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Abstract Broken line smoothing is a simple technique for smoothing a broken line fit to observational data and
provides a flexible means of interpolation. Here an extension of this technique is proposed, which can be utilized
to perform various interpolation tasks, by incorporating, in an objective manner, an explanatory variable available
at a considerably denser dataset than the initial main variable. The technique incorporates smoothing terms with
adjustable weights, defined by means of the angles formed by the consecutive segments of two broken lines. The
mathematical framework and details of the method as well as practical aspects of its application are presented and
discussed. Also, examples using both synthesized and real-world (soil water dynamics and hydrological) data are
presented to explore and illustrate the methodology.

Key words broken line smoothing; interpolation; explanatory variable; generalized cross-validation (GCV); hydraulic
conductivity; rainfall

Lissage par ligne brisée pour l’interpolation de séries de données incorporant une variable
explicative avec des observations plus denses: application à l’humidité du sol et aux précipitations
Résumé Le lissage par une ligne brisée est une technique simple pour ajuster une ligne brisée aux données
observées et fournit des techniques souples pour l’interpolation. Nous proposons ici une extension de cette
technique, qui peut être utilisée pour effectuer diverses tâches d’interpolation, en intégrant, de manière objective,
une variable explicative dont l’observation est considérablement plus dense que celle de variable initiale
principale. La technique introduit des termes de lissage de pondération réglable, définis à partir des angles
formés par les segments consécutifs d’une ligne brisée. Nous présentons et discutons le cadre mathématique et les
détails de la méthode ainsi que les aspects pratiques de son application. En outre, des exemples utilisant à la fois
des données synthétiques et réelles (concernant la dynamique de l’eau du sol et l’hydrologie) sont présentés afin
d’étudier et d’illustrer la méthodologie.

Mots clefs lissage de ligne brisée ; interpolation ; variable explicative ; validation croisée généralisée ; conductivité
hydraulique ; pluie

INTRODUCTION

In numerous scientific and engineering applications
the dependence of a variable y on another variable x,
described by a fitted curve, is exploited for purposes
such as interpolation between measurements, predic-
tion, filling in missing values in time series, estimation
and removal of the measurement errors, etc. Whenever
the mathematical expression of the dependence of y on
x is of an a priori known type (e.g. linear, logarithmic,

power, polynomial, etc.) the problem of curve fitting is
simplified, as the only requirement is the determina-
tion of the parameters of this expression, a task typi-
cally accomplished using regression techniques. The
difficulty arises when such an expression is not known
and cannot be approximated by a simple, easily recog-
nizable formulation.

Currently, many methods exist that can accom-
plish this task using appropriate computer codes and
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they are mainly used for spatial interpolation in envir-
onmental studies. They fall into three categories (Li
and Heap 2008):

(a) non-geostatistical methods such as: splines
(Craven and Wahba 1978, Wahba and
Wendelberger 1980) and regression methods
(Davis 1986);

(b) geostatistical methods, including different
approaches of kriging, such as: universal
kriging, kriging with an external drift or co-
kriging (Goovaerts 1997, Burrough and
McDonnell 1998); and

(c) combined methods, such as: trend surface ana-
lysis combined with kriging (Wang et al. 2005)
and regression kriging (Hengl et al. 2007).

Koutsoyiannis (2000) introduced the easy method
of broken line smoothing (BLS) as a simple alter-
native to numerical smoothing and interpolating
methods, closely related to piecewise linear regres-
sion and to smoothing splines. The idea is to
approximate a smooth curve that may be drawn
for the data points (xi, yi) with a broken line or
open polygon which can be numerically estimated
by means of a least squares fitting procedure. The
abscissae of the vertices of the broken line do not
necessarily coincide with xis, but they can form a
series of points with some chosen (lower or higher)
resolution. The main concept of the method is the
trade-off between two objectives, i.e. minimizing
the fitting error and the roughness of the broken
line. The larger the relative weight of the second
objective, the smoother the broken line resulting
from the fitting procedure.

This study is focused on the combination of two
broken lines into a piecewise linear regression model
with known break points and adjustable weights. The
first broken line is fitted to the available data points,
while the second incorporates, in an objective man-
ner, the influence of an explanatory variable available
from a considerably denser dataset. The objective is
to make the interpolation across the data points as
accurate as possible.

The method is illustrated using three applica-
tions: (a) a theoretical–investigational; (b) the inter-
polation of hydraulic conductivity function using
water retention data as explanatory variable and
vice versa; and (c) the spatial interpolation of rain-
fall data using the surface elevation as explanatory
variable.

METHODOLOGY

Mathematical framework

Let (xi, yi) be a set of n points at the x y plane for
i = 1, …, n. Let cj (j = 0, …, m, m + 1) be points
of the x-axis so that the interval [c0, cm] contains all
xi. For simplicity we will assume that the points are
equidistant, i.e. cj − cj−1 = δ and that for every x
value we know the value of an explanatory variable
t. Therefore, for each point (xi, yi) there is a corre-
sponding value t(xi), for i = 1, …, n and for a value
cj there is a corresponding value t(cj), for j = 0,
…, m.

We make the assumption that the dependent
variable y in every position x can be expressed as a
linear function of the variable t, i.e.

y ¼ d þ et (1)

where d and e are coefficients, with their values
changing according to x. This is not a global linear
relationship but a local linear one, as the quantities d
and e change with x. Their variation is expressed
from two broken piecewise straight lines. At the
vertices of the broken lines, the above relationship
becomes:

yj ¼ dj þ ejtj (2)

We wish to find the m + 1 values dj and ej, so that
the curve which is defined by the m + 1 points
(cj, dj + tj ej), and consists of a combination of
the two broken lines and of the t(x) curve, ‘fits’
the set of points (xi, yi). This fit is defined in
terms of minimizing the total square error among
the set of original points (xi, yi) and the fitted
curve, i.e.

p ¼ Pn
i¼1

yi � ŷið Þ2 (3)

where ŷi is the estimate of yi given by the broken
lines for the known xi.

In matrix form, this can be written as:

p ¼ y� ŷk k2 (4)

where y = [y1,…, yn]
T is the vector of known

ordinates of the given data points with size n
(the exponent T denotes the transpose of a
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matrix or vector) and ŷ ¼ ŷ1; . . . ; ŷn½ �T is the
vector of estimates with size n as given by appli-
cation of equation (1), which for any x can be
written as:

ŷ xð Þ ¼ d xð Þ þ t xð Þe xð Þ (5)

where d(x), e(x) are the ordinates of the correspond-
ing broken lines at point x.

Assuming that for some j, cj−1 ≤ x ≤ cj (see
Fig. 1), the ordinate of the broken line d(x) can be
determined from:

d xð Þ ¼ dj þ dj�1 � dj
� � cj � x

cj � cj�1

¼ dj þ dj�1 � dj
� � cj � x

δ

(6)

which can be written as:

d xð Þ ¼ 1
δ x� cj�1

� �
dj þ cj � x

� �
dj�1

� �
(7)

Likewise, the corresponding expression for e is:

e xð Þ ¼ 1
δ x� cj�1

� �
ej þ cj � x

� �
ej�1

� �
(8)

Therefore, if a point xi lies in the subinterval [cj−1, cj]
for some j (1 ≤ j ≤ m), then the estimate ŷi is given by:

ŷi xi; t xið Þð Þ
¼ 1

δ
dj xi � cj�1

� �þ dj�1 cj � xi
� �� ��

þt xið Þ ej xi � cj�1

� �þ ej�1 cj � xi
� �� �� (9)

If we apply equation (9) for i = 1, 2, …, n, we get:

in which we assumed that the point x1 lies in the
interval [c0, c1] and point xn lies in the interval
[cm−1, cm].

The above equations can be more concisely
written in the form:

ŷ ¼ Πd þ TΠe (11)

where ŷ ¼ ŷ1; . . . ; ŷn½ �T is the vector of estimates
with size n; d = [d0,…,dm]

T is the vector of the
unknown ordinates of the broken line d; e = [e0,…,
em]

T is the vector of the unknown ordinates of the
broken line e; T is a diagonal matrix:

T ¼ diag t x1ð Þ; . . . ; t xnð Þð Þ (12)

with its elements t(x1), …, t(xn) being the values of
the altitude at the given data points; and Π is a matrix
with size n× (m + 1) whose ijth entry (for i = 1, …, n;
j = 0, …, m) is:

πij ¼
xi�cj�1

δ ; cj�1< xi � cj
cjþ1�xi

δ ; cj< xi � cjþ1

0; otherwise

8<
: (13)

In addition to minimizing the fitting error defined in
equation (4), we consider two requirements in order
to avoid a very rough shape of both broken lines d
and e, and also ensuring a unique solution irrespec-
tive of how large m is (see explanation below). To
acquire a measure of the roughness of the broken

y, d

x

c0 c1 c2 c3 cj-1 cj

d0

d3
d1

dj
dj-1

d2

xi

yi

Fig. 1 Definition sketch for vector d, adopted from
Koutsoyiannis (2000) (a similar sketch can be drawn for
vector e).

ŷ1 ¼
1

δ
d1 x1 � c0ð Þ þ d0 c1 � x1ð Þ½ � þ t x1ð Þ e1 x1 � c0ð Þ þ e0 c1 � x1ð Þ½ �f g

..

.

ŷn ¼
1

δ
dm xn � cm�1ð Þ þ dm�1 cm � xnð Þ½ � þ t xnð Þ em xn � cm�1ð Þ þ em�1 cm � xnð Þ½ �f g

(10)
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line, we consider the differences of slopes between
two consecutive segments of the broken line d and
the broken line e, so that the following expressions
can be appropriate measures for the roughness of the
entire broken line:

qd ¼
Xm�1

j¼1

2dj � dj�1 � djþ1

� �2
(14)

and

qe ¼
Xm�1

j¼1

2ej � ej�1 � ejþ1

� �2
(15)

These can be written in matrix form as:

qd ¼ dTΨTΨd (16)

and

qe ¼ eTΨTΨe (17)

where Ψ is a matrix with size (m − 1) × (m + 1) and
ijth entry:

ψij ¼
2; j ¼ iþ 1

�1; j� i� 1j j ¼ 1
0; otherwise

8<
: (18)

Apparently, ΨTΨ ¼ 0 for the special case m = 1.
Combining equations (4), (11), (16) and (17),

and introducing the dimensionless multipliers λ,
μ ≥ 0 for qd and qe, respectively, we form the general-
ized objective function to be minimized:

f d; eð Þ :¼ pþ λqd þ μqe

¼ y� ŷk k2 þ λdTΨTΨd þ μ eTΨTΨe
(19)

By differentiating equation (19) with respect to d and
e, and equating them to zero, we obtain, respectively:

@f1
@d

¼� 2yTΠ þ 2dTΠTΠ

þ 2eTΠTTTΠ þ 2λdTΨTΨ ¼ 0
(20)

@f2
@e

¼� 2yTTΠ þ 2dTΠTTΠ

þ 2eTΠTTTTΠ þ 2μeTΨTΨ ¼ 0
(21)

The solution of the set of equations (20) and (21),
which minimizes (19), is obtained after applying the
typical rules of derivatives involving matrices and
has the following form:

The vector of estimates, ŷ, is obtained from equation
(11), once vectors d and e are calculated from equation
(22). Also, from equation (9), we can estimate the ordi-
nate ŷ of any x that lies in the interval [c0, cm] if we know
the value of parameter t at that point.

We observe that the three matrices B := ΠTΠ, C :
= ΨTΨ and D := ΠΤΤΤΤΠ appearing in (22) are square
matrices with size (m + 1) × (m + 1). B and D are tri-
diagonal while C is five-banded. B can be singular (not
invertible) if one or more columns of Π have zero ele-
ments’ that is, if at least two consecutive intervals [cj−1,
cj] contain no xis while C is always singular. However,
for λ, μ> 0, the sumsB + λC andD + μC are non-singular
and, thus, their inverses exist.

Choice of parameters

It is apparent that the method has three adjustable para-
meters: the number of intervals, m, and the smoothing
parameters λ and μ corresponding to vectors d and e,
respectively. The choice of parameters can be made by
assessing the achieved data smoothing, either graphically
in the case of a limited number of data points (n ≤ 3), or
by using standard objective ways as described by the
following analysis.

In order to provide a convenient search of the
two smoothing parameters, we selected a transforma-
tion of λ and μ in terms of what has been called
tension parameters, τλ and τμ, whose values are
restricted in the interval [0, 1). These were derived
from the numerical investigation performed by
Koutsoyiannis (2000), concerning the transformation
of the smoothing parameter λ, and have the form:

λ ¼
�
10m

ln τm
ln τλ

	Kλ

; μ ¼
�
10m

ln τm
ln τμ

	Kμ

(23)

d

e


 �
¼ ΠTΠ þ λΨTΨ ΠTTΠ

ΠTTΠ ΠTTTTΠ þ μΨTΨ

" #�1
ΠTy

ΠTTTy

" #
(22)
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where τm = 0.99 is the maximum allowed tension,
corresponding to the upper bound of λ and μ, set for
numerical stability equal to:

λm ¼ trace Bð Þ
trace Cð Þ 10

8; μm ¼ trace Dð Þ
trace Cð Þ 10

8 (24)

The exponents in equations (23) are determined by
the relationships:

Kλ ¼ ln λm
ln 10mð Þ ;Kμ ¼ ln μm

ln 10mð Þ (25)

which are obtained by combining equations (23) and
(24). The minimum allowed value of λ, μ is 0 if the
inverse of matrixes B and D exist; otherwise they are
estimated from equations (23) using small values of τλ
and τμ, such as: τλ = 1 – τm = 0.01 and τμ = 1 – τm = 0.01.

Combining equations (11) and (22), we obtain:

ŷ ¼ Ay (26)

where A is a n × n symmetric matrix given by:

depending on all adjustable parameters: m, τλ and τμ.
The estimation of these adjustable parameters can

be done by minimizing the generalized cross-valida-
tion (GCV; Craven and Wahba 1978), defined by:

GCV ¼
1
n I � Að Þyk k2
1
n trace I � Að Þ� �2 (28)

For a given number of segments m, the minimization
of GCV results in the optimum values of τλ and τμ.
This can be repeated for several trial values of m until
the global minimum of GCV is reached.

Relationship to broken line smoothing and other
methods

The formalization of the above setting of the broken line
smoothing interpolation (BLSI) method was derived
from that of the single broken line method
(Koutsoyiannis 2000), by adding a linear function of
the explanatory variable t, along with the introduction

of the smoothness term ΨTΨ in the corresponding pro-
blem formulation. This allows GCV to be implemented
in the parameter selection procedure. The main differ-
ence is the fact that the present method uses two broken
lines to obtain the vector of estimates ŷ from equation
(11). Thus, the method does not provide the vertices of a
single broken line, but the estimates of points (xi, yi) with
available t(xi) values (i = 1,…, n) fitted to the problem of
interest. The above characteristics of the proposed
method do not appear either in smoothing splines or in
any other piecewise linear regression method.

It should be obvious from the above discourse that
BLSI does not require linearity between the involved
variables, namely y, x and the explanatory variable t, but
local linearity is incorporated in the mathematical frame-
work in a broken line approach. Also, the functional
dependence, in terms of vectors d, e, the number of
segments, m, and the tension parameters τλ and τμ, is
neither constant nor known a priori, but in each case is
determined through the procedure of minimizing
the GCV.

Finally, the method retains the remarkable prop-
erty of broken line smoothing (Koutsoyiannis 2000),

in that the resolution (length of consecutive segments
of the broken line) δ does not necessarily have to
coincide with that of the given data points, but can be
either finer or coarser, depending on the specific
requirements of the problem of interest.

RESULTS AND COMMENTS

The exploration of the proposed method took place
against synthesized and real-world data. To demonstrate
the method we present three applications, the first being
synthesized for exploration purposes and the last two
corresponding to real-world problems. The computa-
tional framework of the method’s implementation
(Microsoft Excel) provides a direct means of data visua-
lization and graphical exploration.

Exploration application

The first application was the implementation of the
method in interpolation-fitting to 10 data points

A ¼ ΠTΠ½ � ΠTΠ þ λΨTΨ ΠTTΠ
ΠTTΠ ΠTTTTΠ þ μΨTΨ


 ��1

Π TΠ½ �T (27)
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obtained from the rather complicated generating
function (Fig. 2):

y xð Þ ¼ 1þ 10e�0:01x�0:1
ffiffiffi
tx

p
 �
� 0:57 (29)

while the values of the explanatory variable t, which
depends on x values, are given from the relationship
(Fig. 2):

t xð Þ ¼ 60xe�0:25x (30)

The main objective of this application, apart from
illustrating how the proposed method performs in
interpolation based on given data points, was the
investigation of the variation of the three parameters:
m, τλ and τμ, and the confirmation that there is a
single global minimum for the generalized cross-
validation (GCV).

In order to achieve this, we implemented the
method for different numbers of segments m
(2 ≤ m ≤ 30) using 10 data points (i = 10), in
order to approximate the generating function of
equation (29). The explanatory dataset, t(x) com-
prised 46 points ( j = 1, …, 46) equally spaced
along [0, 22.5], with xj � xj�1 ¼ δ ¼ 0:5.
Consequently, for each case we obtained 46 point
estimates of the generating function by applying
equation (9).

Figure 3 presents the variation of the following
indices versus the number of segments m:

(a) the minimum GCV given by equation (28);
(b) the GCV given by equation (28) when τλ and τμ

are close to their lower limit (τλ = τμ = 0.01) and

when they take their maximum value (τλ = τμ =
0.99);

(c) the mean square error (MSE) with respect to
data points, provided by the numerator of equa-
tion (28), obtained by minimizing GCV;

(d) the MSE with respect to data points provided by
the numerator of equation (28), obtained by
minimizing GCV when τλ and τμ are close to
their lower limit (τλ = τμ = 0.01) and when they
take their maximum value (τλ = τμ = 0.99); and

(e) the optimum values for each m, of τλ and τμ
obtained by minimizing GCV.

Figure 3 shows that, in the case of maximum τλ and
τμ values (=0.99), both error indices are almost invar-
iant and independent of the number of segments. In
this case, the influence of the smoothness term ΨTΨ
in equation (27) is much higher than the influence of
the broken line segments, resulting in a single ‘max-
imum smoothness’ solution.

The global minimum value of GCV was
1.460 × 10-4, corresponding to m = 7, τλ = 0.01 and
τμ = 0.304. Beyond m = 11, the minimum GCV, as
well as the GCV for the case of τλ = τμ = 0.01, remain
almost constant. However, the existence of local
minima should be taken into consideration during
the parameter estimation procedure.

When GCV is minimized, MSE follows a similar
pattern to the GCV variation, with its minimum value
being 2.540 × 10-8 for m = 7,τλ = 0.01 and τμ = 0.01.
However, the global minimum value of MSE was
8.099 × 10-14 and occurred in the case of minimum
tension values, i.e. τλ = τμ = 0.01 and m = 9. This
complies with the formulation of equation (19) con-
cerning the roughness of the broken lines. Also,
Fig. 3 shows that, in this case, the values of MSE
tend to remain stable for larger values of m.

The optimum values of τλ and τμ achieved by
minimizing GCV versus different numbers of seg-
ments m, are presented in Fig. 3. Even though they
appear in a different scale, their pattern is similar to
these of the error indices, being almost stable after
m = 6 for τλ and m = 9 for τμ.

Figure 3 confirms that the proposed mathemati-
cal formulation ensures the presence of a single glo-
bal minimum value of GCV according to equation
(28) and therefore the applicability of the objective
way to assess the optimum values of τλ and τμ, as
previously noted.

Figure 4 presents the BLSI fit, using 10 data
points and 46 values of the explanatory variable t
(i = 10, j = 46), to the generating function of equation
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Fig. 2 Generating function y(x) and explanatory function
t(x) for the purposes of the exploration application.
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(29) for the values of the smoothing parameters pre-
sented during the analysis of Fig. 3. The 46 point
estimates of the generating function were obtained by
applying equation (9). It is apparent that, in the case
of the global minimum value for the GCV indicator
(m = 7, τλ = 0.01, τμ = 0.304), the estimates are
indistinguishable from the generating function,
which suggests that the error is negligible. In the
case of small tension values (m = 8, τλ = τμ = 0.01),
the estimates are also very close to the generating
function, but the overall appearance is somewhat
rough with deviations between the data points. This
characteristic was expected, since the GCV values for
both cases were very close. However, the maximum

tension case of τλ = τμ = 0.99 resulted in a smoother
curve but a worse approximation of the generating
function.

The fitted broken lines in terms of the vectors d
and e that satisfy equation (22), for the above men-
tioned cases, are presented in Fig. 5.

Even though the final result as presented in
Fig. 4 shows small differences between the cases of
the optimum solution and small tension values, there
is significant variation between the corresponding
broken lines, i.e. vectors d and e, as they appear in
Fig. 5. Also, the scale and gradient differences
between the two groups of broken lines indicate
that the ordinates of the broken line e, are the
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number of segments, m.

Broken line smoothing with explanatory variable 7



adjustment coefficients–weights of the explanatory
variable t. This complies with the mathematical fra-
mework of the method as expressed by equation (1).

In brief, the combination of the two broken lines
by means of equation (11) results in a very satisfac-
tory fit of the complex mathematical expression as
described by equation (29) and depicted in Fig. 2.

Real-world applications

The first real-world application concerns interpola-
tion between measurements of the hydraulic conduc-
tivity function K(h) (h being the soil pressure head),
mainly used in numerical methods for the simulation
and prediction of mass transport phenomena in the

vadose zone. Many different closed-form expressions
have been widely employed to describe the unsatu-
rated hydraulic properties of soils (Leij et al. 1997),
but all of them need experimental data to be fitted
upon.

For the experimental determination of the
hydraulic conductivity function, a number of meth-
ods have been developed. Direct methods for mea-
suring the K(h) functions in a laboratory can be
classified according to the flow mode as steady
state (conventional constant head, constant flow,
centrifuge) or unsteady state methods (outflow–
inflow, instantaneous profile, thermal method)
(Masrouri et al. 2008). Most of these methods are
time-consuming and laborious, leading scientists to
consider other methods such as conceptual models
that could predict K(h) from data obtained from the
soil moisture retention curve and supportively
coupled by Ks, measured independently at saturation,
with the use of permeameters (Argyrokastritis
et al. 2009).

For the needs of this application, we used the
experimental data for Hygiene sandstone (Brooks and
Corey 1964) adopted from van Genuchten (1980), in
terms of relative hydraulic conductivity, Kr (Kr = K/
Ks, Ks = 108 cm/d), as dependent variable for every
h. The soil’s moisture retention curve, Θ(h), was set
as the explanatory function t. Therefore, for each
point Kr(hi) for i = 1, …, 11, there was a correspond-
ing value Θ(hi) (Fig. 6).

The method was applied using as input the entire
Kr dataset, as a general performance indicator; how-
ever, in order to examine the method’s capability, we
applied a cross-validation procedure by creating two
additional subsets of the available Kr data and imple-
menting the method for each case. The first subset
comprised four data points numbered 1, 4, 8 and 11
(Fig. 6), which is the minimum amount of data points
needed to implement the above mentioned procedure
for obtaining a robust solution by minimizing the
GCV (equation (28)). The second subset comprised
only two points, the first and last of the dataset,
points 1 and 11. The latter is an extreme case, since
interpolating such complex variables with only the
lower and higher boundaries known is a challenging
task.

The explanatory dataset, Θ(h), was obtained by
using the BLS method (Koutsoyiannis 2000), for
m = 70 and τ = 0.01, to obtain 70 points from the
11 initial data points. Therefore, in each case the
outcome of the BLSI method was 70 point estimates
of Kr.
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In the case of the entire Kr dataset and four
available data points, the method was implemented
for different numbers of segments, m (2 ≤ m ≤ 30) for
each of which the GCV was minimized by altering τλ
and τμ values. In this way, the global minimum GCV
was reached. To obtain the optimum fit for the case
of two available data points, we varied the m, τλ and
τμ parameters and graphically assessed the results

until the outcome was acceptable. The results of
this procedure are presented in Fig. 7 where the 70
point estimates of Kr(h) are presented as lines and in
Table 1 together with the corresponding performance
indices. Figure 7 demonstrates overall concurrence
when using the entire dataset, but also an almost
perfect fit is acquired in the case of four available
data points.
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The performance indices presented in Table 1
confirm the efficiency of the BLSI method. Notable
is the performance of the method considering the
coefficient of determination, R2, which was obtained
for each case with respect to the entire dataset. In all
three cases, the value of R2 exceeded 0.97 and espe-
cially when all available data points were used in the
interpolation process, where R2 obtained its maxi-
mum possible value of 1.

In the case of two available points, i.e. the first
and last of the dataset, BLSI performed amazingly
well considering the limited amount of input data,
presenting slight deviation, with acceptable magni-
tude, from the observed values.

Apart from the above mentioned example, the
inverse problem was also studied, namely, the inter-
polation of the Θ(h) dataset by using Kr(h) as the
explanatory function t. As Table 2 and Fig. 8 show,

Table 1 BLSI parameters and performance indices, for the Kr(h) interpolation example.

Available data
points

Optimum number
of segments, m

Optimum
τλ

Optimum
τμ

MSE Global
minimum GCV

R2*

All 3 0.001 0.001 2.06 × 10−5 1.17 × 10−4 1.000
Four (1, 4, 8, 11) 7 0.9455 0.5078 3.99 × 10−22 5.041 × 0−5 0.997
Two (1, 11) 20 0.7946 0.6624 4.72 × 10−3 1.71 × 10−1 0.971

* With respect to the entire dataset.
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Fig. 8 BLSI fit to Θ(h), for different number of available data points.

Table 2 BLSI parameters and performance indices, for the Θ(h) interpolation example.

Available data
points

Optimum number
of segments, m

Optimum
τλ

Optimum
τμ

MSE Global
minimum GCV

R2*

All 8 0.01 0.9897 1.52 × 10−8 1.02 × 10−6 1.000
Four (1, 4, 8, 11) 16 0.9711 0.7498 8.51 × 10−26 8.34 × 10−10 0.987
Two (1, 11) 26 0.4307 0.8955 1.18 × 10−7 5.45 × 10−2 0.969

* With respect to the entire dataset
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the results were similar and very satisfactory, con-
firming the method’s ability to interpolate scarce
datasets of variables with complex relationships by
utilizing denser, physically-related to them, explana-
tory datasets.

In the second real-world application we spatially
interpolate annual rainfall using as explanatory vari-
able the surface elevation. Spatial variability of pre-
cipitation is influenced by many factors, some of
them connected to the chaotic nature of the atmo-
spheric processes. At the annual scale, proximity to
the sea and orography have significant effects
(Goovaerts 2000). Hevesi et al. (1992a, 1992b)
reported a significant correlation of 0.75 between
average annual precipitation and elevation.

The objective of the application was: (a) to ver-
ify the applicability of the method against a hydro-
logical variable with significant correlation to an
easily measurable (hence available at considerably
higher resolution) explanatory variable and (b) to

verify the versatility of the method in terms of hand-
ling extensive datasets.

The study area was the region of Central
Greece (Sterea Hellas) (Fig. 9(a)). The data consist
of the mean rainfall at a network of 71 meteorolo-
gical stations in the specified area, derived from all
available measurements until the year 1992
(Christofides and Mamassis 1995). The surface
elevation of the study area was obtained from the
digital elevation model (DEM) SRTM Data Version
4.1 (Jarvis et al. 2008) and aggregated to a
2 km × 2 km grid (Fig. 9(a)) for practical and
computational reasons, covering an area of
approximately 25 620 km2. The result was 6405
points of known elevation, which constituted the
explanatory variable dataset.

Since the BLSI method is one-dimensional in
terms of the independent variable x, the points’ spa-
tial coordinates (xi, yi) were projected onto a x' axis,
according to the following expression:

Fig. 9 (a) Elevation map and meteorological stations; (b)–(d) rainfall maps produced for the three cases of projection
angles.
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g xi; yið Þ ¼ g x0ið Þ; x0i ¼ xi þ tanφyi (31)

for alternative angles φ, namely:

φ ¼ 30�; tan φ ¼
ffiffi
3

p
3 ; x0i ¼ xi þ

ffiffi
3

p
3 yi (32)

φ ¼ 45�; tan φ ¼ 1; x0i ¼ xi þ yi (33)

φ ¼ 60�; tan φ ¼ ffiffiffi
3

p
; x0i ¼ xi þ

ffiffiffi
3

p
yi (34)

The global minimum of GCV for all three cases was
obtained by implementing the method for a different
number of segments, m (2 ≤ m ≤ 30) and minimizing
GCV for each one by altering τλ and τμ. The results of
the above procedure are presented in Table 3.

As a quality measure for the evaluation of the
efficiency of the method, we utilized the minimum
and maximum rainfall from the available meteorolo-
gical stations, along with their corresponding eleva-
tion. Those values, compared to the minimum and
maximum rainfall obtained from implementing BLSI
for each of the three cases, are presented in Table 4.

Figure 9 and Table 4 indicate that the result of
the method respects the dependence of rainfall on
elevation (with increased elevation, rainfall increases,
as happens in reality), confirming the efficiency of
the BLSI method against the objectives set above.
The validation of the obtained values, to conclude
whether they could be regarded as acceptable for
spatial interpolation of rainfall, exceeds the scope of
the present study. Further investigation regarding the
use of the specified methodology for spatial interpo-
lation of rainfall in two dimensions, along with com-
parisons with other methods, will be reported in a
future study.

Since the method’s mathematical framework
provides a direct means of evaluating interpolation
errors across the available data points, an assessment
of their distribution function could be of interest.
Figure 10 demonstrates the normal probability plot
of the empirical distribution function of the rainfall
estimation error for φ = 30°. For comparison, the
theoretical normal distribution function N (0, 201.6)
was also plotted.

As can bee seen, Fig. 10 indicates that for the
specific case of annual rainfall, the normal distribu-
tion is a good approximation of the interpolation
errors produced by the implementation of BLSI.
This remark does not constitute a generally valid
conclusion. Nonetheless, the method provides a
direct means to assess the distribution function of
error, and hence the interpolation uncertainty, in a
nonparametric manner without the need to hypothe-
size a specific distribution function. Similar plots

Table 4 Comparison between meteorological stations data and BLSI results.

Station data Projection angle, φ

30° 45° 60°

Minimum rainfall (mm)/Elevation (m) 339/5 380/0 386/0 336/1
Maximum rainfall (mm)/Elevation (m) 1990/1420 1897/2414 2423/1310 2754/2012

Table 3 BLSI parameters and performance indices, for the rainfall interpolation example.

Projection
angle, φ

Optimum number
of segments, m

Optimum
τλ

Optimum
τμ

MSE Global
minimum GCV

30° 13 0.141 0.986 4.01 × 104 5.63 × 104

45° 17 0.435 0.796 4.86 × 104 6.71 × 104

60° 8 0.282 0.984 5.74 × 104 7.41 × 104
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Fig. 10 Normal probability plot, in the case of φ = 30°, of
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using Weibull plotting positions against normal distribu-
tion function N (0, 201.6).
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were made for the other two cases studied, namely
φ = 45° and φ = 60° (not shown here) and the results
were found to be analogous to those for φ = 30°.

CONCLUSIONS

An innovative method is described which can be
utilized to perform various interpolation tasks, by
incorporating, in an objective manner, an explana-
tory variable available at a considerably denser
dataset than the main variable. The technique incor-
porates smoothing terms with adjustable weights,
defined by means of the angles formed by the con-
secutive segments of two broken lines into a piece-
wise linear regression model with known break
points.

Apart from the demonstration of the mathema-
tical framework, the method was illustrated and
tested against three applications; a theoretical one
with synthetic data from a known generating func-
tion, and two real-world examples: the interpola-
tion of hydraulic conductivity function using water
retention data as explanatory variable and vice
versa, and the spatial interpolation of rainfall data
using the surface elevation as explanatory variable.
In every case, the method’s efficiency to perform
interpolation as well as smoothing between data
points that are interrelated in a complicated man-
ner, by incorporating the explanatory variable, was
confirmed, indicating its applicability for diverse
scientific and engineering tasks. A notable property
of the proposed method is the fact that the resolu-
tion (length of consecutive segments of the broken
line) does not necessarily have to coincide with
that of the given data points, but it can be either
finer or coarser, depending on the specific require-
ments of the problem of interest. This is an impor-
tant property that makes the method applicable
and reliable even in the case of scarce datasets
(e.g. with as few as two points, as in the second
case study, the method gave amazingly good
results).

The third application showed that the method
can be useful in spatial interpolation. However, the
current formulation is not fully two-dimensional,
although the general methodology allows exten-
sion in many dimensions. The extension of the
methodology for spatial (two-dimensional) inter-
polation of variables will be reported in future
studies.
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