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The meaning of stationarity —A historical note 
 Kolmogorov (1931)  

 clarified that the term process means 
change of a certain system; 

 introduced the term stochastic 
process; 

 used the term  
stationary to  
describe a  
probability  
density function  
that is unchanged 
in time. 

 Khinchin (1934) gave more formal  
definitions of a stochastic process and  
of stationarity. 
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Definition of stationarity 
 Kolmogorov (1938) gave a concise presentation of the 

definition as follows: 
a stationary stochastic process […] is a set of random 
variables xt depending on the parameter t, −∞ < t < +∞, 
such that the distributions of the systems  

(xt1
, xt2

, …, xtn
) and (xt1 + τ, xt2 + τ, …, xtn + τ)  

coincide for any n, t1, t2, … , tn, and τ. 
 Processes that are not stationary are called nonstationary; 

their statistical properties (at least some of them) change in 
time being deterministic functions of time. 

 As far as we know: 
 This definition of stationarity has never been disputed. 
 There has never been a decent alternative definition of 

stationarity. 
 The terms stationary and stationarity are often misused. 
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Theoretical concepts that help avoid misuse of 
stationarity and nonstationarity 
 Stationarity and nonstationarity refer to stochastic processes. 

 Stochastic processes are families of random variables usually 
indexed by time.  

 Random variables are variables associated with a probability 
distribution or density function.  

 Attempts to conceptualize stationarity without reference to a 
stochastic process are inconsistent with the theory.  
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In which world do stationarity and 
nonstationarity belong? 

Abstract representation 

Model  
(Stochastic process) 

Ensemble (Gibbs’s idea): mental 
copies of natural system  

Time series  
(simulated) 

Real world 

Physical 
system 

Unique 
evolution 

Time series 
(observed) 

Many different models 
can be constructed 

Mental copies depend 
on model constructed 

Both stationarity and 
nonstationarity apply here 

(not in the real world) 

Perpetual 
change 

The observed time 
series is unique; the 
simulated can be 
arbitrarily many 

An important consequence: 

Stationarity is immortal 
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Does a time series tell us if it is stationary or 
nonstationary?  
 Not actually. 

 Actually, a time series is neither stationary nor nonstationary. 

 These are properties of the stochastic process that generated the time 
series.  
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Example: 
50 terms of a synthetic 
time series 
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See details of this example in Koutsoyiannis (2011) 
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Does this example suggest stationarity or 
nonstationarity? 

Mean m (red line) of time series (blue line) is: 

m = 1.8 for i < 70  

m = 3.5 for i ≥ 70  

Example time 
series extended 
up to time 100 
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Reformulation of question: 
Does the red line reflect a deterministic function? 

 If the red line is a deterministic function of time: → 
nonstationarity. 

 If the red line is a random function (realization of a 
stationary stochastic process) → stationarity. 

Example time 
series extended 
up to time 100 
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Answer of the last question: the red line is a 
realization of a stochastic process 

 The time series was constructed by superposition of: 

 A stochastic process with values mj ~ N(2, 0.5) each lasting a period τj 
exponentially distributed with E [τj] = 50 (red line); 

 White noise N(0, 0.2). 

 Nothing in the model is nonstationary. 

 The process of our example is stationary. 

Example 1 
extended up to 
time 1000 
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Unexplained variance 
(differences between 
blue and red line): 0.22 = 
0.04. 
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The big difference 
of nonstationarity 
and stationarity  
(1) 

A mental copy 
generated by a 
nonstationary 
model (assuming 
the red line is a 
deterministic 
function) 

The initial time 
series 
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The big difference 
of nonstationarity 
and stationarity 
(2) 

Unexplained variance 
(the “undecomposed” 
time series): 0.38 (~10 
times greater). 
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A mental copy 
generated by a 
stationary model 
(assuming the red 
line is a stationary 
stochastic process) 

The initial time 
series 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800 900 1000

Time, i

Time series

Local average

D. Koutsoyiannis & A. Montanari, Risks from dismissing stationarity 11 



Justified use of nonstationary descriptions: 
Models for the past   

 Changes in catchments happen all the time, including in 
quantifiable characteristics of catchments and conceptual 
parameters of models. 

 If we know the evolution of these characteristics and 
parameters (e.g. we have information about how the percent 
of urban area changed in time), then we build a 
nonstationary model: 

 Information → Reduced uncertainty → Nonstationarity. 

 If we do not have this quantitative information, then:  

 We treat catchment characteristics and parameters as 
random variables. 

 We build stationary models entailing larger uncertainty. 
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Justified uses of nonstationary descriptions: 
Models for the future 
 It is important to distinguish explanation of observed phenomena 

in the past from modelling that is made for the future. 

 Except for trivial cases, the future is not easy to predict in 
deterministic terms. 

 If changes in the recent past are foreseen to endure in the future 
(e.g. urbanization, hydraulic infrastructures), then the model of the 
future should be adapted to the most recent past. 

 This may imply a stationary model of the future that is different 
from that of the distant past (prior to the change). 

 It may also require “stationarizing” of the past observations, i.e. 
adapting them to represent the future conditions. 

 In the case of planned and controllable future changes (e.g. 
catchment modification by hydraulic infrastructures, water 
abstractions), which indeed allow prediction in deterministic 
terms, nonstationary models are justified. 
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Conditional nonstationarity arising from 
stationarity models 
 If the prediction 

horizon is long, 
then in 
modelling we 
will use the 
global average 
and the global 
variance. 

 If the prediction  
horizon is short,  
then we will use  
the local average at the present time and a reduced variance.  

 This is not called nonstationarity; it is dependence in time. 

 When there is dependence (i.e., always) observing the present 
state and conditioning on it looks like local nonstationarity. 
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In nonstationary models stationarity is again 
important 

 Even if we have a good deterministic model applicable for 
future times, we can never hope that it will describe the 
future in full detail and precision. 

 Uncertainty will ever be present. 

 That uncertainty (unexplained variability) should be 
represented as a random component superimposed to the 
deterministic change given by the deterministic model;  
that random component is necessarily stationary.  

 Thus, even if a process is nonstationary, it will necessarily 
include a stationary component, and therefore any future 
prediction needs to ultimately rely on the assumption of 
stationarity of that random part. 
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The discussion about stationarity is beyond 
semantics 
 For mitigation of natural hazards, solving practical problems implies the 

design of management policies and engineering structures that need to be 
based on the estimation of design variables and their uncertainty, which 
is also related to economical feasibility of solutions. 

 The stationarity concept is useful because it highlights the fact that, 
whatever deterministic controls and mechanisms are identified and 
whatever progress is made in deterministic modelling, there will always 
be unexplainable variability in any system for which a probabilistic 
description assuming stationarity is needed.  

 Both exact predictability (particularly for distant times) and inference 
without data are impossible. 

 Only (physically-based) stochastic modelling using real-world data offers 
a pragmatic solution.  

 Thus, it is not paradoxical to conclude that stationarity is immortal, as 
immortal is the need for statistical descriptions and the need to seek 
robust solutions to practical problems. 
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A real-world case: The Athens water supply system 
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Historical time series of 
Boeoticos Kephisos runoff 
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Nonstationary approach 1: trend based 

 The flows would disappear at about 2050… 

 The trend reduces uncertainty (because it “explains” part of variability): 
The initial standard deviation of 70 mm decreases to 55 mm. 

 In contrast, in a stationary approach assuming Hurst-Kolmogorov 
dynamics (consistent with the data) the standard deviation increases to 75 
mm. 
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Conclusion: It is 
absurd to use such 
simplistic methods as 
trend projection 

Boeoticos 
Kephisos runoff 
and projected 
trend 
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Nonstationary approach 2: GCM based 

 Outputs from three GCMs for two scenarios were used. 

 The original GCM outputs (not shown) had no relation to reality (highly negative 
efficiencies at the annual time scale and above). 

 After corrections (also known as “downscaling”) the GCM outputs improved with 
respect to reality (to about zero efficiencies at the annual time scale). 

 For the past, despite adaptations, the proximity of models with reality is not 
satisfactory. 

 For the future the runoff obtained by adapted GCM outputs is too stable. 

Conclusion: It is dangerous to 
use GCM future projections: 
they hide uncertainty. 

Boeoticos Kephisos runoff 
produced with downscaled 
GCM outputs, superimposed 
to confidence zones 
produced with Hurst-
Kolmogorov statistics under 
stationarity 

(Koutsoyiannis et al., 2007) 
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A note on the skill of GCMs in reproducing reality 
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Comparison of 3 IPCC TAR and 3 IPCC AR4 
climate models with historical series of 
length > 100 years in 55 stations 
worldwide  
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Source: Anagnostopoulos, et al. (2009) 

See also Koutsoyiannis et al. (2008). 
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Πάντα ῥεῖ: Does change entail nonstationarity?  

 Montanari, A., G. Young, H. H. G. Savenije, D. Hughes, T. 
Wagener, L. L. Ren, D. Koutsoyiannis, et al., “Panta Rhei – 
Everything Flows”, Change in Hydrology and Society – 
The IAHS Scientific Decade 2013-2022, Hydrological 
Sciences Journal, 58 (6), 1256–1275, 2013.  

 Koutsoyiannis, D., Hydrology and Change, Hydrological 
Sciences Journal, 58 (6), 1177–1197, 2013. 

 Ceola, S., A. Montanari, and D. Koutsoyiannis, Toward a 
theoretical framework for integrated modeling of 
hydrological change, WIREs Water, 
doi:10.1002/wat2.1038, 2014. 

 Koutsoyiannis, D., and A. Montanari, Negligent killing of 
scientific concepts: the stationarity case, Hydrological 
Sciences Journal, doi:10.1080/02626667.2014.959959, 
2014. 

 Montanari, A., and D. Koutsoyiannis, Modeling and 
mitigating natural hazards: Stationarity is Immortal!, 
Water Resources Research, doi:10.1002/2014WR016092, 
2014. 
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Change in Hydrology 
and Society 

IAHS Scientific Decade 
2013-2022 

Reply: No 

See justification in 
a series of papers 



Concluding remarks 

 Πάντα ῥεῖ (or: Change is Nature’s style). 

 Change occurs at all time scales. 

 Stationarity is a property of a process and a process is 
synonymous to change. 

 Nonstationarity should not be confused with change, nor 
with dependence of a process in time. 

 Stationarity and nonstationarity apply to models, not to the 
real world, and are defined within stochastics. 

 Nonstationary descriptions are justified only if the future can 
be predicted in deterministic terms. 

 Unjustified/inappropriate claim of nonstationarity results in 
underestimation of variability, uncertainty and risk!!! 
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Stationarity is not dead. It is immortal!!! 
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