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1. Introduction 

 Further to typical statistical characteristics, explicitly preserved by 

the model, we also examine important temporal properties of 

storms (rainfall events & dry intervals), as well as the statistical 

distribution of annual rainfall maxima.  

 We focus more on the formulation of the calibration problem, by 

assessing the performance of the BL models against issues such as the 

choice of the statistics to preserve and the time scales of interest.  

 For each month, the parameters of the original and modified BL 

models were calibrated through the EAS algorithm, assuming 

alternative scenarios of the desirable statistical characteristics to 

preserve. 

 We examine the performance of 

two different versions of 

Bartlett-Lewis model (BL) 

model in convective and frontal 

rainfall of Athens.  



2. Key findings 
 Both models reproduce the statistical 

characteristics that are implicitly 

involved in calibration process, 

showing poor performance in 

preserving the rest statistics.  

 Calibration with different set of 

statistics lead to different parameter 

values and model performance, in 

terms of preserving the statistical 

characteristics, especially in the case of 

the modified BL model.   

 Both versions of the BL model fail to 

reproduce the significant variability 

of rainfall events, due to the 

overclustering of pulses, which also 

results to over-estimation of 

probability dry, at the hourly and 

daily time scales. 
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3. The Bartlett-Lewis model 
Model assumptions (original version; Rodriguez-Iturbe et al., 1987): 

– Storm origins ti occur in a Poisson process, with rate λ 

– Cell origins tij occur in a Poisson process, with rate β 

– Cell arrivals terminate after time vi exponentially distributed (parameter γ) 

– Cell durations wij are exponentially distributed (parameter η) 

– Cell intensities xij are either exponentially or gamma distributed. 

 In the modified version (Rodriguez-Iturbe et al., 1988) η is assumed gamma 
distributed, with scale parameter v and shape parameter a, and varies for 
each event, such as β/η and γ/η remain constant. 
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4. The HyetosR package 
 Open software for temporal 

stochastic simulation at fine 

time scales, implemented in R 

language and partly in C++. 

 It supports three versions of 

the BL model for sequential 

simulation or disaggregation 

(Koutsoyiannis & Onof, 2001).   

 It includes an enhanced 

version of the evolutionary 

annealing-simplex method 

for the estimation of model 

parameters (Efstratiadis & 

Koutsoyiannis, 2002).  

HyetosR package is available at: http://itia.ntua.gr/en/softinfo/3/ 

http://itia.ntua.gr/en/softinfo/3/
http://itia.ntua.gr/en/softinfo/3/


5. The modified Evolutionary Annealing- 
Simplex (EAS) method 
 Effective combination of evolutionary search, simulated annealing and 

downhill simplex (Nelder-Mead) local search method. 

 Evolution is based on simplex transformations or mutation. 

 Probabilistic transitions, since a stochastic term is added to the 

objective function, relative to a “temperature” metric, T. 

 Multiple expansions and uphill transitions are allowed, to 

accelerate the search and escape from local minima, respectively. 

 The major differences to the original version evolve: 

 Dynamic adjustment of shrinkage coefficient based on T. 

 Re-annealing of the system when T becomes low without further 

improving the current best point. 

 Recently, a hybrid combination of EAS method enhanced with 

surrogate-based techniques is implemented, for time-expensive 

optimization problems (Tsoukalas et al., 2015). 



6. Calibration of BL model 
 The original version of the BL model contains 5 parameters, while the 

modified 6 or 7 depending on the distribution of cell intensities. 

 For a given set of model parameters, its major statistical properties 

(mean, variance, covariance function, probability dry) can be 

analytically computed through theoretical equations.     

 However, the inverse procedure has no analytical solution but can be 

handled as a calibration problem, by minimizing the distance between 

the theoretical and the observed statistics.    

 Calibration is governed by several sources of uncertainty: 

 Different statistical characteristics and distance metrics results to 

totally different parameter sets, for the same process.    

 The response surface has numerous local optima, thus  making 

extremely difficult to identify the appropriate parameter set. 

 A good approximation of the statistical metrics that are accounted 

for in calibration does not ensure satisfactory representation of 

other important aspects of the simulated process. 



7. Case Study: Simulation of Athens rainfall 
 We examined the performance of 

the original (BL) and modified 

(MBL) model using hourly rainfall 

data from the National Observatory 

of Athens (1927-1996), that were 

split into 12 monthly sub-sets. 

 For each month, the parameters of 

the original and modified BL models 

were calibrated through the EAS 

algorithm, assuming alternative 

scenarios of the desirable statistical 

characteristics to preserve. 

 Each optimized model configuration was further evaluated using as 

performance measure the mean absolute deviation, Si, between the 

historical and theoretical statistics for time scales i =1, 6, 12, 24 h 

(kind of validation for stochastic models). 

Scenarios for original BL model 
SO1: Mean1, Var1, ρ1

1, Var6, ρ1
6 

SO2: Mean1, Var1, ρ1
1, Var24, ρ1

24 
SO3: Mean1, Var1, ρ1

1, Var12, ρ1
12 

SO4: Statistics from all time scales 

Scenarios for modified BL model 
SM1: Mean1, Var1, ρ1

1, pdr1, Var24, pdr24 
SM2: Mean1, Var1, ρ1

1, pdr1, ρ1
24 pdr24 

SM3: Mean1, Var1, ρ1
1, pdr1, Var6, pdr24 

SM4: Mean1, Var1, ρ1
1, pdr1, ρ1

6, pdr24 
SM5: Statistics from all time scales 

Notation: Meank: average rainfall at the k-hour 
scale (e.g. Mean1 = hourly mean); Vark: variance; 
ρ1

k: lag-1 autocorrelation; pdrk : probability dry 



8. Validation of BL model 

Time scale: 1 hour Time scale: 6 hours 

All time scales Time scale: 24 hours 



9. Validation of MBL model 

Time scale: 1 hour Time scale: 6 hours 

All time scales Time scale: 24 hours 



10. Optimized parameters of BL model 

Mean interval between storms Mean cell duration 

Mean interval between cells Mean cell intensity 



11. Optimized parameters of MBL model 

Mean interval between storms Mean cell duration 

Mean number of cells per storm Mean cell intensity 



12. Evaluation of synthetic rainfall data 
 We compare the performance of BL and MBL models in reproducing 

the statistical characteristics of synthetic rainfall of 1000 years length.  

 The synthetic data were generated via HyetosR, assuming the 

optimized parameters of scenarios S02 and SM2, respectively. 

 We emphasize the statistical characteristics of two particular months, 

with substantially different meteorological regime (January - frontal 

storms; June – convective storms).  

  Historical Theoretical - BL Synthetic - BL Theoretical - MBL Synthetic - MBL   
Average (mm) 0.065 0.065 0.065 0.065 0.065 January, 

Hourly 
Statistics 

St. Deviation (mm) 0.458 0.458 0.458 0.458 0.457 
Coef. of Skewness 16.957 - 11.884 - 12.663 

Average (mm) 1.555 1.555 1.557 1.563 1.563 January, 
Daily 

Statistics 
St. Deviation (mm) 4.532 4.532 4.535 4.053 4.083 

Coef. of Skewness 5.301 - 4.235 - 5.289 

Average (mm) 0.015 0.015 0.015 0.015 0.015 June, 
Hourly 

Statistics 
St. Deviation (mm) 0.370 0.370 0.375 0.370 0.374 

Coef. of Skewness 50.578 - 47.684 - 49.428 

Average (mm) 0.365 0.365 0.360 0.365 0.365 June,     
Daily 

Statistics 
St. Deviation (mm) 2.694 2.694 2.822 2.692 2.638 

Coef. of Skewness 11.881 - 13.807 - 22.757 



13. Results for variability and skewness 

January June 



14. Reproduction of autocorrelations 

Lag-1 

January June 

Lag-2 

Lag-1 

Lag-2 



15. Time-related properties of storms 

Mean and standard deviation of dry intervals 
duration (left: January; right: June) 

Historical vs. simulated probability dry for different 
temporal scales (June) 

Mean and standard deviation of duration of 
rainfall events (left: January; right: June) 

Historical vs. simulated probability dry for different 
temporal scales (January) 



16. Reproduction of extremes 
 To assess the statistical behavior of the extreme rainfall, we compare the 

empirical CDFs of the annual maxima of historical and simulated hourly 

data (sorted maxima of each hydrological year). 

 The empirical CDFs are also compared to a theoretical statistical model, 

i.e. the GEV distribution, which is fitted to historical maxima; the 

deviations are quite large for January storms, in contrast to June, for 

which statistical predictions are close to the GEV model. 

 

January June 



17. Conclusions 
 The calibration of model parameters against different set of statistics 

lead to different parameter values and model performance, in terms of 

preserving the statistical characteristics that are not directly involved 

in objective function, especially in the case of the modified BL model.   

 The seasonal variability of model parameters does not allow inferring 

about their physical interpretation. 

 The analysis shows that both models reproduce the statistical 

characteristics that are implicitly involved in calibration process (i.e. 

hourly and daily scale), having poor performance in the reproduction 

of statistics at the 6-h and 12-h time scales.       

 Both versions of the BL model fail to reproduce the significant 

variability of rainfall events, due to the overclustering of pulses, which 

also results to over-estimation of probability dry, at the hourly and 

daily time scales. 

 Further improvement on the model structure is required to ensure the 

reproduction of extremes, which is of key importance in flood studies. 
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