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1. Introduction 20 

Nearing [2014] (hereafter Nearing) has two major concerns on Montanari and 21 

Koutsoyiannis [2012] (hereafter MK), i.e., that the method presented by MK: (1) is not novel 22 

and (2) is not likelihood-free. He concludes that the MK “…strategy does not inherently 23 

address the underlying issues”. We discuss the above major concerns in the following two 24 

sections of our reply. We also discuss several other minor remarks by Nearing in Section 4 25 

and 5. We are grateful to Nearing for his interest in the method we proposed in MK. We 26 

consider the present reply an opportunity to further clarify several features of our approach. 27 

 28 

2. Novelty of the method 29 

Nearing implies that the method presented by MK is not new. This emerges in several 30 

of his statements, which we are discussing, and replying to, here below. First, after presenting 31 

his eq (1), that is a rewriting of eq. (8) in MK, Nearing states “A ubiquitous example of 32 

applying (1) with Monte Carlo integration to turn deterministic models into stochastic models 33 

is in ensemble data assimilation, where f(Q) represents a Bayesian prior distribution over the 34 

current state of a dynamic system estimated as the sum of a deterministic model prediction 35 

plus random error…”. Several references follow this sentence in the comment. 36 

Actually, in none of the references cited by Nearing can we find a derivation, and 37 

neither a use, of eq. (8) that was presented in MK. The cited papers include several 38 

formulations where uncertainty is accounted for by adding a random error to a deterministic 39 

formulation. This approach is used not only in the context of data assimilation, but also in 40 

several other approaches to account for inherent uncertainty in hydrological modeling. The 41 

addition of a random error to a deterministic model is indeed the premise of the approach 42 

proposed in MK, which is resembled by our eq. (3). By relying on the above premise, the 43 

essence of the MK contribution is to analytically derive eq. (8) to prove that the probability 44 
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distribution of the model output can be estimated, under appropriate assumptions, by using 45 

the probability distribution of the model error to account for model structural uncertainty and 46 

all other uncertainties that are not explicitly accounted for. In eq. (8) presented in MK f(Q) is 47 

not a “Bayesian prior distribution” as Nearing implies, by comparing or identifying it with his 48 

example of “ensemble  data  assimilation”, but rather the probability distribution of the 49 

predictand once the prediction has been made by using all the available information. 50 

Later on, Nearing states that “.. if we know the necessary distributions, then (1) is 51 

simply the straightforward Bayesian solution….”. This sentence as well seems to imply that 52 

Nearing is convinced that the MK approach is largely used already. We cannot agree with 53 

this statement. A Bayesian solution presupposes assuming a prior distribution for the 54 

predictand that is updated by using a likelihood function. Neither the prior nor the likelihood 55 

are included in eq. (8) derived by MK and therefore the MK approach can hardly be defined a 56 

“straightforward Bayesian solution”. It seems that Nearing is at least missing the point that 57 

MK do not use any likelihood function in their eq. (8), and therefore the latter cannot be 58 

viewed as a Bayesian solution. The likelihood is avoided by MK by using the probability 59 

distribution of the model error, which incorporates different information that nevertheless can 60 

be estimated empirically. The peculiarities of the distribution of the model error with respect 61 

to the likelihood will be further discussed in the next Section of our reply. 62 

On the other hand, the original contribution provided by eq. (8) in MK seems to be 63 

later recognized by Nearing himself, when he writes that “… to my knowledge no previous 64 

study has actually implemented (2)”, and “Beven and Binley [1992] …. did not sample model 65 

error …”. In fact, we fully agree with the above considerations which confirm and highlight 66 

the novel items in the MK approach within the hydrological literature. 67 

Indeed, we do not claim that what we are proposing is revolutionary: our theoretical 68 

analysis makes use of fundamental concepts of stochastics. However, we maintain that our 69 
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methodological scheme, along with the analysis of its stochastic properties, constitutes a 70 

novel contribution to hydrology. 71 

 72 

3. Is MK likelihood-free? 73 

Before discussing Nearing’s point that the MK approach is not likelihood-free, we 74 

believe it is necessary to provide a definition of the likelihood function. Following Nearing, 75 

we adopt the definition by Fisher [1922]: “[t]he likelihood of any parameter (or set of 76 

parameters) should have any assigned value is proportional to the probability that if this 77 

were so, the totality of observations should be that observed.” More formally, given a certain 78 

model with parameters Θ and given observations Y (which here could be thought of as a 79 

vector of past values Q), the likelihood is a function of the parameters Θ of the model 80 

proportional to the probability of those observed outcomes given those parameter values, i.e. 81 

L(Θ|Y) = p(Y|Θ), where p denotes probability (or, if Y is a vector of continuous variables, 82 

probability density). It is important to point out that (1) the likelihood is a function of the 83 

parameters Θ as the observations Y are known numbers; (2) for a specified parameter set Θ,  84 

the likelihood is a number; (3) for varying Θ, the likelihood equals a probability (or a 85 

probability density) but is not a probability distribution with respect to Θ (or Y, which in fact 86 

is a set of numbers); and (4) assuming that the model is used to predict a future (true) value 87 

Q, belonging to the same process as the observations Y, obviously the likelihood is not a 88 

function of the predictand Q. The last point seems trivial, but it is relevant to the discussion 89 

that follows here below.  90 

Nearing provides several statements to claim that the probability distribution of the 91 

model error that is used by MK in eq. (8) is a likelihood, therefore concluding that MK’s 92 

method is not likelihood free. For instance, he states that “…and second, that fe|D is a 93 

likelihood function associated with many of the issues outlined above”, where fe|D is the 94 
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probability distribution of the model error (note that Nearing explicitly recognizes the 95 

dependence of the estimated probability densities on the observed data D. Such dependence is 96 

implicitly recognized in MK, where we preferred to keep the notation simple). Thus, Nearing 97 

concludes that “MK’s formulation does not really avoid the need to evaluate a likelihood 98 

function”. We do not agree with the above conclusion for the reasons that we explain here 99 

below. For the sake of clarity, let us point out that the probability distribution of the model 100 

error e is indicated in MK with the symbol fe(Q – S(Θ, X)|Θ, X), where e is the model 101 

prediction error, Q is the true variable to be predicted and S is the output from the considered 102 

deterministic hydrological model that depends on the model parameter vector Θ and input 103 

data X. 104 

Nearing notes that the probability distribution of the model error, which he denotes as 105 

fe|D, can be rewritten as a probability distribution of Q, which he denotes with f'e|D. Then, he 106 

concludes that “f'e|D (and thus the equivalent fe|D) is a likelihood function according to 107 

Fisher’s definition.” We maintain that the probability distribution of the model error, 108 

according to the definition of likelihood provided above, is not a likelihood function. The 109 

simplest way to prove our assertion is to note that fe(Q – S(Θ, X)|Θ, X) depends on the value 110 

of the true variable to be predicted Q and therefore is different with respect to a likelihood 111 

function (see the definition of likelihood that was given above and remember that Q is a 112 

variable to be predicted and therefore is unknown, namely, it is not an observation). 113 

One may counter argue that the vector of observations Y in the likelihood function 114 

p(Y|Θ) as defined above is in essence equivalent to the predictand Q and therefore the 115 

likelihood p(Y|Θ) is mathematically equivalent (or can be derived from) the distribution 116 

f(Q|Θ). This seems to be the line of thought of Nearing who (a) identifies fe(Q –117 

 S(Θ, X)|Θ, X) with f'e|D, (b) regards the latter as probability density of Q, and (c) calls it 118 

likelihood. Here we note that, had we assumed an analytical form of the multivariate 119 
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probability distribution of the model error (for an arbitrarily long dimensionality or a vector 120 

of errors), then from this analytical form one could indeed analytically derive fY(Y|Θ) and 121 

hence likelihood, so that specifying the former allows one to derive the latter. However, this 122 

is not the case in MK. We did not specify any mathematical form for the multivariate 123 

probability distribution of the model error and we did not calculate the likelihood. Thus, in 124 

MK, the probability distribution of the model error fe(Q – S(Θ, X)|Θ, X) is just a conditional 125 

predictive distribution of e given the parameters Θ and the inputs X. It is not a likelihood per 126 

se. Clearly, it is a marginal distribution for one variable e (or Q) and not a multivariate 127 

distribution, whereas, as already explained, the observations Y form a vector and fY(Y|Θ) is a 128 

multivariate distribution. Because of complex dependencies, the multivariate distribution 129 

cannot be derived from marginal distributions in a trivial manner (e.g. as a product of 130 

marginal densities). 131 

Finally, let us note another reason why the probability distribution of the model error 132 

cannot be a likelihood, which is that the likelihood is a probability, and not a probability 133 

distribution (this is quite well understood in the scientific community and there is extensive 134 

information on this, as one can confirm by searching the web for “likelihood is not a 135 

probability distribution”). 136 

We hope that our above explanations fully justify our claim that we did not calculate or 137 

evaluate any likelihood in MK. We did not make any attempt to formulate an analytical form 138 

for the likelihood or to estimate it empirically (and neither Montanari and Brath [2004] did) 139 

because we did not see the reason to do that. Furthermore, we note that the probability 140 

distribution of the model error can be derived by using any type of information, including 141 

observed data but also soft information and/or expert knowledge. This is another striking 142 

difference with respect to a likelihood function that is computed over observed data. 143 
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Another interesting remark is raised by Nearing when he points out that MK used a 144 

likelihood to estimate the probability distribution of the model parameters. In fact, he notes 145 

that “…MK evaluate f D| in their application of DREAM [Vrugt and Robinson, 2007] to 146 

estimate f|D”. 147 

In principle Nearing is correct in this point, but we thought we had made it clear in MK 148 

that the proposed method is likelihood free in our eq. (8) of MK. We never stated that the use 149 

of the likelihood should be (or should not be) avoided in the whole 150 

calibration/validation/simulation process. Rather, we pointed out that the use of a formal 151 

likelihood is problematic when assessing the uncertainty of the predictand. Therefore, in MK 152 

it was decided to use a surrogate of a likelihood function (sum of squared errors) for 153 

parameter calibration but such likelihood was dismissed when estimating the uncertainty of 154 

the model predictions. It is relevant to note that such a procedure is not inconsistent. 155 

Assumptions that are acceptable for parameter estimation may be no more justified when 156 

estimating uncertainty, because of the different impact that the same assumption may have on 157 

different procedures of statistical inference. 158 

Nearing’s states that “… the purpose of this comment is to point out that, although it 159 

is possible to construct methods that avoid likelihood evaluation, this objective is something 160 

of a red herring and does not address the fundamental issues”. Therefore, he objects that 161 

using the probability distribution of the model error does not simplify the problem with 162 

respect to computing the likelihood. This latter view is also supported by Nearing by noticing 163 

in his comment that MK do not take into account possible dependency and non-stationarity in 164 

the model error, as well as the dependence of the model error on model parameters and input 165 

data. Therefore, he concludes by stating that the MK “…strategy does not inherently address 166 

the underlying issues”. 167 
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Actually, the above problems are extensively discussed in MK. We would like to 168 

point out once again that our scheme, being very general, offers the grounds for resolving the 169 

above limitations mentioned by Nearing. Error dependence and possible non-stationarity can 170 

be accounted for in MK by properly defining the probability distribution of the model error, 171 

provided enough information is available. In fact, by proposing to estimate the probability 172 

distribution of the model error empirically, MK identify a way to make a significant step 173 

forward to reach the target. For an additional discussion on this issue the interested reader is 174 

invited to refer to Sikorska et al. (2014). Likewise, MK already pointed out that the joint 175 

probability distributions of the model error, input data and parameters can be in principle 176 

estimated by relying again on an empirical (although much more computer intensive) 177 

approach (see the discussion in Sections 5 and 6.4 in MK). 178 

To conclude this Section, we recognize that Nearing is certainly correct in pointing 179 

out that MK did not resolve all the problems related to uncertainty estimation. We never 180 

claimed that we achieved such ambitious result, given that we explicitly recognize in MK that 181 

some significant challenges still stand. However, we believe that our approach represents a 182 

significant step forward, in that it allows one to avoid significant problems related to 183 

likelihood identification and estimation — and here we disagree with Nearing’s main point.   184 

 185 

4. Is MK conditioning uncertainty estimation on evidence? 186 

Nearing seems to imply that MK do not use a fully Bayesian approach and therefore do 187 

not efficiently compute the posterior distribution of the predictand basing on the available 188 

observations. To clarify this issue it is useful to define the event which marks the difference 189 

between the prior (to the event) and posterior inference. In our interpretation such event is 190 

given by the observation of data that could be used to condition uncertainty assessment, 191 
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namely, the data that in a Bayesian approach would be used to compute the likelihood 192 

function in order to update a prior distribution. 193 

This gives us the opportunity to note that the method proposed by MK does not 194 

necessarily need observed data to be applied, given that the probability distributions of the 195 

input data and parameters, as well as that of the model error, may be estimated by using soft 196 

information and/or expert knowledge. However, if observed data are available (the evidence), 197 

the MK method does allow one to condition uncertainty estimation for the model output on 198 

the observations themselves. In fact, in their applications presented in the paper, MK estimate 199 

the probability distribution of the model error based on observed data, which are used to 200 

compute the error itself for the sake of inferring its distribution. Such conditioning procedure 201 

can also be applied in real time in a data assimilation context, by updating the probability 202 

distribution of the model error, and perhaps the probability distributions of input data and 203 

parameters, as new observations become available. From a technical point of view, MK also 204 

proved that the conditioning was successful in the developed case studies, as the coverage 205 

probabilities plots shown in figures 5 and 9 in MK clearly show. Therefore, we conclude that 206 

the updated probability distribution that follows the acquisition of new data (or, generally 207 

speaking, follows any kind of available information) is indeed estimated by MK. 208 

 209 

5. Reply to Nearing’s minor comments 210 

In addition to the above major issues, Nearing offers some minor criticism on MK. 211 

First, Nearing states that “Montanari and Koutsoyiannis [2012] … offer an excellent 212 

discussion of the fundamental role of epistemic uncertainty in hydrologic modeling”. And, 213 

later on, he writes “I will show that they have not actually avoided likelihood evaluation, but 214 

that their method nevertheless offers very meaningful insight into the fundamental issues 215 

associated with applying probability theory to estimate epistemic uncertainty”. 216 
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We think it is useful to make clear that MK refer to uncertainty in general and not to 217 

epistemic uncertainty in particular. In MK, we provided a discussion on the role of epistemic 218 

uncertainty to reply to questions and criticism by the referees, but we believe that it is 219 

misleading to introduce a strict classification of uncertainty (we see in the literature many 220 

attempts to split uncertainty in categories like epistemic, non-epistemic, random, non-221 

random, and many others). We prefer to avoid such a classification because these 222 

components cannot be separated in practice. We prefer to associate uncertainty to 223 

unpredictability, without attempting to make any decomposition. It is clear that uncertainty 224 

can be potentially reduced, but we believe it is inappropriate to rigorously attempt to separate 225 

reducible from irreducible uncertainty. Uncertainty decomposition is subjective, uncertain 226 

and unnecessary.  227 

We do not understand Nearing’s comment “Isolated application of (1) is not 228 

particularly useful because it requires a priori knowledge of all model components (e.g., e, Θ 229 

and X)”. Of course any model application requires the knowledge of all model components. 230 

We do not see any problem in recognizing that any modeling exercise should be based on 231 

information and what is proposed in MK does not require more information with respect to 232 

alternative approaches. We only need a model and data (or an alternative information), like 233 

any application in hydrology. 234 

After presenting eq. (3) in the comment Nearing states that “The only difference 235 

between (2) and (3) is that (3) does not require model error to be additive”. Actually, we do 236 

not see the need to introduce or use his eq. (3). The use of an additive error in MK results in a 237 

mathematically consistent equation (eq. (3) in MK). Actually, the usage of the error e is not 238 

removed in Nearing’s eq. (3) as is clear in the first tem of the right hand side. Furthermore, 239 

we believe there is a formal error in eq. (3) as the right-hand side is clearly a mathematical 240 

function of the error e , while the left-hand side is a function of Q.  241 
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 242 

6. Conclusion 243 

It has been a common ground that, from a Bayesian perspective, any attempt to fit a 244 

model should necessarily involve its likelihood. Indeed, if one adopted and extended the 245 

definition of likelihood, by including empirical estimation and informal approaches for 246 

estimation based on expert knowledge, we would agree that any uncertainty assessment 247 

method that is conditioned by information is not likelihood free. This is a fully motivated and 248 

scientifically sound view which we are not questioning, but our aim is not to discuss the 249 

advantages of Bayesian methods. We are not interested in classifying our method as Bayesian 250 

or not Bayesian. However, we think it is interesting to point out that in our derivations we did 251 

not follow a standard Bayesian approach (although perhaps this would be possible, yet not 252 

actually provided by Nearing). Our motivation for studying an approach that avoids the 253 

analytical specification and numerical computation of a formal likelihood function for 254 

hydrological models is only the will to propose a viable solution to address real world 255 

problems. We believe that there is an urgent technical need to provide reliable assessments of 256 

uncertainty in hydrology and therefore we are making an effort to propose a solution that in 257 

our opinion is theoretically justified, practical and susceptible to further simplification 258 

[Sikorska et al., 2014].  259 

A criticism that can be cast to our method, which is implied by Nearing, is that defining 260 

a probability distribution for the model error is even more complicated than computing the 261 

likelihood function. We would agree with this criticism if we were compelled to use a formal 262 

analytical approach to uncertainty estimation. Conversely, if an empirical, Monte Carlo, 263 

approach is adopted, as we propose, then estimating the probability distribution of the model 264 

error is simpler than estimating a likelihood. In fact, likelihood computation requires an 265 

analytical description of the statistical features of the error, and in particular its dependence 266 
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properties and temporal variability of statistics. This is frequently achieved by specifying a 267 

model for the error itself, which implies relevant problems related to the analytical 268 

interpretation of error features. This complication is avoided if the probability distribution of 269 

the model error is evaluated conditionally on the deterministic model prediction (which is 270 

time varying). That can be empirically estimated in a simple manner if enough data are 271 

available (for an example of application, see Sikorska et al. [2014]). 272 

Our approach was proposed after numerous attempts to estimate and check uncertainty 273 

assessment in practice: at the end we gained the convincement that our method deserves to be 274 

known. Uncertainty assessment is a tremendously important issue in hydrological practice, as 275 

we all know: we need to make an effort to systematize the underlying theory without being 276 

trapped in stereotypical classifications. 277 

 278 
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