutsoyiannis, 2010); 
the two are fully dependent on each other. 
 

• The climacogram corresponds to the variance of the local average process 
xj

(Δ) as a function of the averaging scale Δ, which can be calculated from the 
autocovariance c(τ) of the continuous-time process (Vanmarke, 1983) 
 

  
• Similarly, the power spectrum of a real continuous-time process is 

calculated from autocovariance function c(τ) as: 
 While for the local average process we have: 
 where ω = wΔ  [0, 1/2]  
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Methodology 
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• To define uncertainty in statistical properties inferred from the data we 
need to specify a model for the underlying stochastic process. 
 

• Since the statistics of a standard normal process are completely determined 
just in terms of its climacogram, we restrict ourselves to a discussion of a 
stationary, standard Gaussian stochastic process defined by a Cauchy-type 
climacogram: 
 

  where we have four parameters: units of α and λ are [time] and [x]2, 
respectively, while H and κ are dimensionless.  

      
• This model was derived by modifying one proposed by Gneiting and 

Schlather (2004), and its important feature is that it provides power-law 
correlations asymptotically. Hence, it allows explicit control of both 
asymptotic logarithmic slopes of the climacogram γ#(Δ) and the power 
spectrum s#(w): 
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A synthetic experiment 
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• Knowing asymptotic stochastic properties of processes is crucial for the 
quantification of future uncertainty, for planning and design purposes.   
 

• Our primary concern is to study how these properties can be better 
estimated from data. 
 

• To accomplish this aim, we generate a time series of 1024 values from the 
known Cauchy-type process, assuming the following parameters: λ=1, α=10, 
H=0.8, κ=1. Hence, we have: 
 
 

• Then, we compare the empirical power spectrum and the empirical 
climacogram with their known theoretical counterparts. 
 

• Finally, we investigate the pros and cons of the climacogram-based 
pseudospectrum (CBPS, explained below) as a substitute of the power 
spectrum. 
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Power spectrum estimation 
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• We use the classical non-parametric approach (periodogram) because it 
explicitly estimates the power spectrum of the process without assuming 
that the process has any particular structure. 
 

• We compute the periodogram from a finite-length digital sequence using 
the fast Fourier transform (FFT), that is why we chose n=210=1024. 
 

• The raw periodogram is an unbiased estimator of the power spectrum only 
asymptotically (i.e. shorter samples cause higher bias, even when windowing 
the data), and it has extremely poor variance characteristics which are not 
affected by the length of data used (Papoulis, 1991). 
 

• The variance problem can be reduced by smoothing the periodogram. Here 
we show results for the Bartlett’s method, which provides estimate of the 
spectrum at a given frequency by averaging the estimates from the 
periodograms (at the same frequency) derived from a non-overlapping 
portions (segments) of the original series. 



Power spectrum estimation 
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• It can be shown that we can control the power-spectrum estimator variance 
by averaging more segments, but shorter segments mean larger bias; so for 
a fixed sample size, there is a basic trade-off between segment length, which 
controls the bias, and the number of segments, which controls the variance. 

• Both bias and uncertainty in estimation may cause problems in estimating 
either asymptotic slopes or statistically significant peaks. In particular, the 
bias depends on frequency and this distorts the estimated slopes (e.g. too 
steep slopes, s#(0)<–1: unfeasible, Koutsoyiannis 2013) 

• Also, time discretization 
causes folding (i.e. 
symmetry of empirical 
power spectrum about 
the Nyquist frequency 
ω=1/2); therefore the 
calculated slope s#(½)=0, 
and it does not equal the 
actual asymptotic slope.   



Climacogram estimation  
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• Consider the synthetic time series x1, …, xn generated by our experiment, 
where n = 1024. Its sample variance is given by:  
 

 
 where the argument (1) stands for Δ=1 and xav:=(x1+x2+…+x1024)/1024 is the 

sample average.  

• Next, we average the given time series locally over the moving time interval 
of size Δ=2, and find its variance (the same procedure is repeated with Δ>2) 
 

 
• Finite length n implies that we need to stop at Δ= n/10 =102, so that 

sample variance can be estimated from at least 10 data values 
(Koutsoyiannis, 2003) 

 
 

• The empirical climacogram (Koutsoyiannis, 2010) is the log-log plot of the 
sample variance versus Δ. 
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Climacogram estimation 
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• The standard (but biased except for white noise) estimator of the variance 
γ(Δ) of averaged process xj

(Δ) is: 
 

• The following equation is used to estimate its bias (Koutsoyiannis, 2013): 
   

 
• Being n = T/Δ and xav

(Δ) = x1
(T

 
), then: 

• So, the bias correction 
coefficient η is given by: 
 
 

• From the above, we see 
that direct estimation of 
γ(Δ) from the data is not 
possible; we need to 
know ratio γ(Δ)/γ(T): we 
should assume a model.  
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The climacogram-based pseudospectrum (CBPS)  
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• Once a stochastic model for the climacogram is assumed and its parameters 
estimated based on the data, we can estimate the variance for any 
timescale, including that of the instantaneous process γ(0) = c(0).  
 

• Therefore, the important advantage of the climacogram over other common 
statistical tools is that its bias can be determined analytically (usually in a 
closed form) and included in the estimation problem. 

 
• The concept of climacogram can be used also in the frequency domain to 

find a substitute of the power spectrum, which has similar properties: The 
climacogram-based pseudospectrum (CBPS) defined as (Koutsoyiannis 2013) 
 
 
 

• In processes with infinite variance (γ(0) = c(0) = ∞) the CBPS simplifies to:  
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• It can be shown that the CBPS value of at w = 0 equals that of the power 
spectrum, therefore ψ(0) = s(0).  
 

• Furthermore, the asymptotic logarithmic slopes ψ#(w) of CBPS at 
frequencies w → 0 and ∞ follow those of the power spectrum s#(w), and in 
most processes the asymptotic slopes are precisely equal to each other.  In 
our case we have indeed: 

• At frequencies where the 
power spectrum has 
peaks, the CBPS has 
troughs (negative peaks). 

  
•  In contrast to the 

empirical periodogram, 
the empirical ψ(w) is 
pretty smooth.  

The climacogram-based pseudospectrum (CBPS)  
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Conclusions 
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• Natural processes typically evolve in continuous time, but we observe and 
study them at discrete time. 

 
• In order to make reliable inferences about the stochastic properties of 

natural processes, we should always be aware of the effect of time 
discretization and finite record length on classical statistical estimators. 
 

• In particular, time discretization distorts the stochastic properties at small 
time scales, while the finite length affects the properties at large time scales. 
 

• We mainly focus on second-order moments, and specifically on 
climacograms and power spectra. 
 

• Moreover, we analyse a possible substitute of the power spectrum, which is 
based on the concept of climacogram. 



Conclusions 
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• The power spectrum is very powerful in identifying strong periodicities in 
time series. However, it has some problems in identifying scaling laws and 
weak periodicities. 
 

• Specifically, time discretization and finite length of data alter asymptotic 
slopes of periodograms by introducing biases and uncertainties that are 
uncontrollable. 
 

• The climacogram-based pseudospectrum has an asymptotic behaviour 
similar to that of the power spectrum and offers some advantages. 
 

• Indeed, we showed that when the power spectrum and pseudospectrum are 
estimated from data, the latter is much smoother and its bias is a priori 
known, thus enabling a more direct and accurate estimation of slopes and 
fitting on a model.  
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