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Abstract 14 

Estimating the uncertainty of hydrological models remains a relevant challenge in applied 15 

hydrology, mostly because it is not easy to parameterize the complex structure of 16 

hydrological model errors. A non-parametric technique is proposed as an alternative to 17 

parametric error models to estimate the uncertainty of hydrological predictions. Within this 18 

approach, the above uncertainty is assumed to depend on input data uncertainty, parameter 19 

uncertainty and model error, where the latter aggregates all sources of uncertainty that are not 20 

considered explicitly. Errors of hydrological models are simulated by resampling from their 21 

past realizations using a nearest neighbor approach, therefore avoiding a formal description 22 

of their statistical properties. The approach is tested using synthetic data which refer to the 23 

case study located in Italy. The results are compared with those obtained using a formal 24 

statistical technique (meta-Gaussian approach) from the same case study. Our findings prove 25 

that the nearest neighbor approach provides simplicity in application and a significant 26 

improvement in regard to the meta-Gaussian approach. Resampling techniques appear 27 

therefore to be an interesting option for uncertainty assessment in hydrology, provided that 28 

historical data are available to provide a consistent description of the model error. 29 

 30 
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Introduction 37 

Uncertainty assessment for hydrological predictions still remains a relevant challenge 38 

in applied hydrology (Bogner and Pappenberger 2011; Mendoza et al. 2012; Montanari 2011; 39 

Sikorska et al. 2012; Tada and Beven 2012). In fact, data scarcity and limited understanding 40 

of the processes governing the water cycle, together with the difficulties and costs implied by 41 

efficient and extensive monitoring campaign, very often prevent a satisfactory assessment of 42 

the reliability of hydrological predictions. Yet, uncertainty assessment is very much relevant 43 

for estimating design variables in enginnering practices (Moretti and Montanari 2008), 44 

mitigating hydrological risks and improving water resources management policies 45 

(Koutsoyiannis 2013; Montanari et al. 2013). 46 

The problem of uncertainty assessment is in principle reducible to estimating and 47 

integrating the main sources of uncertainty through the modeling chain. The literature 48 

proposed several contributions on the estimation of input uncertainty (Clark and Slater 2006; 49 

Cunha et al. 2012; He et al. 2011; Legleiter et al. 2011; McMillan et al. 2011; Montanari and 50 

Di Baldassarre 2013; Renard et al. 2011; Sikorska et al. 2012; Sun and Bertrand-Krajewski 51 

2013), parameter uncertainty (Ebtehaj et al. 2010; Srikanthan et al. 2009; Vrugt and Robinson 52 

2007), measurement errors/output uncertainty (Di Baldassarre and Montanari 2009; 53 

McMillan et al. 2010; Sikorska et al. 2013) and uncertainty in the model structure 54 

(Krzysztofowicz 2002; Montanari and Brath 2004; Montanari and Grossi 2008), but the 55 

related problems are far from being solved.  56 

Actually, the estimation of input and parameter probability distributions for 57 

hydrological models through the above mentioned methods is often affected by the presence 58 

of model structural errors which in turn are themselves related to data errors and parameter 59 

errors. Indeed, individual contributions to the global uncertainty cannot be quantified 60 

independently, unless (1) one introduces assumptions about the nature of the individual error 61 
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components or (2) observations are available that allow estimating each source of error 62 

independently (Renard et al. 2011). For instance, the latter case was examined by Winsemius 63 

et al. (2006; 2008; 2009) who used gravity and evaporation measurements to constrain 64 

parameter estimation for a rainfall-runoff model. In the former case, the assumptions that are 65 

introduced to estimate each uncertainty source separately can affect the reliability of 66 

estimations (Beven 2006; 2010; 2012). A comprehensive review of uncertainty assessment 67 

techniques and their underlying assumptions has been recently presented by Montanari 68 

(2011), while the issue of introducing assumptions in uncertainty assessment in hydrology 69 

has been further discussed by Montanari and Koutsoyiannis (2012). 70 

In this paper we mainly focus on the description of the model error, which represents a 71 

relevant challenge for both improving the understanding of hydrological processes and 72 

consistently estimating model uncertainty (Gupta et al. 2012). Some methods implicitly 73 

account for model error, like it is done by several applications of the well known and 74 

commonly applied GLUE technique (Beven and Binley 1992; Liu et al. 2009; see also the 75 

discussion in Beven et al. 2012; Clark et al. 2011). Other methods are based on comparative 76 

experiments by using different models (Clark et al. 2008). Another possible solution is the 77 

use of multi-modeling techniques like Bayesian Model Averaging (Ajami et al. 2007; 78 

Neuman 2003). However, these latter methods require establishing a likelihood to estimate 79 

the probability of each model being correct and provide a consistent estimation only if a large 80 

sample of possible models is explored. 81 

As for the integration of the different uncertainty sources, several methods adopt a 82 

numerical procedure. According to that, the probability distribution of the model outcome is 83 

estimated by producing several outputs, which are obtained by randomly sampling the 84 

feasible spaces of input data, parameters and model structure errors usually merged together 85 
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with measurement errors (Ajami et al. 2007; Krueger et al. 2010; Liu et al. 2009; Neuman 86 

2003). 87 

Bayesian methods constitute a promising approach to integrate all defined sources of 88 

uncertainty and propagate them through the model in order to derive uncertainty on the 89 

predicted outputs (Sikorska et al. 2012; Yang et al. 2007). Although Bayesian methods have 90 

been demonstrated to be statistically consistent and more satisfying than other uncertainty 91 

analysis approaches (Mantovan and Todini 2006), they essentially require an explicit 92 

statistical representation for the model error through the formulation of a likelihood function. 93 

The latter can, however, be a challenging task for complex hydrological models, particularly 94 

when weak or no information is available to infer the prior information on the error model 95 

(Bulygina and Gupta 2010; Sikorska 2012). Recently, improved likelihood functions have 96 

been proposed for hydrological models (Schoups and Vrugt 2010; Pianosi and Raso 2012). 97 

However, they require the introduction of additional parameters (see below). Moreover, their 98 

application may be highly time-intensive for long time series analysis and therefore less 99 

practical in real time applications when there is little time to perform the uncertainty analysis 100 

(Shrestha et al. 2009). 101 

Alternatively, several methods have been proposed to estimate the simulation 102 

uncertainty by directly inferring the statistical properties of the simulated data by means of 103 

data assimilation techniques (Bulygina and Gupta 2009, 2010 and 2011). This allows 104 

avoiding individual quantification of the uncertainty sources and their integration. Some of 105 

these techniques rely on inferring the statistical properties of the model error, which is 106 

assumed to represent the aggregated contribution over all uncertainty sources (Montanari and 107 

Brath 2004; Montanari and Grossi 2008). 108 

A generalized approach (a blueprint) to carry out the uncertainty assessment for model 109 

predictions has been recently proposed by Montanari and Koutsoyiannis (2012). By admitting 110 
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that uncertainty in hydrological models mainly originates from model structural inadequacy 111 

(which descends from limited knowledge and therefore is an epistemic form of uncertainty), 112 

uncertainty in the observed data (input and output observations) and inherent randomness 113 

(e.g. due to sensitive dependence on initial conditions), the basic assumption in the above 114 

blueprint lies in the recognition that randomness is an intrinsic property of hydrological 115 

processes. In this respect, randomness could be thought of as indeterminacy or inherent 116 

inability to describe the future evolution of hydrological processes deterministically. The 117 

notion of indeterminacy is used here to underline our belief that a perfect reproduction of 118 

hydrological processes at scales of practical interest will never be possible and therefore the 119 

model error is also the result of an intrinsic property rather than just model inadequacy.  120 

According to Montanari and Koutsoyiannis (2012), input and parameter uncertainties 121 

can be estimated individually while the model error is used to represent an aggregated form 122 

of all other sources of error (epistemic or induced by inherent randomness), and in particular 123 

the model structural uncertainty. The numerical integration of the different uncertainty 124 

sources is then operated by performing several model simulations, where input data and 125 

parameters are picked up from the respective feasible spaces. The model structural 126 

uncertainty is accounted for, along with indeterminacy, by adding a random outcome from 127 

the model error. The proposed scheme is particularly appealing in that it allows implicitly 128 

accounting for inherent randomness. 129 

However, the modeling solution proposed by Montanari and Koutsoyiannis (2012) still 130 

requires a statistical characterization of the model error for randomly sampling from the 131 

related probability distribution. In their applications, the authors used the meta-Gaussian 132 

approach (Montanari and Brath 2004) to provide a time varying representation of the 133 

probability distribution of the model error. This solution seemed to have low efficiency in 134 
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interpreting the heteroscedasticity of the error itself. Thus, the statistical characterization of 135 

the model error still remains a problem (Montanari and Koutsoyiannis 2012).  136 

In this paper, we propose an alternative solution to account for the uncertainties 137 

aggregated in the model error within the blueprint introduced by Montanari and 138 

Koutsoyiannis (2012). Namely, we propose to use a non-parametric technique to obtain error 139 

realizations from the feasible space of the past model errors without the need for their explicit 140 

statistical characterization. Thus, we employ a resampling procedure in order to retrieve 141 

sufficient information of the hydrological model behavior (and its deviation from the 142 

expected - observed values) taking advantage of sufficient historical data. In particular, we 143 

perform this resampling by randomly picking up, using a nearest neighbor (NN) approach, 144 

outcomes from past model errors. These are taken from the hydrological model simulation of 145 

historical data in validation mode. The driving variable for applying the NN technique is the 146 

hydrological model simulation at each time step itself, therefore, preserving the 147 

heteroscedasticity of the model error for different river flow regimes. 148 

Application of the NN method in hydrology is not new. In fact, the NN method has 149 

found already implementations in a wide range of real-world settings as pattern recognition, 150 

machine learning and database querying (Liu et al. 2004; Shrestha et al. 2009; Shrestha and 151 

Solomatine 2006) and for searching a model space (Beven and Binley 1992). Karlsson and 152 

Yakowitz (1987a) have demonstrated the usefulness of the NN method to large-sample time 153 

series problems. Due to its intuitiveness, simplicity (non-parametric property) and the sound 154 

theoretical basis, it has been made also attractive to forecasters in the hydrologic field for 155 

time series predictions (Brath et al. 2002; Karlsson and Yakowitz 1987b; Koutsoyiannis et al. 156 

2008; Toth et al. 1999). 157 

The approach proposed in this paper is tested by using 50 years of synthetic data 158 

referred to a river basin in Italy (Secchia River). The obtained results show that NN is a very 159 



  8  

efficient solution for solving the problem of characterizing the model error in hydrological 160 

predictions for long time series when sufficient historical data are available. 161 

 162 

Theoretical setting for uncertainty assessment 163 

The theoretical blueprint introduced by Montanari and Koutsoyiannis (2012) relies on 164 

converting a deterministic hydrological model into a stochastic one and thus incorporating 165 

randomness into hydrological modeling. This allows estimating the probability distribution of 166 

outputs from process-based (deterministic) hydrological models. For a detailed description, 167 

the reader is referred to Montanari and Koutsoyiannis (2012). Here we provide only its brief 168 

summary relevant for this study.  169 

The theoretical blueprint scheme can be applied to any type of model. In this paper we 170 

particularly refer to a rainfall-runoff model which can be written as 171 

 XΘ,Q S              (1) 172 

where Q is river flow, S is a deterministic function representing the transformation model, X 173 

is the input data vector (which may include boundary conditions) and Θ is the model 174 

parameter vector. The formalism in eq. (1) has been given in terms of converting a single 175 

deterministic model into a stochastic one. However, a multimodel framework (for an example 176 

of application see Krueger et al. (2010)) can also be considered within the blueprint 177 

framework as discussed in detail in Montanari and Koutsoyiannis (2012). 178 

To take uncertainty into account, one needs to convert the deterministic Eq. (1) to a 179 

stochastic relationship, which applies to probability distributions of input and output data and 180 

parameters, therefore taking the form 181 

 XΘ,(Q) XSQ fKf ,             (2) 182 
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where f indicates a probability density function and KS is a stochastic operator which depends 183 

on (but is different from) the deterministic model S. In detail, Montanari and Koutsoyiannis 184 

(2012) proved that the deterministic Eq. (2) can be converted to the stochastic form 185 

         XΘXΘXΘ,XΘ,QQ ddffSff X
X

eQ 
         (3) 186 

where   eXΘ,Q  S  is the model error which incorporates all uncertainties that are not 187 

explicitly considered in Eq. (3), namely, the input and parameter uncertainty. These latter are 188 

quantified by the probability density functions fX(X) and fΘ(Θ), respectively. Therefore, the 189 

model error includes all information on model structural adequacy, which depends on model 190 

structure, scales of application and specific behaviors of the case study (Blöschl et al. 1995; 191 

Skøien et al. 2003). It is relevant to note that input, parameter and data uncertainty are 192 

assumed independent of each other (see Montanari and Koutsoyiannis (2012) for an extended 193 

discussion). 194 

 The double integral in Eq. (3) can be solved numerically by performing a simulation 195 

procedure that is structured according to the following steps: (1) random outcomes for the 196 

input data vector and the parameter vector are picked up from the related probability 197 

distributions  XXf  and  Θf  respectively; (2) the hydrological model is run to obtain a 198 

single simulation of the output q and (3) a random outcome e from the probability 199 

distribution of the model error  eef  is added, which is sampled according to the procedure 200 

described below in the next section. By repeating the above simulation procedure a sufficient 201 

(j) number of times, we obtain a number of model outcomes Q = q + e, from which the 202 

related probability distribution  QQf  can be inferred. Figure 1 shows a sketch of the 203 

simulation chain. 204 

We may note that the proposed simulation procedure is similar to GLUE (Beven and 205 

Binley 1992; Liu et al. 2009) with the exception that GLUE rejects non-behavioral 206 
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simulations by usually adopting a likelihood measure. Moreover, one may note that in many 207 

applications GLUE was used without including the random contribution of the model error in 208 

the formation of the output uncertainty. 209 

It is important to note that the methodology proposed here relies much on data. 210 

Although probability distributions of input data, model parameter and model error could be 211 

estimated according to expert knowledge, data analysis is a fundamental requirement to 212 

properly estimate the probability distribution of the model error. Therefore, particular 213 

attention should be paid to data collection and checking (Beven and Westerberg, 2011). 214 

 215 

Sampling from the probability distribution of the model error  216 

The Nearest Neighbor approach 217 

The outcomes from the model error to be plugged into the simulation procedure on the 218 

step 3, as described in the previous section, are obtained here by resampling a past realization 219 

of the model error using a nearest neighbor (NN) approach also known as the k-nearest 220 

neighbor algorithm. This method takes advantage of the fact that a hydrological system’s 221 

behavior is encapsulated into observations and therefore the stochastic dynamics of the 222 

system can be recovered if enough data are available, under assumptions of stationarity and 223 

ergodicity. To this end, the NN algorithm (Karlsson and Yakowitz 1987a; b) is applied to 224 

represent the behavior of the system through establishing a dependency between the known 225 

real inputs into the system and the corresponding observed outputs from the system during 226 

the historical data (calibration mode, else known as training). While such a dependency is 227 

established, it can be next used to predict (or deduce in an effectively way) the unknown 228 

future output of the system from the future assumed input values during the application mode 229 

(Mitchell 1998). 230 
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Within our approach, the NN algorithm is employed to infer the hydrological model 231 

errors of the predicted river flows; the error (e) is defined here as the difference between 232 

observations and simulated flows during validation of the hydrological model (see previous 233 

section). This is done by identifying simulated river flow data similar to those from the test 234 

data to gain the information on corresponding errors. The underlying assumption here is that 235 

the predicted river flows in the future, while using the same hydrological model, will produce 236 

similar errors to those observed in the past and therefore it is possible to ‘learn’ about them 237 

from the historical simulated flows and related errors. In view of the assumption that the 238 

model error is independent of input and parameter uncertainty, the NN model can be fitted on 239 

the error set generated by the optimal hydrological model that has been calibrated. 240 

For the application of the model in prediction mode, initially the deterministic model 241 

 XΘ,Q S  is used which gives a deterministic prediction qi of the river flow at each time i 242 

(step 2 of the simulation procedure in the previous section). Then the space of past data 243 

(where the hydrological model was applied in validation mode) is searched for k neighbors 244 

(Hastie et al. 2009) nearest to the predicted qi. The set of neighbors, denoted as 245 

 klqN il ,...,1:)(  , form the neighborhood of qi. The closeness of neighbors is usually 246 

expressed by the Euclidean distance (Liu et al. 2004), which for scalar (one-dimensional) 247 

data, as in our case, reduces to the absolute distance iil qqN )( . For each one Nl(qi) of the k 248 

nearest neighbors the corresponding errors ))(( il qNe  in historical simulated river flows are 249 

computed. The errors (  klqNeE ili ,...,1:))((:  ) infer the distribution of the model error 250 

for the predicted river flow qi. 251 

Next the simulated deterministic prediction qi is modified by adding a single error value 252 

ei picked at random from the error space Ei, independently for every qi and assuming all k 253 

neighbors equiprobable, thus obtaining a final outcome Qi: 254 
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iii eqQ               (4) 255 

Qi represents the river flow predicted at the time step i with a simulated random error of the 256 

hydrological model. Note that no weighting in error distances is here involved. A vector Q 257 

will describe a single realization of the predicted river flow over time according to the 258 

simulation procedure presented in the previous section (steps 1-3). This procedure is redone 259 

j times (see Fig. 1) where a random error ei is sampled j-times from the feasible model error 260 

space Ei (for each time step). Applying resampling techniques allows therefore obtaining 261 

numerous realizations of the error ei and together with the input and parameter uncertainty 262 

(see previous section) covering the prediction limits of the Q expressed in the form of two 263 

quantiles of the underlying model prediction distribution  QQf  (typically 95%). Note that 264 

the Ei is described by a discrete distribution with limited (k) elements. Therefore, because 265 

usually j>>k, the same model errors can be sampled recursively. 266 

Assumptions and limitations of the NN approach 267 

The proposed approach provides the error which is changing in time and is correlated to 268 

the simulated river flow. Note, however, that the simulated errors are conditioned on the 269 

magnitude of the river flow alone and no dependency between errors themselves is here 270 

explicitly modeled. However, since consecutive outputs qi of the hydrological model are 271 

interdependent, and since, in turn, the error statistics depends on qi,,. correlation is implicitly 272 

introduced into the error itself, therefore emulating the statistical behavior of the actual error 273 

data (see the results presented in Figure 2 below). 274 

One should note that additional driving variables, besides the simulated river flow, may 275 

be incorporated into the NN technique to efficiently describe the frequency of occurrence of 276 

the model error. For instance, one may consider current or past rainfall, as well as a season, 277 

as potential additional information if results obtained with the simulated flow only are not 278 
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satisfactory. Therefore, testing of the goodness-of-fit of the uncertainty estimation, as 279 

performed in the Results section below, is essential to assess the need for additional driving 280 

variables. 281 

Although the NN method itself is regarded as nonparametric, it involves a single 282 

parameter, the number of nearest neighbors k, which has to be specified. This is a sensitive 283 

issue. Ideally, k should be chosen considering computation time and effect on the statistical 284 

characteristics of the model error. Generally, higher values of k reduce the effect of noise in 285 

searched neighbors. However, too large k-values may weaken the dependence of e on 286 

simulated flow. For a special case when k is equal to the size of queried sample, the error will 287 

become homoscedastic. Thus, in order to select the proper k, a sensitivity analysis as 288 

presented in the Results section, rather than a formal parameter fitting procedure, may be 289 

required. 290 

It has been noted above that the NN technique proposed here does not involve any 291 

weighting factor in searched neighbors. Thus, the choice of NN is made only on the value of 292 

the absolute distance between simulated and observed flows. Once located, all k NN are 293 

equiprobable in sampling. One could think about weighting the contribution of each neighbor 294 

according to its distance to the queried qi. Such weighting, giving a higher weights to NNs 295 

located closer can have advantages in regression problems (e.g. Gupta and Mortensen 2009). 296 

However, it is not clear if this has a meaning and how it would behave with respect to 297 

sampling among different NNs, i.e. the technique considered in this study.  298 

The efficiency of the NN technique is also strongly related to the quality and quantity 299 

of the historical data in order to fully (and recursively) cover the river flow variation. 300 

Therefore, the method may become less efficient in the case of scarcity or insufficiency of 301 

historical data, because it may be difficult to find informative nearest neighbors (Hajebi et al. 302 

2011). Moreover, the method may become slow in deriving a prediction for very long time 303 
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series (Shrestha and Solomatine 2006). Indeed, many complex hydrological models become 304 

slow in evaluation of a big data set. Since for each time step many simulations of the model 305 

are to be computed, the computation may become time-consuming (Beygelzimer et al. 2006). 306 

Also the NN technique search may become slower if evaluated at very long time series with 307 

numerous neighbors. The reason is that all past sample data must be at first scanned at each 308 

time step in order to locate the nearest neighbors, for which their corresponding errors are 309 

then computed and the resulting error distribution is inferred (for each time step). Not until 310 

then random samples from the derived error space can be picked up. Therefore, as we tested 311 

our approach on very long time series while in real world applications less data are usually 312 

available, the feasibility and usefulness of the method are confirmed. Nevertheless, 313 

depending on modeling purposes, a compromise should be sought between the opposite 314 

needs to consistently describe the model error and reduce the computational burden. 315 

 To accelerate the search of nearest neighbors, we used the kd-tree method, which 316 

provides an efficient mechanism for examining only those observations that are closest to the 317 

queried, thereby greatly reducing the computation time required to find the closest neighbors 318 

(Friedman et al. 1977). 319 

The above proposed technique for sampling from the model error e is based on the 320 

assumption that a consistent description of the statistical properties of e can be provided by a 321 

sufficiently long sample of model errors themselves that were experienced in validation. 322 

Noteworthy, similar assumptions have been recently questioned on the argument that 323 

epistemic uncertainty, which affects hydrological models, cannot be represented statistically 324 

in view of the fact that disinformative data and epistemic error can lead to short-term non-325 

stationarity in the error statistics that cannot be easily represented by a formal statistical error 326 

model with constant parameters (Beven and Westerberg 2011; Beven and Smith 2013, this 327 

issue). In our opinion, this line of thought, which implies that epistemic uncertainty is not 328 
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subject to probabilistic description, may be misleading. Within probability theory, the reason 329 

that we use the concept of a random variable is that the quantity of interest is not 330 

deterministically known. If a variable is affected by uncertainty, then it is modeled as a 331 

random variable, irrespective of the origin of uncertainty. That is, it can be modeled by using 332 

stochastics, even if the stochastic dynamics has been imposed due to epistemic uncertainty. 333 

This latter may imply the presence of autocorrelation, heteroscedasticity or non-stationarity. 334 

Actually, all these are nothing else than stochastic concepts whose definitions are formulated 335 

within a stochastic framework. Therefore, invoking these properties to argue about 336 

inappropriateness of a stochastic modeling framework is a logical inconsistency, in our view. 337 

These properties may increase predictive uncertainty and may underline the need for longer 338 

data series for performing statistical inference, but they do not prevent the application of 339 

statistical (or data driven) approaches. Therefore, the presence of epistemic uncertainty may 340 

affect the results of the proposed approach but does not affect its theoretical validity and does 341 

not prevent its practical application. 342 

 343 

Case study and experiment setting 344 

Study catchment and data 345 

The presented approach was tested on the catchment of the Secchia River (northern 346 

Italy), which is a tributary to the Po River. The contributing area of the analyzed basin to the 347 

control section which is conventionally located at Bacchello Bridge (62  km upstream of the 348 

confluence in the Po River) is about 1214 km
2
 and the length of the stream is of 98 km 349 

(Montanari and Koutsoyiannis 2012). The altitude varies from about 30 m to 2121 m above 350 

sea level. The mean annual precipitation for this catchment ranges between 700 and more 351 

than 2000 mm per year (Montanari 2005). 352 
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For the Secchia River basin, historical hourly data on precipitation and temperature 353 

both from five rain gauges and river flow at the Bacchello Bridge were available from two 354 

years: 1972 and 1973. For the purpose of testing the presented approach, we use synthetic 355 

data of 50 years observations generated for the test catchment based on the available 356 

historical data as described by Montanari (2005). The synthetic data experiment was adopted 357 

mainly for the reason that it enables controlled testing of the influence of epistemic 358 

uncertainty, given that we can introduce (and a priori know) it by using different models for 359 

the generation of synthetic data and for the method testing. In contrast, in an experiment with 360 

real observations it is not possible to know the contribution of epistemic uncertainty because 361 

we never know the exact dynamics of the actual (natural) process. Furthermore, the synthetic 362 

experiment makes possible the use of an arbitrarily long data set. This is useful in order to be 363 

able to test the NN approach with respect to an extended data base and therefore obtaining 364 

statistically consistent indications and consistent sensitivity analysis. The same synthetic data 365 

set was used by Montanari and Koutsoyiannis (2012) and therefore a comparison of the 366 

obtained estimates for simulation uncertainty allows us for consistently quantifying the 367 

improvement given by the NN sampling.  368 

The generation of the synthetic data was executed separately for precipitation, 369 

temperature and river flow and is briefly presented below. 370 

Generation of the synthetic data 371 

Synthetic precipitation data of 50 years on five rain gauges located within the 372 

catchment were generated using the generalized multivariate Neyman-Scott rectangular 373 

pulses model (Cowpertwait 1995) which was previously calibrated on the available recorded 374 

data from two years (1972 and 1973; (Montanari 2005)). The hourly mean areal rainfall over 375 
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the basin was calculated as a sum of the rescaled simulated precipitation at five rain gauges 376 

using the weights of their contributing polygons with the Thiessen method. 377 

Synthetic data on temperature were obtained for the locations of the available historical 378 

data by applying a fractionally differenced autoregressive integrated moving average 379 

(FARIMA) model (Montanari et al. 1997). The hourly mean areal temperature over 50 years 380 

was computed from the synthetic data through reducing their values to the basin average 381 

altitude by adopting a standard temperature gradient of 0.6°C per 100 m of altitude shift. 382 

The generated 50-year synthetic data of precipitation and temperature were next used to 383 

obtain synthetic river flow records as outputs from the rainfall-runoff model ADM (Franchini 384 

1996) validated for this catchment. The lumped nine-parameters ADM model was calibrated 385 

in previous study against historical data of the Secchia River (1972 and part of 1973) giving 386 

satisfying goodness of fit; the Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970) for the 387 

validation period (the second part of 1973) was equal to 0.81. Further information on the 388 

synthetic data generation for the Secchia River case study and on the ADM model and its 389 

calibration can be found in Montanari (2005).These synthetic data for all examined variables 390 

are hereinafter referred to as the “actual” data. 391 

Both rainfall and river flow synthetic data were next corrupted in order to account for 392 

their uncertainty; the synthetic temperature data were not corrupted due to their limited 393 

uncertainty with respect to rainfall and river flow (Montanari and Koutsoyiannis 2012). The 394 

hourly mean areal precipitation was corrupted by varying the weights of the contributing 395 

rainfall polygons (see also Montanari 2005). This was carried out by randomly picking up at 396 

each time step weight values from uniform distributions in the range of %20  of their 397 

uncorrupted values. To retain the cumulative sum of one for all weights, their corrupted 398 

values were rescaled at each time step. 399 
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The hourly synthetic river flow data generated by the ADM model were corrupted by 400 

introducing a multiplier at each time step picked up randomly from a uniform distribution in 401 

the range of 0.8-1.2. This allows accounting for the measurement errors in derived river 402 

flows. 403 

Hydrological model HyMod 404 

To test our approach we used the commonly applied five parameters conceptual 405 

rainfall-runoff model HyMod (Boyle 2000), which was verified before by Montanari (2005) 406 

on the same catchment giving satisfactory results. 407 

The HyMod, as a five-parameter model, can be seen as a model of reduced complexity 408 

in comparison to the nine-parameter ADM model. Therefore, it will presumably not perfectly 409 

reproduce the synthetic river flow data generated by the ADM model. As a result, the output 410 

of the HyMod will be contaminated by error due to its simplified model structure with respect 411 

to the ADM model. This can be regarded as epistemic uncertainty, according to the common 412 

perception of what the latter is, given that the original data are not natural but synthetic and 413 

were produced by a different model, which is perfectly accurate with respect to these data 414 

(because it produced them). The simplified HyMod model does not perfectly represent the 415 

original (ADM) dynamics, thus giving rise to imperfections of the dynamical description.  416 

The inputs into the HyMod are mean areal precipitation and evapotranspiration. 417 

Evapotranspiration is here considered using the radiation method as proposed by Doorenbos 418 

et al. (1984).  419 

Simulation procedure and prediction limits generation 420 

The proposed approach was tested on the synthetic data derived as described above. 421 

The available 50 years dataset was split into three periods in order to:  422 

(1) calibrate the HyMod (calibration period, years: 1-30), (2) infer the error model of HyMod 423 
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structural deficits in validation mode (error identification period, years: 31-40) and (3) fully 424 

validate the approach (testing period, years: 41-50). 425 

The calibration of the HyMod was carried out by using a classical approach. 426 

Specifically, we used the DREAM algorithm (Vrugt and Robinson 2007) to minimize the 427 

sum of the squared residuals in the simulation of the synthetic data over the first 30 years 428 

(years: 1-30). The Nash-Sutcliffe efficiency was 0.93 for the validation when using years 31-429 

50. In principle, more rigorous likelihood functions could be used for model calibration 430 

instead of least squares (see, for instance, the solutions proposed by Schoups and Vrugt 431 

(2010) and Pianosi and Raso (2012)). However, they would imply the introduction of 432 

additional parameters which we preferred to avoid in order to carry out a consistent 433 

comparison with the results presented by Montanari and Koutsoyiannis (2012). 434 

It is well known that the sum of the squared residuals is an approximation of the 435 

Gaussian likelihood function and therefore one may note that we indirectly used a specific 436 

likelihood for parameter calibration, which we dismissed when estimating the uncertainty of 437 

the model predictions. Therefore, it is relevant to point out that such a procedure is not 438 

inconsistent. Assumptions that are acceptable for parameter estimation may be no more 439 

justified when estimating the global uncertainty, because of the different impact that the same 440 

assumption may have on different procedures of statistical inference. In this paper it is our 441 

intention not to use a formal likelihood for estimating prediction uncertainty. 442 

By sampling randomly from the posterior parameters distribution )(Θf  we obtained 443 

6000 realizations of the parameter set, which we then used over the validation period to test 444 

our approach (years: 41-50). Sampling a parameter vector instead of single parameters 445 

independently allows retaining the mutual dependencies between all parameters. 446 

The years 31-40 were used to infer the space of the model structure errors Ei. To fully 447 

explore the error space, we conducted the resampling technique at every time step of the 448 
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predicted river flow (testing period) as described above in section “The Nearest Neighbor 449 

approach”. 450 

The latter period (years 41-50) was used to fully validate the proposed approach. For 451 

this period 1000 simulations were executed, each one by picking up randomly a set of 452 

HyMod’s parameters from the posterior parameters space )(Θf  and one realization of the 453 

corrupted rainfall as described above. Therefore, input uncertainty has been assumed to be 454 

known, in order to be able to focus on the efficiency of the NN technique for sampling from 455 

the model error. Rainfall and the corresponding evaporation were passed through the HyMod. 456 

Outputs of the hydrological model were next modified by adding one realization of the 457 

predicted river flow errors Ei derived at each time step using the NN method as described 458 

earlier. 459 

From the results of this Monte Carlo (MC) simulation with 1000 repetitions for the 10-460 

year testing period (years: 41-50), the corresponding prediction limits were computed as the 461 

two quantiles i.e. 97.5% and 2.5%, providing jointly the 95% prediction limits band. A warm-462 

up period at the beginning of the testing period, with the length of three months, was 463 

excluded from the further analysis. 464 

Assessment of the hydrological predictions reliability 465 

The reliability of model predictions was assessed under the Nash-Sutcliffe efficiency 466 

and root mean square error (RMSE) for the best prediction of the simulations (mode) for two 467 

cases: before and after modifying the outputs from the HyMod with a random error using the 468 

NN approach. 469 

For the practical use of the NN approach, we carried out a sensitivity analysis of the 470 

model response for a few different values of the k parameter. Specifically, we performed 471 

1000 MC simulations for six different values of k, namely k = 5, 10, 20, 30, 50, 100, each 472 
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time computing the 95% prediction limits and their observation coverage, as well as the 473 

percentage of values lying within the prediction limits, which theoretically should be 95%. 474 

The adequacy of the derived prediction limits (for the fixed k) was assessed by the 475 

coverage probability method as proposed by Laio and Tamea (2007). This method relies on 476 

the assumption that the probability density function of empirical distribution quantiles of a 477 

predicted variable is uniform (U(0,1)). This means that the variable should be overestimated 478 

and underestimated with the same probability. If it is so, the prediction limits should be 479 

symmetrically spread along the central value (50% quantile). The coverage probability can be 480 

practically assessed from the Coverage Probability Plot (CPP) that presents the theoretical 481 

against the computed quantiles. The deviation of plotted points from the bisector line (1:1) 482 

allows locating areas where predictions are systematically overestimated or underestimated. 483 

Ideally, the empirical points should coincide with the bisector line indicating that the model 484 

prediction limits are uniform and consistent with the theoretical 95% data coverage in the 485 

entire range of river flows and over the entire period. 486 

 487 

Results 488 

Diagnosis of simulated errors 489 

The diagnostic plot of the residuals simulated with the NN technique is provided in Fig. 2 and 490 

compared to the residuals of the calibrated hydrological model (HyMod). A plot of residuals 491 

versus simulated values (right panel in Fig. 2) shows that points are randomly scattered 492 

around the value of 0. However, a correlation between the magnitude of residuals and the 493 

values of simulated flows is observed. This is in agreement with the assumption underlying 494 

the proposed NN technique, which relates model errors to the simulated (observed) river 495 

flows. The autocorrelation of residuals is presented on the left panel in Fig. 2. Although the 496 
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non-parametric NN technique does not explicitly account for the error autocorrelation, this is 497 

preserved in simulated errors. The autocorrelation of simulated residuals (Fig. 2, left bottom) 498 

is noticeable and in agreement with residuals of the calibrated model (Fig. 2, left top). This 499 

proves that the NN technique effectively simulates hydrological model errors by relating 500 

errors to the simulated flows and thus indirectly accounting for their correlation (present in 501 

simulated flows). 502 

Model prediction efficiency 503 

Correcting simulated river flow via the NN method slightly improved the model 504 

predictions (see Fig. 3). The corresponding Nash-Sutcliffe efficiency was found to be 0.83 505 

against 0.82 (without modifying river flows) for the best prediction (mode), while RMSE was 506 

reduced by about 27% (from 14.4 to 10.4 m
3 
s

-1
). The improvements are especially visible for 507 

the peaks, which are of the highest concern in flood predictions and preventions. Note, 508 

however, that the main objective of the method is not the improvement of the prediction 509 

accuracy, but the conversion of a deterministic prediction into probabilistic one by providing 510 

confidence limits for the predicted variable. 511 

Sensitivity to the k value of the NN approach 512 

The sensitivity analysis proved that the k value, among the reasonable range between 5 513 

and 100 considered, has very little influence on the simulated river flows and the 514 

corresponding prediction limits. The prediction limits derived with different values of k 515 

varied by less than 0.1% of the total observation coverage. This can be explained, first, by the 516 

goodness of the model fit to the “actual” data and therefore similar model errors (deviations 517 

between simulated and “actual” river flows) over the entire river flows. And second, in the 518 

case of a training data set with a sufficient length (covering fully the river flow variation), the 519 

differences in model errors estimated by assigned nearest neighbors for different k may be 520 
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considered statistically indifferent. The explanation is that when k is much smaller than the 521 

calibration series length, it is always possible to find within the calibration set at least k well-522 

fitting neighbors. Therefore, to minimize the computation effort, we limited our analysis to 523 

the k = 10 case. The sensitivity of the predictions to the k-value may, however, need to 524 

increase in a situation of limited data for the NN search or when the model does not explain 525 

satisfactorily the behavior of a catchment. 526 

Percentage coverage of the prediction limits 527 

The 95% prediction limits computed by MC simulation are shown in Fig. 4. These 528 

cover 97.9% of all observations for the testing period against the theoretical value of 95%. 529 

That means that the intervals between prediction limits are slightly overestimated. In 530 

particular, 0.5% and 1.6% of the “actual” points lie above and below the prediction limits 531 

respectively against the theoretical values of 2.5% for each of the intervals. This is a 532 

satisfying achievement and a noticeable improvement in comparison to the recent study of 533 

Montanari and Koutsoyiannis (2012) on the same catchment but with a different method of 534 

modifying simulated river flow (the Meta-Gaussian approach by Montanari and Brath 535 

(2004)), where 5.4% and 4.3% of the “actual” river flows fell, respectively, out of the upper 536 

and lower 95% prediction limits. 537 

Verification of the coverage probability 538 

The coverage probability of the predictions was evaluated for 1000 repetitions of the 539 

simulated river flows over 10 years of the validation period for k = 10. Figure 5 presents the 540 

resulting coverage probability plot (CPP) for the case study (gray line). As can be seen from 541 

the figure, the confrontation of the computed quantiles with the theoretical ones indicates 542 

satisfactory predictions of the variable; the points lie along and close to the bisector line (1:1), 543 

especially for lower quantiles, whereas, a slight overestimation of the predicted river flow for 544 
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higher quantiles is observed. Thus, the derived prediction limits may be considered as reliable 545 

in flood forecasting. This is again a significant improvement in comparison with the previous 546 

study of Montanari and Koutsoyiannis (2012), where the predictions were visibly more 547 

underestimated for all quantiles (compare to the black line in Fig. 5). 548 

 549 

Concluding remarks 550 

An original procedure for sampling outcomes from the error population of hydrological 551 

models was incorporated within the modeling framework proposed by Montanari and 552 

Koutsoyiannis (2012). Specifically, the model error is assumed to represent all sources of 553 

uncertainty (epistemic or induced by inherent variability) other than input and parameter 554 

uncertainty. Therefore, sampling from the model error allows a reliable reconstruction of the 555 

probability distribution of the model output, provided the complex statistical properties of the 556 

error itself are preserved. The idea explored relies on the use of a nearest neighbor resampling 557 

procedure from realizations of the hydrological model errors in a past period but not used for 558 

the model calibration itself. 559 

The results and the statistical assessment that have been performed to check the 560 

reliability of the estimated confidence bands for model simulation prove that the proposed 561 

procedure leads to an efficient uncertainty assessment. In fact, the above statistical tests, 562 

namely the coverage probability plot and the computation of observed data lying between the 563 

confidence bands, indicate that a considerable improvement was reached with respect to the 564 

results obtained by Montanari and Koutsoyiannis (2012), who instead used the Meta-565 

Gaussian error model to extract random outcomes from the error population. 566 

The results confirm that error resampling techniques may be an interesting option to 567 

account for prediction uncertainty thereby avoiding a formal statistical characterization of the 568 

model error, when it is difficult to parameterize. The proposed approach presents the 569 
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limitation of requiring a sufficiently long enough data records, first, for the hydrological 570 

model calibration and second, for the error characterization using the nearest neighbor 571 

technique. In order to provide reliable estimations, the same data set cannot be used twice. 572 

The proposed approach relies much on data. In particular, to obtain a proper 573 

characterization of the distributional properties of the model error through resampling 574 

techniques a fairly extended data base of previous simulation errors for the considered (and 575 

calibrated) hydrological model is needed. Herein the difficulties related to the availability of a 576 

consistent data base were not considered, because the testing of the proposed approach was 577 

intentionally based on synthetic data. Ongoing research is focusing on real world applications 578 

for catchments where historical data are available for an extended observation period. 579 
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Fig. 1. Flowchart of the Monte Carlo simulation for estimating prediction limits 816 

817 
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 819 
 820 

Fig. 2. Diagnostic plot of the residuals; left panel: autocorrelation function (ACF) of residuals of calibrated 821 

model (top) and simulated residuals with the NN-method (bottom); right panel: black points - normalized 822 

residuals vs. model simulations (calibrated), gray points – simulated residuals vs. model simulations with 823 

simulated residuals. 824 

825 



  38  

 826 

 827 

Fig. 3. “Actual” and predicted river flow for the Secchia River over 1000 hours out of the 10 years (41-50) 828 

testing period. The black dotted line corresponds to the “actual” river flows, the black continuous line to the best 829 

prediction (mode) of river flow modified via NN and the continuous gray line to the best prediction without any 830 

modification of the river flow. 831 

832 



  39  

 833 

 834 

Fig. 4. 95% - prediction limits for the Secchia River during 1000 hours out of the 10 years (41-50) testing 835 

period. The black dotted line corresponds to the “actual” river flows and the gray continuous lines to the 95% 836 

prediction limits. 837 

838 
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 840 

Fig. 5. Coverage Probability Plot for the case study of the Secchia River over the testing period of 10 years (41-841 

50) for predicted river flows; gray line –with simulated errors whilst using NN approach, black line –with 842 

simulated errors while using Meta-Gaussian approach (reproduced from Montanari and Koutsoyiannis, 2012). 843 
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