
Why Andreas writes suboptimal code
and why this hinders scientific research
Antonis Christofides*

National University of Athens, Greece
A presentation given at a meeting of Python programmers
Athens, Greece, 11 May 2014

I avoid talking about myself when making presenta-
tions, but this is a presentation about people. So we
will talk about me and about Andreas, of course. You
can see some things about me in Figure 1. I am
primarily a computer guy, with significant education
and some experience in hydrology, which is a branch
of civil engineering. Sometimes, at the end of the day,
when the work is done, when pythonmode indicates
zero errors and zero warnings, when the documenta-
tion is written and good, when all unit tests run in
Python 2 & 3, in Linux and Windows, and when every-
thing is committed and pushed, I look at my code,
which is beautifully coloured by the editor, and I feel
I'm a great programmer. And then an email comes in-
forming me that a Django core developer has written a
patch for a Django bug that has hit me and which I'm
monitoring; and I look at his patch and I think I suck.
These are good feelings, because it is through this pro-
cedure that we learn, and after 5 or 10 years we can
also be good core developers in something.

But our protagonist here is Andreas (Figure 2). He is a
hydrologist who has dedicated his life to scientific re-
search. He isn't among those who work for the pres-
tige or for the money or for the beautiful female stu-
dents; instead, he serves science as the search for
truth. He is as smart as you and I. Needless to say, I am

not concerned specifically with Andreas, but with
university researchers, but I like to talk with concrete
examples.

Like many researchers, Andreas also can program. He
implements complicated algorithms that have to do
with his research.
Andreas's narcissism applies to his theories, his equa-
tions, his scientific papers. He reads many scientific
papers written by others, and I guess that whenever
he comes across a particularly good one, he feels ad-
miration for the author, and this is how he also im-
proves himself. He doesn't give a damn about the
code of the Django core developer.
I would show you some of his code here, but I prefer
to sensor it (Figure 3) (I have the sad feeling, how-
ever, that Andreas' code is better than most of the
code written by professional programmers, and that
most of you have probably seen much worse code
than his; but this doesn't change the fact that it's seri-
ously suboptimal.)
There is also another reason Andreas's code is subop-
timal. More than 10 years ago, I convinced that re-
search team to start using CVS. A few years later I
switched them to subversion. A few years later I
switched them to Mercurial. On that occasion, the

* anthony@itia.ntua.gr

1

Figure 1

Figure 2

Antonis

● Studied civil engineering
● MSc computer science
● More than 20 years of experience as a

developer and system administrator in a
university team of hydrological research

Andreas

● Studied civil engineering
● MSc in hydrology
● PhD in hydrology
● About 20 years of experience in hydrology
● Creator of Castalia, a computer program that

creates synthetic hydrological time series (in
Delphi)

three members of the team who were programmers
did learn Mercurial. Andreas did not seem to intend to
learn it, and when I asked him why, he said, half-jok-
ingly, "because you are going to change it again". In-
deed, in 2013 I switched everything to git. But Andreas
was not merely right; his statement goes right into the
heart of the problem. Contemplate the things you
have been learning the last three months: it's probably
overwhelming. Andreas simply does not have the time
to learn a fifth of that, because he has other work (Fig-
ure 4).

Andreas will thus never be a good programmer in this
life, for pretty much the same reason you will never be
a good hydrology researcher in this life.

The most important consequence of suboptimal code,
in this case, is that it is an obstacle to the dissemina-
tion of scientific progress (Figure 5).
What is the solution? The most obvious, you will tell
me, is to let Andreas write prototypes, and leave the
actual programming to programmers. Unfortunately,
this doesn't work very well. Castalia is based on sev-
eral scientific papers (Figure 6), which have fairly ad-
vanced math and concepts. Andreas and Demetris
(Andreas's supervisor) told me they estimate that if I
did heavy reading and worked closely with them so
that they could help me, it would take me about one
month to understand the whole thing. They were talk-
ing specifically about me, not you. I've been working

with them for 20 years already, so I already have
some understanding of the concepts. I believe it
would take you much more than it would take me. I
also have the feeling that their research is relatively
easy to understand; research based on more advanced
math could require years to learn.

In any case, suppose we find the funding to do this: to
have me or you study the issue alongside Demetris
and Andreas, and rewrite the code in a clean Python
+ numpy + pandas (+ Cython) application. Finding
such funding is already hard to do because of the way
research funds are managed, but suppose we do it.
How is it going to be maintained? How is Andreas
going to continue his research? He will need to learn
Python+numpy+pandas to develop new prototypes
that build on the previous work. Assuming funding is
secured so that the programmer continues to work
alongside with them in order to maintain the pro-
gram and to help Andreas learn Python 4, the new re-
vision control system, nose, and all such small
changes in the workflow that will be needed every
now and then, it will work for some time.

But, in five or ten years, it is likely there will be a
new language, say Viper, that is particularly suited
for such research. It will be compelling to rewrite the
whole thing in that language. Python + numpy +
pandas may be looking as obsolete as Delphi does
now and as FORTRAN did in the 1990s. Andreas will
already be having enough trouble to keep up with
Python 4 and all the new modules I will be introduc-

2

Figure 6

Figure 3

Andreas's code

● Barely any version control.
● No unit testing (always extremely important, but even

more so in scientific algorithms).
● Huge functions with many nested control structures

and large McCabe complexity.
● Uncareful memory management resulting in leaks

and segfaults.
● Hacky patches upon hacky patches.
● Insufficient error handling.
● GUI code inside functions that make calculations.

Figure 4

Andreas's work

● Scientific research in hydrology.
● Engineering hydrological studies.
● Teaching and supervision of students.
● Technical and (in Greece) administrative

management of research projects.
● Monitoring of available grants, scientific

proposals for further funding.

Papers on which Castalia is based

Figure 5

Suboptimal code hinders research

● Students have a hard time understanding it
● Researchers in other universities also have a

hard time running it
● Andreas himself has trouble maintaining it

ing all the time; if I tell him that I will rewrite the
whole beast in Viper, he will kill me. He will also bring
in his former students to help him. Some of these
former students will now be professors in other insti-
tutions abroad, and they will have their own students.
How will all these people learn Viper if they aren't
working closely with me?
You see it's not a trivial problem. It is, I think, the main
reason why FORTRAN is still being used today. It's

just not that simple to change.
The main tendency today is to have private compa-
nies of programmers offer support to universities; but
I think that this is too expensive and does not work
well; a programmer that is part of the research team
but has significant interaction with other program-
mers is way better. But I explained that this, also,
does not work very well. I don't have an answer.

© 2014 the author. Permission is granted to reproduce this document under the terms of the Creative Commons Attribution 3.0 License.
This document is available at http://itia.ntua.gr/1453

3

