
Bilinear surface smoothing for spatial interpolation with optional incorporation of
an explanatory variable. Part 1: Theory

Nikolaos Malamos a and Demetris Koutsoyiannis b

aDepartment of Agricultural Technology, Technological Educational Institute of Western Greece, Amaliada, Greece; bDepartment of Water
Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Zographou, Greece

ABSTRACT

Bilinear surface smoothing is an alternative concept that provides flexible means for spatial interpola-
tion. Interpolation is accomplished by means of fitting a bilinear surface into a regression model with
known break points and adjustable smoothing terms. Additionally, as an option, the incorporation, in
an objective manner, of the influence of an explanatory variable available at a considerable denser
dataset is possible. The parameters involved in each case (with or without an explanatory variable) are
determined by a nonparametric approach based on the generalized cross-validation (GCV) methodol-
ogy. A convenient search technique for the smoothing parameters was achieved by transforming them
in terms of tension parameters, with values restricted in the interval [0, 1). The mathematical framework,
the computational implementation and details concerning both versions of the methodology, as well as
practical aspects of their application are presented and discussed. In a companion paper, examples
using both synthesized and real-world (hydrological) data are presented to illustrate the methodology.
The proposed mathematical framework constitutes a simple alternative to existing spatial interpolation
methodologies.
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Introduction

In multidimensional interpolation, we seek estimates of the
dependent variables at points placed inside the analysis space
that forms regular or irregular sized grids. In order to achieve
such an objective, various techniques have been deployed;
many of them can be applied to perform spatial interpolation
of environmental variables that are usually collected from
point measurements.

These methodologies fall into three main categories (Li
and Heap 2008):

(1) non-geostatistical methods, such as splines, thin plate
splines (Craven and Wahba 1978, Wahba and
Wendelberger 1980) and regression methods (Davis
1986);

(2) geostatistical methods including different approaches to
kriging, such as ordinary and universal kriging, kriging
with an external drift or co-kriging (Goovaerts 1997,
Burrough and McDonnell 1998); and

(3) combined methods, such as trend surface analysis com-
bined with kriging (Wang et al. 2005), regression kriging
(Hengl et al. 2007) and stochastic interpolation (Sauquet
et al. 2000).

Koutsoyiannis (2000) presented the so-called broken line
smoothing (BLS) as a simple alternative to numerical smooth-
ing and interpolating methods, related to piecewise linear

regression and to smoothing splines. The idea was to approx-
imate a smooth curve that may be drawn for the data points
(xi, yi) with a broken line or open polygon which can be
numerically estimated by means of a least squares fitting
procedure. The abscissae of the vertices of the broken line
did not necessarily coincide with xis but they formed a series
of points with some chosen, lower or higher, resolution.

Malamos and Koutsoyiannis (2014) extended the previous
method by utilizing the combination of two broken lines into
a regression model with known break points and adjustable
weights (BLSI). The first broken line was fitted to the avail-
able data points, while the second incorporated, in an objec-
tive manner, the influence of an explanatory variable available
at a considerably denser dataset. The objective was to improve
the accuracy of interpolation across the data points.

The concept, for both methodologies, was the trade-off
between the two objectives of minimizing the fitting error
and the roughness of the broken lines. The larger the relative
weight of the second objective is, the smoother the broken
lines resulting from the fitting procedure will be.

In the present study the method is generalized for the case
of two-dimensional data. The main idea, presented as bilinear
surface smoothing (BSS), is to approximate a surface that may
be drawn for the data points (xi, yi) with consecutive bilinear
surfaces which can be estimated by means of a least squares
fitting procedure into a surface regression model with known
break points and adjustable weights. The concept was, once
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more, a trade-off between the two objectives of minimizing
the fitting error and the roughness of the bilinear surface.

Additionally, a second version of the methodology (BSSE)
is presented, which is focused on the combination of two
bilinear surfaces into the same regression model, in order to
improve the interpolation accuracy across the data points.
The first surface is fitted to the available data points while
the second incorporates, in an objective manner, the influ-
ence of an explanatory variable available at a spatially denser
dataset.

The estimation of parameters, i.e. the number of surface
segments and the values of the corresponding smoothing
parameters, is accomplished by a nonparametric approach
based on the generalized cross-validation (GCV) methodol-
ogy (Craven and Wahba 1978, Wahba and Wendelberger
1980) and the linear smoothers theory (Buja et al. 1989).
The simplified but efficient parameter estimation technique
was established after numerical investigation and contributed
to performance enhancement and accuracy of the mathema-
tical framework.

Mathematical framework

Bilinear surface smoothing interpolation (BBS)

Let zi(xi,, yi) be a set of n points in the three-dimensional
space (x, y, z) for i = 1, . . ., n. Also, let cxl, l = 0, . . ., mx, be
mx + 1 points on the x-axis and cyk, k = 0, . . ., my, be my + 1
points on the y-axis, so that the rectangle with vertices (cx0,
cy0), (cxmx, cy0), (cx0, cymy) and (cxmx, cymy) contains all (xi,
yi). For simplicity we will assume that the points on both axes
are equidistant, i.e. cxl − cxl – 1 = δx and cyk − cyk – 1 = δy.

We wish to find the m + 1 values of dj, where j = 0, . . ., m
and m = (mx + 1) (my + 1) − 1, on the three-dimensional
space (x, y, z), so that the bilinear surface defined by the
m + 1 points (cxl, cyk, dj) “fits” the set of points zi(xi, yi). This
fit is defined in terms of minimizing the total square error
among the set of original points zi(xi, yi) and the fitted
bilinear surface:

p ¼
Xn

i¼1

zi � ẑið Þ2 (1)

where ẑi is the estimate given by the bilinear surface for each
known zi.

In matrix form, this can be written as:

p ¼ z � ẑk k2 (2)

where z = [z1, . . ., zn]
T is the vector of known applicates of the

given data points with size n (the superscript T denotes the
transpose of a matrix or vector) and ẑ ¼ ẑ1; . . . ; ẑn½ �T is the
vector of estimates with size n.

The general estimation function will be:

ẑu ¼ du (3)

where u refers to a point on the (x, y) plane, while du is the
value of the bilinear surface at that point (Fig. 1).

The relation of du to its four surrounding points, d1,. . ., d4,
as presented in Figure 2, is simply an application of bilinear
interpolation (Press et al. 2002):

du ¼
1

δxδy
d1 cxl � xð Þ cyk � y

� �
þ d2 x� cxl�1ð Þ cyk � y

� ��

þ d3 x� cxl�1ð Þ y� cyk�1

� �
þ d4 cxl � xð Þ y � cyk�1

� �
�

(4)

where cyk, cyk – 1, cxl, cxl – 1 are the coordinates of the
four points and x, y are the corresponding coordinates of
du. Notice that the bilinear function in (4) is not actually
linear with respect to x and y as it contains products
thereof.

Assuming that a point zi(xi, yi), lies in the two-dimensional
space ([cxl – 1, cxl] × [cyk – 1, cyk]) for some cxl, (cxl – 1 ≤ xi ≤
cxl) and some cyk, (cyk – 1 ≤ yi ≤ cyk), then obviously the ẑi
estimate is given by:

ẑi xi;yið Þ¼
1

δxδy
½d1ðcxl�xiÞðcyk�yiÞþd2ðxi�cxl�1Þðcyk�yiÞ

þd3ðxi�cxl�1Þðyi�cyk�1Þþd4ðcxl�xiÞ yi�cyk�1Þ�
�

(5)

If we apply equation (5) for i = 1, . . ., n, we get:

ẑ1 ¼
1

δxδy
d1 cx1 � x1ð Þ cy1 � y1

� �
þ d2 x1 � cx0ð Þ cy1 � y1

� ��

þ d3 x1 � cx0ð Þ y1 � cy0
� �

þ d4 cx1 � x1ð Þ y1 � cy0
� �

�

.

.

.

x

y

x

z, d

du
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δy
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Figure 1. Definition sketch for bilinear surface d, similar for bilinear surface e.
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ẑn ¼
1

δxδy
½dk�1;l�1ðcxl � xnÞðcyk � ynÞ

þ dk;l�1ðxn � cxl�1Þðcyk � ynÞ

þ dk;lðxn � cxl�1Þðyn � cyk�1Þ

þ dk�1;lðcxl � xnÞðyn � cyk�1Þ�

(6)

The above equations can be more concisely written in the
form:

ẑ ¼ ∏d (7)

where ẑ ¼ ẑ1; . . . ; ẑn½ �T is the vector of estimates with size n,
d = [d0, . . ., dm]

T is the vector of the unknown applicates of
the bilinear surface d with size m + 1 (m = (mx + 1) (my + 1)
− 1) and Π is a matrix with size n × (m + 1) whose ijth entry
(for i = 1, . . ., n; j = 0, . . ., m) is:

πij¼

cxl�xið Þ cyk�yið Þ
δxδy

;when cxl�1<xi� cxl and cyk�1<yi� cyk
cxl�xið Þ yi�cyk�1ð Þ

δxδy
; when cxl�1<xi� cxl and cyk� yi<cykþ1

xi�cxl�1ð Þ yi�cyk�1ð Þ
δxδy

; when cxl� xi<cxlþ1 and cyk� yi<cykþ1

xi�cxl�1ð Þ cyk�yið Þ
δxδy

; when cxl� xi<cxlþ1 and cyk�1<yi� cyk
0; otherwise

8
>>>>>>>>><

>>>>>>>>>:

(8)

In order to acquire the amount of smoothness of the bilinear
surface d and to assure a unique solution of the fitting
problem, we introduced the difference of slopes between
two consecutive segments of the bilinear surface according
to the x direction, for each cyk point on the y-axis, by taking
into account the fact that cxls are equidistant, as:

1

δx
2dl;k � dl�1;k � dlþ1;k

� �
(9)

Likewise for the y direction, for each cxl point on the x-axis,
by taking into account the fact that cyks are equidistant, the
slope difference will be:

1

δy
2dk;l � dk�1;l � dkþ1;l

� �
(10)

Therefore, the following expressions constitute adequate
smoothing terms of the bilinear surface for both directions:

qdx ¼
Xmy

k¼0

Xmx�1

l¼1

2dl;k � dl�1;k � dlþ1;k

� �2
(11)

and

qdy ¼
Xmx

l¼0

Xmy�1

k¼1

2dk;l � dk�1;l � dkþ1;l

� �2
(12)

which can easily be expressed in matrix form as follows:

qdx ¼ d
T
Ψ

T
x Ψx d (13)

qdy ¼ d
T
Ψ

T
y Ψy d (14)

where Ψx and Ψy are matrices with size (m – 1) × (m + 1) (for
i = 1, . . ., m – 1 and j = 0, . . ., m). As explained in the
Appendix, their ijth entry is:

Ψx i;j ¼
2; when i¼ j and i�k mxþ1ð Þ‚ 1;mxþ1f g
�1; when i� jj j ¼ 1 and i�k mxþ1ð Þ‚ 1;mxþ1f g
0; otherwise

8
<

:

(15)

where k = 0, . . ., my, while

Ψy i;j ¼
2; when i¼ j and i� l myþ1ð Þ‚ 1;myþ1f g
�1; when i� jj j ¼ 1 and i� l myþ1ð Þ‚ 1;myþ1f g
0; otherwise

8
<

:

(16)

with l = 0, . . ., mx. It is noted that matrices Ψx and Ψy are
identical when mx = my.

Combining equations (2), (7), (13) and (14) and intro-
ducing dimensionless multipliers for both x and y direc-
tions in order to control the smoothness of the bilinear
surface, we form the generalized objective function to be
minimized:

f dð Þ ¼ pþ λxqdx þ λyqdy

¼ z � ẑk k2 þ λxd
T
Ψ

T
xΨxd þ λyd

T
Ψ

T
yΨyd (17)

where λx ≥ 0 for qdx and λy ≥ 0 for qdy.
Differentiation of equation (17) with respect to d, by

applying the typical rules of derivatives involving matrices
and equating to zero, yields:

@f

@d
¼ �2zT∏ þ 2dT∏T

∏ þ 2λxd
T
Ψ

T
x Ψx þ 2λyd

T
Ψ

T
y Ψy ¼ 0

(18)

and consequently:

∏
T
∏ þ λxΨ

T
xΨx þ λyΨ

T
yΨy

� �
d ¼ ∏

T
z (19)

Finally, the solution of equation (19) that minimizes equation
(17) has the following form:

d ¼ ∏
T
∏ þ λxΨ

T
xΨx þ λyΨ

T
yΨy

� ��1

∏
T
z (20)

The vector of estimates, ẑ, is obtained from equation (7), once
vector d is calculated from equation (20). Also, from equation
(5), we can estimate the applicate ẑ of any point that lies in
the two-dimensional interval ([cx0, cxmx] × [cy0, cymy]).

The minimum number of m + 1 points required to solve
equation (20) is 6, according to equations (11) and (12). This

cxl–1 cxlx

δx

δy

dk, l–1 = d4 dk, l = d3

dk–1, l = d2dk–1, l–1=d1

du

cyk–1

cyk

y

Figure 2. Definition sketch for the du calculation.
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is illustrated in Fig. 1 since the minimum number of points
needed to define the bilinear surface, d, is the number of
points that define two consecutive planes oriented according
to either x or y direction.

Bilinear surface smoothing interpolation with the

incorporation of explanatory variable (BSSE)

The incorporation of an explanatory variable available at a
considerably denser dataset than the initial main variable
constitutes a distinct interpolation method that extends the
above presented mathematical framework. The methodology
is based on the one-dimensional implementation presented
by Malamos and Koutsoyiannis (2014).

Let zi(xi, yi) be the same set of n points in the three-
dimensional space (x, y, z) for i = 1, . . ., n, as already defined
in the previously presented case.

In addition, we assume that for every (x, y) value we know
the value of an explanatory variable t. Therefore, for each
point zi(xi, yi) there corresponds a value t(xi, yi) and for point
(cxl, cyk) there corresponds a value t(cxl, cyk), for l = 0, . . .,
mx, and k = 0, . . ., my.

We wish to find them + 1 values of dj and ej, where j = 0, . . .,
m and m = (mx + 1) (my + 1) − 1, on the three-dimensional
space (x, y, z), so that the bilinear surface defined by the m + 1
points [cxl, cyk, dj + t(cxl, cyk) × ej] fits the set of points zi(xi, yi).
This fit is meant in terms of minimizing the total square error
among the set of original points zi(xi, yi) and the fitted bilinear
surface as already presented in equations (1) and (2).

In this case, the general estimation function will be:

ẑu ¼ du þ tueu (21)

where u refers to a point on the (x, y) plane, while du, eu are
the values of the two bilinear surfaces at that point and tu is
the corresponding value of the explanatory variable. This is
not a global linear relationship but a local linear one as the
quantities du and eu change with x and y.

Following the methodology presented above, we obtain the
relation that provides the second bilinear surface, eu, which is:

eu ¼
1

δxδy
½e1ðcxl � xÞ ðcyk � yÞ þ e2ðx� cxl�1Þ ðcyk � yÞ

þ e3ðx� cxl�1Þ ðy� cyk�1Þ þ e4ðcxl � xÞ ðy� cyk�1Þ�

(22)

Assuming that a point zi(xi, yi), lies in the two-dimensional
interval ([cxl–1, cxl] × [cyk–1, cyk]) for some cxl, (cxl–1 ≤ xi ≤ cxl)
and some cyk, (cyk–1 ≤ yi ≤ cyk), then the estimate is given by:

ẑiðxi;yiÞ¼
1

δxδy
f½d1ðcxl�xiÞðcyk�yiÞþd2ðxi�cxl�1Þðcyk�yiÞ

þ d3ðx1�cxl�1Þðyi�cyk�1Þþd4ðcxl�xiÞðyi�cyk�1Þ�

þ tðxi;yiÞ½e1ðcxl�xiÞðcyk�yiÞþe2ðxi�cxl�1Þðcyk�yiÞ

þ e3ðxi�cxl�1Þðyi�cyk�1Þþe4ðcxl�xiÞðyi�cyk�1Þ�g

(23)

If we apply equation (23) for i = 1, . . ., n, we obtain the
following form, analogous to equation (6):

ẑ1 ¼
1

δxδy
f½d1ðcx1�x1Þðcy1� y1Þ

þd2ðx1� cx0Þðcy1� y1Þ

þ d3ðx1� cx0Þðy1� cy0Þ

þd4ðcx1�x1Þðy1� cy0Þ�

þ tðx1;y1Þ½e1ðcx1�x1Þðcy1� y1Þ

þ e2ðx1� cx0Þðcy1� y1Þ

þ e3ðx1� cx0Þðy1� cy0Þ

þ e4ðcx1�x1Þðy1� cy0Þ�

.

.

.

ẑn ¼
1

δxδy
f½dk�1;l�1ðcxl�xnÞðcyk�ynÞ

þdk;l�1ðxn� cxl�1Þðcyk� ynÞ

þ dk; lðxn� cxl�1Þðyn� cyk�1Þ

þdk�1; lðcxl�xnÞðyn� cyk�1Þ�

þ tðxn;ynÞ½ek�1; l�1ðcx1�xnÞðcy1�ynÞ

þ e
k; l�1

ðxn� cx0Þðcy1�ynÞ

þ e
k; l
ðxn� cxl�1Þðyn� cyk�1Þ

þ e
k�1; l

ðcxl�xnÞðyn� cyk�1Þ�g

(24)

This can be more concisely written in matrix form as:

ẑ ¼ ∏ d þ T∏e (25)

where ẑ ¼ ẑ1; . . . ; ẑn½ �T is the vector of estimates with size n;
d = [d0, . . ., dm]

T is the vector of the unknown applicates of the
bilinear surface d, with sizem + 1 (m = (mx + 1) × (my + 1) − 1);
e = [e0, . . ., em]

T is the vector of the unknown applicates of the
bilinear surface e, with size m + 1; T is a n × n diagonal matrix:

T ¼ diagðtðx1;y1Þ; . . . ; tðxn;ynÞÞ (26)

with its elements t(x1, y1), . . ., t(xn, yn) being the values of the
explanatory variable at the given data points; and Π is a
matrix with size n × (m + 1) as defined in equation (8).

In order to incorporate the amount of smoothness of the
second bilinear surface e and following the procedure pre-
sented in equations (9)–(12), we conclude with the following
expressions for the smoothness of the bilinear surface e for
the x and y directions:

qex ¼
Xmy

k¼0

Xmx�1

l¼1

ð2el; k � el�1; k � elþ1; kÞ
2 (27)

and

qey ¼
Xmy

l¼0

Xmx�1

k¼1

ð2ek; l � ek�1; l � ekþ1; lÞ
2 (28)

In matrix form, equations (27) and (28), along with equations
(11) and (12), express the amount of smoothness of the
bilinear surfaces, d, e, for the BSSE case, as follows:

qdx ¼ d
T
Ψ

T
x Ψxd; qdy ¼ d

T
Ψ

T
y Ψyd (29)

qex ¼ e
T
Ψ

T
x Ψxe; qey ¼ e

T
Ψ

T
y Ψye (30)
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where Ψx and Ψy are matrices with size (m − 1) × (m + 1) (for
i = 1, . . ., m − 1 and j = 0, . . .,m) and ijth entry as in equations
(15) and (16), respectively (see Appendix).

Combining equations (2), (25), (29) and (30), and
introducing dimensionless multipliers for both x and y
directions in order to control the smoothness of the
bilinear surfaces, we form the generalized objective func-
tion to be minimized:

f ðd; eÞ :¼ pþ λxqdx þ λyqdy þ μxqex þ μyqey

¼ z � ẑk k2 þ λxd
T
Ψ

T
x Ψxd;þλyd

T
Ψ

T
y Ψyd

þ μxe
T
Ψ

T
x Ψxeþ μye

T
Ψ

T
y Ψye

(31)

where λx ≥ 0 for qdx, λy ≥ 0 for qdy and μx ≥ 0 for qex, μy ≥ 0
for qey.

Differentiation of equation (31) with respect to d and e, by
applying the typical rules of derivatives involving matrices
and equating them to zero, yields:

@f1

@d
¼ �2zT∏þ2dT∏T

∏ þ 2eT∏T
T
T
∏

þ 2λxd
T
Ψ

T
xΨx þ 2λyd

T
Ψ

T
yΨy ¼ 0 (32)

@f2

@e
¼ � 2zTT∏ þ 2dT∏T

T∏ þ 2eT∏T
T
T
T∏

þ 2μxe
T
Ψ

T
xΨx þ 2μye

T
Ψ

T
yΨy ¼ 0

(33)

and consequently:

½∏T
∏þλxΨ

T
xΨxþλyΨ

T
yΨy�dþ∏

T
T∏e¼∏

T
z∏

TþT∏d

þ½∏T
T
T
T∏þμxΨ

T
xΨxþμyΨ

T
yΨy�e¼∏

T
T
T
z

(34)

Finally, the solution of the above set of equations that pro-
vides the unknown vectors d, e that minimize equation
(31) is:

½∏T
∏þλxΨ

T
xΨxþλyΨ

T
yΨy�dþ∏

T
T∏e¼∏

Tz∏TþT∏d

þ½∏T
T
T
T∏þμxΨ

T
xΨxþμyΨ

T
yΨy�e¼∏

T
T
T
z

(35)

The vector of estimates, bz, is obtained from equation (25), once
vectors d and e are calculated from equation (35). Also, from

equation (23), we can estimate the applicate bz of any point that
lies in the two-dimensional interval [cx0, cxmx] × [cy0, cymy].

We observe that from the four matrices with size
(m + 1) × (m + 1) appearing in equations (20) and (35), i.e.
B: = Π

T
Π, C: = Ψx

T
Ψx, D: = Π

Τ
Τ
Τ
ΤΠ and E: = Ψy

T
Ψy; B and D

are symmetric block tridiagonal while C and E are block diag-
onal matrices. Furthermore, matrices C and E are always singu-
lar; however, when λx, μx > 0 or λy, μy > 0, the sumsB + λxC + λyE
andD + μxC + μyE are non-singular and thus their inverses exist.

Choice of parameters

Transformation of smoothing parameters

It is apparent that the number of the adjustable parameters
for each of the two above presented versions of the metho-
dology consists of the numbers of intervals, mx, my, and the
smoothing parameters for the x, y directions.

Therefore, for the case of the bilinear surfaces interpolation
(BSS) there are four adjustable parameters: the numbers of inter-
vals, mx, my, and the smoothing parameters λx and λy corre-
sponding to vector d. The incorporation of the explanatory
variable, for the BSSE case, adds two more adjustable parameters:
the smoothing parameters μx and μy corresponding to vector e.

The choice of parameters can be done by using an efficient, but
standard, objective way as described by the following analysis.

A convenient search of the smoothing parameters, in
terms of computational time, can be achieved by transform-
ing λ and μ in terms of tension parameters τλ and τμ, whose
values are restricted in the interval [0, 1), for both directions.
The formulation is based on the expressions presented by
Koutsoyiannis (2000), as well as Malamos and
Koutsoyiannis (2014), and was established after a numerical
investigation of the method on several examples. The pro-
posed equations have the form:

λx ¼ 10εm
log τm

log τλx

� �κλ

; λy ¼ 10εm
log τm

log τλy

� �κλ

(36)

for the BSS case, while for BSSE the extra smoothing para-
meters μx and μy are set to:

μx ¼ 10θm
log τm

log τμx

� �κμ

; μy ¼ 10θm
log τm

log τμy

� �κμ

(37)

where τm = 0.99 is the maximum allowed tension, corre-
sponding to the upper bound of λ and μ, set for numerical
stability equal to:

λm ¼
traceðBÞ

trace C þ Eð Þ
109; μm ¼

traceðDÞ

trace C þ Eð Þ
109 (38)

The exponents κλ, κμ in equations (36) and (37) are deter-
mined by the relations:

κλ ¼
log λm

logð10εmÞ
; κμ ¼

log μm
logð10θmÞ

;

m ¼ ðmxþ 1Þðmy þ 1Þ � 1

(39)

which are obtained by combining equations (36) or (37) with
equation (38). The exponents ε, θ in equations (36), (37) and
(39) are set to:

ε ¼ maxð1; log½traceðBÞ�b cÞ (40)

and

θ ¼ max 1; log trace Dð Þ½ �b cð Þ (41)

with ε, θ ∈ Z+. The minimum allowed value of λx, λy, μx, μy
is 0.

Estimation of smoothing parameters

Combining equations (7) and (20) for the BSS case, we
obtain:

ẑ ¼ Az (42)

where A is a n × n symmetric and positive-definite matrix
given by:
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A ¼ ∏ ∏
T
∏ þ λxΨ

T
xΨx þ λyΨ

T
yΨy

� ��1

∏
T (43)

while combining equations (25) and (35) for the case with expla-
natory variable (BSSE), we obtain the same relationship as equa-
tion (42) with A being a n × n symmetric and positive-definite
matrix now given by:

equations (43) and (44) depend on all adjustable parameters:
mx, my, τλx, τλy and τμx, τμy.

The parameter estimation is based on the generalized cross-
validation (Craven and Wahba 1978) methodology, defined by:

GCV ¼
1
n

I � Að Þzk k2

1
n
trace I � Að Þ

� 	2 (45)

where matrix A is called the “influence” or “smoother”
matrix, while the quantity:

trace I � Að Þ (46)

in the denominator of equation (45) describes the “residual
degrees of freedom” of the fitted smoother used by nonpara-
metric regression methods (Buja et al. 1989, Wahba 1990,
Carmack et al. 2012).

Based on the literature, there are two alternative defini-
tions for residual degrees of freedom under independence in
the context of symmetric linear smoothers, namely:

trace I � AA
T

� �
(47)

trace I � 2A� AA
T

� �� 	
(48)

with 0 ≤ trace[I − (2A − AA
T)] ≤ trace(I –A) ≤ trace(I −AA

T)
≤ n (Buja et al. 1989, Carmack et al. 2012).

For exploration purposes, we analysed the methods’ per-
formance against all three definitions. The results showed that
when matrix A is defined by equation (43), the best results
were obtained when the residual degrees of freedom were
defined by equation (48). However, when matrix A is defined
by equation (44), the best results were obtained when the
residual degrees of freedom were defined by equation (46),
which is the standard definition of the generalized cross-
validation, as already presented in equation (45). The degrees
of freedom definition presented by equation (47) did not
perform as well as the previously mentioned expressions
and thus it was excluded from the methods’ implementation.

Consequently, the relation that provides GCV for the BSS
method is:

GCV ¼
1
n

I � Að Þzk k2

1
n
trace I � ð2A� AAT

� �� 	2 (49)

while equation (45) is used for estimating GCV for the BSSE
method.

Based on the above presented analysis, for a given combi-
nation of segments mx, my, the minimization of GCV results
in the optimum values of τλx, τλy and τμx, τμy. This can be
repeated for several trial combinations of mx, my values, until
the global minimum of GCV is reached.

Computational implementation

In similar applications presented earlier by Koutsoyiannis
(2000) and Malamos and Koutsoyiannis (2014), the imple-
mentation of the computational framework was made in
Microsoft Excel, since it provides a direct means of data
visualization and graphical exploration.

Since the block matrices involved in the systems of equations
(20) and (35) have dimensions (m + 1) × (m + 1) and
(2m + 2) × (2m + 2), respectively, a considerable computational
effort, which could not be satisfied from Microsoft Excel alone,
was required. This was tackled by the development of a dynamic
link library in Object Pascal (Delphi) programming language,
which was linked to Microsoft Excel.

In this context, an Excel array formula acts as the main
interface, with its arguments being the available points’ values
and coordinates along with the unknown points’ coordinates,
the number of points on the x and y axis that form the
bilinear surfaces and the smoothing parameter values.

The dynamic link library performs the following tasks:

(1) constructs the matrices involved in the systems of equa-
tions (20) or (35) depending on which of the two versions
of the methodology is implemented;

(2) solves the system of equations, for each case, by imple-
menting the “Cholesky decomposition”, thus decom-
posing the symmetric and positive-definite matrix A

into a lower triangular matrix whose transpose
can itself serve as the upper triangular part. This
method is about a factor 2 faster than a “LU decom-
position” of A, where its symmetry is ignored (Press
et al. 2002);

(3) finds the inverse matrices involved in equations (43) and
(44) by a straightforward procedure based on the above
mentioned “Cholesky decomposition” method (Press
et al. 2002); and

(4) returns to Microsoft Excel, apart from the solution of the
systems of equations (20) and (35), information concerning
the above presented numerical procedure, such as the
matrices B, C, D and E, along with the GCV and mean
square estimation error. The latter is acquired from the
numerators of equations (45) and (49).

A ¼ ∏T∏
∏

T
∏ þ λxΨ

T
xΨx þ λyΨ

T
yΨy ∏

TT∏

∏
TT∏ ∏

TTTT∏ þ μxΨ
T
xΨx þ μyΨ

T
yΨy

" #�1

∏T∏ð ÞT (44)
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Results and comments

The BSS and BSSE methods, with the mathematical formula-
tion described in the previous sections, were derived from
extending, in two dimensions, the broken line smoothing
method described by Koutsoyiannis (2000) and the broken
line smoothing with explanatory variable described by
Malamos and Koutsoyiannis (2014).

The main difference between bilinear surface smoothing
methods and other known interpolation methods is the intro-
duction of the smoothness terms Ψx

Τ
Ψx and Ψy

Τ
Ψy in the

corresponding problem formulation. Those terms control the
overall smoothness of the bilinear surface through adjustable
parameters according to the x or y direction.

It should be obvious from the above discourse that bilinear
surface smoothing methods do not require linearity between
the involved variables, namely x, y, z and the explanatory
variable t, but two-dimensional local bilinearity is incorpo-
rated in the mathematical framework in a bilinear surface
approach. Also, the functional dependence, in terms of vec-
tors d, e, the number of segments, mx and my, and the
tension parameters, is neither constant nor a priori known,
but in each case is determined through the procedure of
minimizing the generalized cross-validation (GCV).

Both implementations of bilinear surface smoothing require
the minimization of generalized objective functions with respect
to the total square error and the surface smoothness. The for-
mulation of equation (42) allows the adaptation of the generalized
cross-validation from the splines theory, allowing a standard and
objective way to estimate the smoothness parameters and the
number of bilinear surfaces involved in the interpolation
procedure.

According to the classification presented by Li and Heap
(2008), BSS and BSSE have the following features:

(1) They are both local and global. Their locality stems from
the fact that they use the four surrounding points of the
corresponding bilinear surface to derive the estimation of
the included data point (Fig. 2). On the other hand, they
are also global since they implement the GCV procedure
to globally fit the consecutive bilinear surfaces to the
available data points.

(2) They can be either exact or inexact. Specifically, they are able
to generate an estimate that is the same as the observed
value at a sampled point (exactness) if the minimum values
of the smoothing parameters are used. On the other hand,
when the GCV procedure is implemented along with strong
smoothing, they are inexact.

(3) They are stochastic since the proposed mathematical frame-
work, apart from estimations, also provides direct means of
evaluating interpolation errors across the available data
points from the numerators of equations (45) and (49), as
already presented in the one-dimensional implementation
(Malamos and Koutsoyiannis 2014).

(4) The surfaces that they produce can be either gradual or
abrupt depending on the magnitude of the smoothing para-
meters, e.g. if their values are close to 1, the resulting surface
will be smooth while the opposite will occur if their values are
close to the lower limit. Also, the numbers of bilinear surfaces

along the x and/or y directions, i.e. mx and my, contribute to
the overall surface smoothness, thus acting as additional
smoothing parameters. This derives also from the one-
dimensional implementations (Koutsoyiannis 2000,
Malamos and Koutsoyiannis 2014), where increased num-
bers of broken lines segments were associated with small
values of the smoothing parameters.

(5) BSS is univariate since it implements only the primary vari-
able in deriving the estimation, while BSSE is multivariate
since it incorporates an explanatory variable available at a
considerably denser dataset in the interpolation procedure.

(6) Both BSS and BSSE implement a regular grid, but this does
not have to be square necessarily since the number of bilinear
surfaces along the x direction does not have to coincide with
the number of bilinear surfaces along the y direction.

Conclusions

A nonparametric innovative mathematical framework which
can be utilized to perform various interpolation tasks is
described. The technique incorporates smoothing terms with
adjustable weights, defined by means of the angles formed by
the consecutive bilinear surfaces into a piecewise surface
regression model with known break points. The incorpora-
tion, in an objective manner, of an explanatory variable,
available from measurements at a considerably denser dataset
than the initial main variable, is presented in terms of an
alternative implementation of the main methodology.

A notable property of the proposed framework is the fact
that the resolution (number of consecutive bilinear surfaces)
does not necessarily have to coincide with that of the given
data points, but it can be either finer or coarser, depending on
the specific requirements of the problem of interest. This is an
important property which makes the method applicable and
reliable even in the case of scarce datasets.

The proposed mathematical framework follows a parsimo-
nious approach for fulfilling spatial interpolation tasks, without
the need to make many decisions on parameters or complex
concepts. Likewise, the computational implementation offers an
almost automated procedure in achieving the final results.

Further research can be focused towards the incorporation of
alternative techniques for acquiring the global minimum value of
GCV, providing means for faster convergence to the optimal
solution.

Application of the method in hydrological problems is given
in a companion paper (Malamos and Koutsoyiannis 2015) along
with comparisons to established interpolation methods.
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Appendix

Ψx and Ψy matrix definition

If we apply equation (11) for the general case where l = 1,. . ., mx – 1 and
k = 0, . . ., my, we obtain equation (A1):

which can easily be expressed in matrix form as follows:

qdx ¼ Ψxdð ÞT Ψxdð Þ ¼ d
T
Ψ

T
x Ψxd (A2)

where Ψx d is a vector of (m – 1) elements and has the form:

Ψxd ¼

2d1;0 � d0;0 � d2;0
2d2;0 � d1;0 � d3;0

.

.

.

2dmx�1;0 � dmx�2;0 � dmx;0

2d1;1 � d0;1 � d2;1
2d2;1 � d1;1 � d3;1

.

.

.

2dmx�1;1 � dmx�2;1 � dmx;1

2d1;my � d0;my � d2;my

2d2;my � d1;my � d3;my

.

.

.

2dmx�1;my � dmx�2;my � dmx;my

2

6666666666666666666664

3

7777777777777777777775

(A3)

From equation (A3) can easily be derived that Ψx is a matrix with size
(m – 1) × (m + 1) (for i = 1, . . .,m – 1 and j = 0, . . .,m) and ijth entry:

Ψx; i;j ¼
2; when i ¼ j and i� k mxþ 1ð Þ‚ 1;mxþ 1f g
�1; when i� jj j ¼ 1 and i� k mxþ 1ð Þ‚ 1;mxþ 1f g
0; otherwise

8
<

:

(A4)

where k = 0, . . ., my.
By following an equivalent procedure to the above presented, we

concluded with the following expression for the smoothness of the
bilinear surface according to the y direction:

qdy ¼ Ψyd
� �T

Ψyd
� �

¼ d
T
Ψ

T
yΨyd (A5)

where Ψy is a matrix with size (m – 1) × (m + 1) (for i = 1, . . .,m – 1 and
j = 0, . . .,m) and ijth entry:

Ψy i;j ¼
2; when i ¼ j and i� l myþ 1ð Þ‚ 1;myþ 1f g
�1; when i� jj j ¼ 1 and i� l myþ 1ð Þ‚ 1;myþ 1f g
0; otherwise

8
<

:

(A6)

where l = 0, . . ., mx. We note that matrices Ψx and Ψy are identical when
mx = my.

qdx¼ 2d1;0�d0;0�d2;0
� �2

þ 2d2;0�d1;0�d3;0
� �2

þ���þ 2dmx�1;0�dmx�2;0�dmx;0

� �2

þ 2d1;1�d0;1�d2;1
� �2

þ 2d2;1�d1;1�d3;1
� �2

þ���þ 2dmx�1;1�dmx�2;1�dmx;1

� �2

þ

.

.

.

þ

þ 2d1;my�d0;my�d2;my

� �2
þ 2d2;my�d1;my�d3;my

� �2
þ���þ 2dmx�1;my�dmx�2;my�dmx;my

� �2

(A1)
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