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Highlights  

¶ The novel Surrogate-Enhanced Evolutionary Annealing Simplex algorithm (SEEAS) is proposed. 

¶ Surrogate model is used as global search subroutine and also for identify ing promising 

transitions within  simplex-based operators. 

¶ SEEAS outperforms alternative algorithms in six test functions, for 15D and 30D formulations 

and for two budgets (500 and 1000 function evaluations). 

¶ SEEAS effectively handles the peculiarities of two typical water resources optimization 

problems, i.e., hydrological calibration and multi-reservoir management. 
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Abstract  

In water resources optimization problems, the objective function usually presumes to first run a 

simulation model and then evaluate its outputs. However, long simulation times may pose 

significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the user 

has to substantially restrict the allowable number of function evaluations, thus terminating the 

search much earlier than required. A promising strategy to address these shortcomings is the use of 

surrogate modelling techniques. Here we introduce the Surrogate-Enhanced Evolutionary 

Annealing-Simplex (SEEAS) algorithm that couples the strengths of surrogate modelling with the 

effectiveness and efficiency of the evolutionary annealing-simplex method. SEEAS combines three 

different optimization approaches (evolutionary search, simulated annealing, downhill simplex). Its 

performance is benchmarked against other surrogate-assisted algorithms in several test functions 

and two water resources applications (model calibration, reservoir management). Results reveal 

the significant potential of using SEEAS in challenging optimization problems on a budget. 
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1 Introduction  

Coupling of simulation and optimization is a powerful technique that has gained significant 

attention in water resources science and technology, since it ensures great advantages over the 

traditional individual implementation of the two approaches (e.g., Koutsoyiannis and Economou, 

2003). In this context, a simulation model is used to faithfully represent the dynamics of the system 

under study in subsequent time steps and next to evaluate its overall performance against one or 

more user-specified criteria . Provided that these criteria are expressed in terms of objective 

function, simulation can be driven by an optimization model, which employs systematic search 

through the parameter (or decision) space to maximize the system performance; at each trial, new 

values are assigned to the control variables of the simulation model, which runs automatically to 

update the value of the objective function. 

Combined simulation-optimization schemes for water resource systems can be generally 

classified into two categories: (a) decision-making problems, in which the system properties and 

associated processes are known a priori , but either some of its design quantities or its management 

policy are unknown; and (b) calibration problems, in which some internal  properties of the system, 

either physical or conceptual, are unknown and have to be inverted by minimizing the departures 

of the simulated responses against the observed ones. Despite their different rationale, both types 

of problems suffer from significant uncertainties and complexities, and they are subject to multiple 

(and often conflicting) criteria  as well as numerous constraints.  

For convenience, we consider that all criteria are aggregated in a single objective function 

representing a global performance measure of the system (an alternative approach would require 

the formulation of a multiobjective function and the identification of acceptable tradeoffs among 

conflicting criteria , which is not the case here). We also assume that ÁÌÌ ȰÉÎÔÅÒÎÁÌȱ ÃÏÎÓÔÒÁÉÎÔÓ ɉÉȢÅȢȟ 



 

constraints associated with the system dynamics) are handled through the simulation model 

(Koutsoyiannis and Economou, 2003)ȟ ×ÈÉÌÅ ÁÎÙ ÁÄÄÉÔÉÏÎÁÌ ȰÅØÔÅÒÎÁÌȱ ÃÏÎÓÔÒÁÉÎÔÓ, which are 

usually associated with decision-making problems, are embedded in the objective function, 

typically as penalty terms. Under this premise, the combined simulation-optimization problem is 

formalized as the determination of the global optimum (for convenience, minimum) of a nonlinear 

objective function f(x), where f(Ö) represents the simulation model and x is the vector of control 

variables. The search space is a hypervolume, since the unique constraints of the problem are the 

lower and upper bounds of parameters. As f(x) is a black-box function, its analytical expression as 

well as its derivatives are not available, which prohibits the use of gradient-based optimization. 

Given also that, due to uncertainties and complexities of the system, f(x) is non-convex, and thus 

multimodal (i.e., it contains multiple local optima), derivative-free methods combined with 

stochastic search approaches are essential to solve this so-called global optimization problem. 

The need for advanced global optimization tools (e.g., evolutionary algorithms) has been 

early recognized by the hydrological community, which has significant experience in their  use and 

also remarkable contribution in their development. In the literature are found numerous reviews of 

optimization approaches in such problems. For instance, in the context of water resources planning 

and management, we distinguish the works by Labadie (2004), Fowler et al. (2008), Nicklow et al. 

(2010), Reed et al. (2013) (emphasis to multiobjective applications) and Ahmad et al. (2014). The 

literature for hyd rological calibration is even more extended. For convenience, we highlight the 

recent works by Duan (2013) and Efstratiadis and Koutsoyiannis (2010), who provide a 

comprehensive review of global and multiobjective calibration approaches, respectively. It is also 

worth mentioning the article by Maier et al. (2014), who summarize the current status of 

evolutionary algorithms and other metaheuristics, and highlight new directions for future research 

across water resources applications.  



 

Apparently, in the whole computational procedure, simulation is by far the most time-

consuming component. As models become more complex and data-demanding, their requirements 

in computational time and/or CPU increase substantially (e.g., Tolson and Shoemaker, 2007; 

Keating et al., 2010; Razavi et al., 2010; Tsoukalas and Makropoulos, 2015a). Typical example is the 

case of physically-based hydrological models of fine spatial and temporal resolution, in contrast to 

lumped conceptual rainfall-runoff models. In other applications, referred to as stochastic simulation 

problems, the computational effort increases two or three orders of magnitude due to the use of 

synthetic (instead of historical) time series of very large length (e.g., thousands of years), in order to 

provide estimations for probabilistic quantities (e.g., reliability, risk)  with satisfactory accuracy. On 

the other hand, depending on the number of parameters and the irregularity of the response 

surface, the optimization algorithm may need to call the simulation model hundreds or thousands 

of times, in order to converge to a good solution. Therefore, the time effort of simulation imposes a 

practical barrier  to optimization, which is necessary to run with significantly restricted ȰÂÕÄÇÅÔȱ, by 

means of maximum allowable number of function evaluations. Consider a simulation model that 

requires approximately 1.5 minutes for a single simulation run and an optimization algorithm that 

requires 10,000 function evaluations (iterations) to approximate the global minimum. 

Consequently, the procedure would last more than ten days, which makes it practically infeasible. 

According to Razavi et al. (2010), the approaches to alleviate the computational burden 

imposed by time-consuming simulation models are classified into four main categories: (1) parallel 

computing (e.g., Schutte et al., 2004; Cheng et al., 2005; Vrugt et al., 2006; Feyen et al., 2007; He et 

al., 2007; Regis and Shoemaker, 2009; Dias et al., 2013); (2) computationally efficient optimization 

algorithms (e.g., Tolson and Shoemaker, 2007; Kuzmin et al., 2008; Tan et al., 2008; Tolson et al., 

2009); (3) strategies to avoid opportunistically (expensive) model evaluations (e.g., Ostfeld and 

Salomons, 2005; Razavi et al., 2010; Matott et al., 2012); and (4) surrogate modelling techniques, 

also referred to as meta-modelling, function approximation, response surface modelling and model 



 

emulation (Razavi et al., 2012a), where surrogate approaches are used to approximate the 

responses of the original simulation model. Parallel computing, allowing the execution of 

independent simulations by multiple processors, requires significant investments in hardware 

infrastructure, which makes it impractical for common use. We remark that in order to reduce the 

entire time of computations three orders of magnitude ɀ a reasonable requirement when dealing 

with complex simulation models ɀ 1000 parallel processors should be used, which is far from 

realistic. The other two options, i.e., the improvement of efficiency of existing algorithms, as well as 

the interruption of the function evaluation procedure, when the model performance seems to be 

very poor from early steps of simulation, may save some time but not as much as required. On the 

other hand, surrogate models do not have any specific requirements in computer resources and 

also ensure very fast computations, since they replace, to some context, the (expensive) simulation 

model. Their  key objective is to generate models that are accurate in a certain region of the search 

space (i.e., around a potential optimum) and thus intelligently guide the optimization (Couckuyt et 

al., 2013).  

!ÌÔÈÏÕÇÈ ÒÅÓÐÏÎÓÅ ÓÕÒÆÁÃÅ ÁÐÐÒÏÁÃÈÅÓ ÇÏ ÂÁÃË ÔÏ χπȭÓ (Blanning, 1975), surrogate-based 

optimization methods have been popularized since the pioneering work by Jones et al. (1998), who 

developed the Efficient Global Optimization (EGO) algorithm. EGO uses Kriging as surrogate model 

and an acquisition function (named Expected Improvement), in order to locate potential good 

samples that should be evaluated through expensive simulation functions (Sacks et al., 1989; Jones 

et al., 1998). Later, Sasena et al. (2002) implemented and investigated various acquisition functions 

for EGO. Literature  also reports multi -objective versions of EGO (e.g., Knowles, 2005; Ponweiser et 

al., 2008; Couckuyt et al., 2013).  

Other commonly used surrogate models are Radial Basis Functions (RBFs - Powell, 1992; 

Buhmann, 2003), polynomials (Myers and Montgomery, 1995), artificial neural networks, and 

support vector machines (Cortes and Vapnik, 1995; Dibike et al., 2001). The use RBFs within the 



 

context of evolutionary algorithms was popularized after the publication Regis and Shoemaker 

(2004). Other typical examples of RBFs are the Multistart  Local Metric Stochastic RBF (MLMSRBF) 

and the ConstrLMSRBF, which handles inequality constraints (Regis and Shoemaker, 2007b; Regis, 

2011). Additionally , Regis (2014) and Tang et al. (2012) proposed hybridization s of the particle 

swarm optimization algorithm (Kennedy and Eberhart, 1995) that use RBFs to assist the search. 

Shoemaker et al. (2007) developed an evolutionary algorithm that uses an RBF approximation and 

benchmarked its performance against several test problems, with dimensions ranging from 8-D to 

14-D. Finally, Regis and Shoemaker (2013) developed the DYnamic COordinate Search (DYCORS) 

that uses Response Surface models to handle high-dimensional expensive optimization problems. 

DYCORS was benchmarked against other RBF-based algorithms in a variety of test problems, 

ranging from 14-D to 200-D. 

Comprehensive reviews of surrogate-based optimization  methods can be found in the 

broader optimization literature (e.g., Jin, 2005; Forrester and Keane, 2009; Jin, 2011). There are 

also reported several successful applications in time-demanding hydrological problems (e.g., Broad 

et al., 2005; Mugunthan et al., 2005; Mugunthan and Shoemaker, 2006; Regis and Shoemaker, 

2007a; Zou et al., 2007; Kourakos and Mantoglou, 2009; Tsoukalas and Makropoulos, 2015a). 

Razavi et al. (2012b) summarize the use of surrogate modeling techniques in water resource 

systems, also classifying the existing meta-modeling frameworks.  

It is important to remark that in the context of combined simulation-optimization schemes, 

surrogate models play the role of black-box approaches that aim establishing a data-driven 

relationship between the control variables of the simulation model (i.e., explanatory variables) and 

the objective function of the optimization model (i.e., response variable). Therefore, they clearly do 

not intend to reproduce the dynamic behavior of the original simulation model (Razavi et al., 

2012b). In fact, the task of reproducing the dynamic behavior of the simulation model is performed 

by a quite different surrogate modelling approach, generally referred to as model reduction or 



 

reduced-order modelling. This yields a low-order, dynamic ȰÅÑÕÉÖÁÌÅÎÔȱ of the simulation model, by 

preserving, to some extent, the state-space representation of the original model and allowing a 

physical interpretation of its structure (Castelletti et al., 2012a; Castelletti et al., 2012b). 

This paper introduces the Surrogate-Enhanced Evolutionary Simplex-Annealing approach 

(SEEAS), which is a novel global optimization algorithm, focused on time-expensive functions. Our 

motivation arises from challenging simulation-optimization problems that are commonly found in 

water resources, and they impose, in the everyday practice, very limited  computational budgets, 

e.g., of few hundred function evaluations. SEEAS has been designed for both types of such problems, 

i.e., decision-making and calibration, suffering from different peculiarities and complexities, which 

are in turn reflected in the different geometry of the associated response surfaces.  

 SEEAS is buil t upon the Evolutionary Annealing-Simplex (EAS) method (Efstratiadis and 

Koutsoyiannis, 2002), which is a hybrid scheme combining global and local search strategies and 

assisted by a RBF surrogate model. SEEAS uses an external archive to maintain all visited solutions 

in order to formulate, update and exploit the surrogate model during search. There are also some 

improvements in the key core of EAS, regarding the simplex transitions and the mutation operator. 

SEEAS is compared and benchmarked against the original version of EAS and three state-of-the-art 

optimization algorithms that are mentioned before, i.e., DDS (Tolson and Shoemaker, 2007), 

MLMSRBF (Regis and Shoemaker, 2007b), and DYCORS-LMSRBF (Regis and Shoemaker, 2013). 

Evaluations are made on the basis of 12 mathematical problems (i.e., six test functions for two 

alternative dimensions, 15-D and 30-D), a hydrological calibration problem with 11 parameters, 

configured with both real and synthetic data, and a multi -reservoir management problem with 20 

decision variables, using synthetic inflows of 500 years length. The use of synthetic data is one of 

the novelties of our testing framework. Moreover, most of the known surrogate-based schemes 

have been only evaluated in calibration problems and not in time-demanding water management 

applications, wi th few exceptions (e.g., Razavi et al., 2012b; Tsoukalas and Makropoulos, 2015a). 



 

The results of this extended analysis are very encouraging, since the proposed method is effective 

and efficient, in terms of locating a satisfactory solution as close as possible to the global optimum, 

within reasonable computational time, and clearly outperforms the other examined approaches, in 

almost all tests.  

2 Optimization m ethodology  

2.1 Evolutionary Annealing -Simplex 

EAS1 is a heuristic, population-based global optimization technique, originally developed by 

Efstratiadis and Koutsoyiannis (2002), that couples the strength of simulated annealing in rough 

search spaces along with the efficiency of the downhill simplex method (Nelder and Mead, 1965) in 

smoother spaces. Its key idea is the introduction of an external variable T, which plays a role similar 

to temperature in a real-world annealing process, and determines the degree of randomness of the 

search procedure. This is expressed through a stochastic term that is relative to temperature and is 

added to the initial objective function f(x), thus getting a modified function g(x) = f(x) ϻ uT (where u 

is a vector of uniformly distributed random numbers). Search is based on an evolving population of 

feasible points, where critical decisions are driven by the modified function. The genetic operators 

are either quasi-stochastic geometric transformations, inspired by the downhill simplex method, or 

fully -probabilistic transitions (mutations). As search proceeds, the system temperature reduces 

according to an adaptive annealing cooling schedule, and all transitions become more deterministic.  

EAS has been successfully employed in several hydrological applications (e.g., Rozos et al., 

2004; Nalbantis et al., 2011; Kossieris et al., 2013; Efstratiadis et al., 2014b). It has been also 

incorporated within advanced modelling tools, i.e., Hydronomeas (Efstratiadis et al., 2004), 

Hydrogeios (Efstratiadis et al., 2008) and HyetosR (Kossieris et al., 2012) to solve challenging 

simulation-optimization problems. The original algorithm has been also adapted to handle 

                                                             
1 EAS and SEEAS are available online at: http://www.itia.ntua.gr/en/softinfo/29/  

http://www.itia.ntua.gr/en/softinfo/29/


 

multiobjective problems (Efstratiadis and Koutsoyiannis, 2008) and stochastic (i.e., noisy) objective 

functions (Kossieris et al., 2013). Here we introduce an improved verison of EAS, called Surrogate-

Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm, which is presented in detail herein. 

2.2 Surrogate -Enhanced Evolutionary  Annealing -Simplex 

2.2.1 Overview of  SEEAS algorithm 

The algorithm is a surrogate-enhanced extension of EAS in a way that builds, maintains and 

exploits surrogate modelling (SM) techniques that generate approximated response surfaces, which 

allow effectively guiding search towards promising areas of the real response surface. The model 

used is the RBF, which is a well-known interpolation technique (Figure 1, left). During the iterative 

procedure, the algorithm maintains an external archive of all visited points, already evaluated 

through the (expensive) objective function. This archive is used to update the SM, in an attempt to 

progressively provide more accurate approximations of the current region of interest (i.e. the area 

around the current best point). In SEEAS, the surrogate model has a double role. The first is 

providing new points that are added to the current population, and the second is assisting the 

genetic operators of the downhill simplex scheme to identify suitable directions across the search 

space (e.g., favorable slopes and new areas of attraction).  

In order to balance exploration (i.e., detailed sampling) and exploitation (i.e., blind use of SM), 

SEEAS uses a weighted metric, termed acquisition function (AF), which accounts for the predictions 

provided by the SM as well as the spread of all previously evaluated points (by means of a distance 

quantity) . In opposite to common practices that use a standard expression of the AF with constant 

weights, in our approach the weights are dynamically adjusted, thus improving the efficiency of the 

algorithm. Details about the acquisition function (AF) are given in Section 2.2.3. 

SEEAS follows an iterative search procedure. At the end of each iteration cycle (or generation, 

according to the terminology of evolutionary theory), we obtain at least one new point that enters 

the population and replaces one of its existing members. A typical iteration cycle of SEEAS starts by 



 

fitting the surrogate model to the current population (initially, this population is randomly 

generated through Latin Hypercube Sampling, LHS). Next, we run an internal global optimization  

algorithm (particularly, the original version of EAS) across the surrogate response surface, using as 

objective the acquisition function (AF), in order to locate a candidate solution to enter the 

population (provided that this solution outperforms the current worst point). Thereafter, we follow 

a search procedure that is mostly based on the genetic operators of EAS, enhanced by surrogate-

assisted steps in simplex-based transformations. 

The general idea is to utilize the information gained by the SM, in order to enhance the 

current knowledge in the selection of simplex transitions. A characteristic example involving the 

reflection step is illustrated in Figure 1, right (for simplicity,  we demonstrate the predictions of the 

surrogate model and not the AF). In the original version of EAS, after specifying the direction of 

reflection (defined by the difference between the worst vertex of the simplex and the centroid of all 

rest vertices), the algorithm employs a blind trial-and-error procedure, i.e., it generates subsequent 

random points along this direction and evolves according to their values. In this scheme, the 

original objective function is called whenever a new trial point is generated. Since the expansion 

continues as long as the function value improves, this procedure may be quite expensive, in terms 

of function evaluations. In opposite, in SEEAS we employ a candidate screening procedure using the 

SM, which allows making multiple trials with negli gible computational cost and guiding search 

using all prior information . Similar  screening is employed with in all simplex transformations 

(except shrinkage), thus providing significant aid to the associated decisions.  



 

 

Figure 1: Approximated surface (RBF) in a 2 -D example (Ackley function) using all available sample points  (left 
panel ). The right panel demonstrates a randomly selected simplex and the modified surrogate -enhanced 

reflection movement using candidate points on the lin e formed from the simplex centroid and the maximum 
reflection point. The simplex is reflected at the candidate point with the minimum function value.  

 

2.2.2 Surrogate model (RBF)  

SEEAS implements the Radial Basis Function (RBF) interpolation method (Powell, 1992; 

Buhmann, 2003), and more specifically the RBF with cubic basis functions and linear polynomial 

tail . This is a commonly used surrogate model of proven effectiveness, as reported in numerous 

studies (e.g., Mugunthan et al., 2005; Regis and Shoemaker, 2007a, b; Shoemaker et al., 2007; Regis 

and Shoemaker, 2013; -İÌÌÅÒ ÁÎÄ 3ÈÏÅÍÁËÅÒȟ ςπρτ). 

The computational procedure of RBF is the following. Given Ns samples x  ɸRn with response 

y, we get the pairs (xi, yi). The prediction s(x) of RBF model at sample point x is given by: 

    ί● В ‗ • ȿ● ●ȿ ὴ●    (1) 

where ʇi ᶲ R, ʒ is a basis function of the form ʒ(r) = r3, ||.|| is the Euclidean distance (norm) and 

p(x) is a polynomial tail of the form p(x) = bɬx + a, where b = (b1ȟ ȣȟ bn)T and a ɸ  R. The model 

parameters ʇ, b, and a are determined by solving the linear system: 

      
♠ ╟
╟

ⱦ
╬

◐
     (2) 

where ɮ is an Ns ϼ Ns matrix  with  elements ʒij  = ʒ(|| xi ɀ xj||),  P is a Ns ϼ (n + 1) matrix , the ith row of 

which is (1, xiT), ʇ = (ʇ1ȟ ȣȟ ʇNs)T, c = (b1ȟ ȣȟ bn, a)T, and y = (y1ȟ ȣȟ yNs)T. We mention that the matrix of 

Eq. (2) is invertible if and only if Rank(P) = n + 1 (Powell, 1992). 



 

2.2.3 Acquisition function  

Acquisition functions (AF) are well-established techniques, aiming to balance exploration-

exploitation in surrogate-based optimization algorithms (e.g., Sasena et al., 2002; Forrester and 

Keane, 2009). SEEAS implements a novel scheme, in which the weights are automatically adjusted 

during the iterative process, according to the current number of function evaluations and the 

maximum allowed number of evaluations.  

Consider a set of Ns points, ●, with known response value, f(●), and another set of Nc points 

●, with approximated response values s(●). The latter are conventionally called candidate points, 

in the sense that they are used within infilling or internal search procedures, e.g., selection of the 

most appropriate reflection point in the graphical example of Figure 1. The acquisition function is 

estimated as follows: 

Step A: Standardize the approximated response values of all candidate solutions by setting s*(●) = 

[s(●) ɀ smin]/[ smax ɀ smin], where smin and smax are the corresponding minimum and maximum values.  

Step B: Calculate the minimum Euclidean distance of each candidate point ● from all previously 

evaluated points, ●, i.e., di = d*(●) = minρ Ѕ j Ѕ NS||● ɀ ●|| , and standardize them by setting di* = (di ɀ 

dmin)/( dmax ɀ dmin), where dmin and dmax are the corresponding minimum and maximum distances.  

Step C: Calculate the weighted value of AF for every candidate point using the formula: 

AFi = w s*(●) + (1 ɀ w) d*(●)     (3) 

where w is a dimensionless weighting coefficient, ensuring balance between exploitation and 

exploration. To finalize the infilling routine, t he candidate with the minimum AF value will be 

selected and assessed through the objective function. As mentioned before, the minimization of the 

AF across the surrogate search space is carried out through the original EAS algorithm. 

2.2.4 Detailed d escription  of SEEAS 

Let f(x) be a nonlinear objective function in the feasible space xL Ѕ x Ѕ xU, where x is an n-

dimensional vector of continuous control variables (in practice, f(x) represents the performance 



 

measure of a simulation model). For convenience, we search for the global minimum of f(x), 

allowing a budget of MFE function evaluations. The algorithm uses two archives. The first is the 

population P[t], which is evolved during the search procedure (where t denotes the iteration cycle or 

generation), and the second is the so-called external archive A[t], which contains all visited points 

from the beginning of the optimization (t = 0), including the members of the current population. 

Whenever a new point x is evaluated through the objective function f(x), it enters the archive A[t] 

(the archive may be updated several times within a generation). At the beginning of each new 

generation t, the surrogate model is re-evaluated by considering the current elements of A[t]. The 

size of the population is m І n + 1 (i.e., the minimum number of points required to fit a RBF with 

linear polynomial as well as to formulate a simplex in the n-dimensional space), and remains 

constant, while the size of the external archive progressively increases, thus ensuring more 

accurate approximations of the response surface and, consequently, more reliable predictions. The 

initial population P[0]  is generated via the Latin Hypercube Sampling (LHS) technique, which 

ensures satisfactory spread across the feasible space (Giunta et al., 2003). Apparently, the initial 

archive A[0]  is identical to P[0] .  

 

Figure 2: Outline of SEEAS algorithm following the steps explained in section 2.2.4 (* denotes the use of the 
surrogate model within the associated simplex transformations).  



 

Similarly to EAS, the surrogate-enhanced algorithm also uses an auxiliary parameter, T[t], 

called temperature. The concept originates from simulated annealing, where the key role of 

temperature is ensuring balance between randomness and determinism. In SEEAS, temperature is 

dynamically adjusted (i.e., reduced) using empirical rules, considering the extreme values, Ὢ  and 

Ὢ , of the current population P[t], and a dimensionless progress index, defined as 

PI = log(FE)/log(MFE)     (4) 

where FE is the current number of function evaluations and MFE is the maximum allowable 

number of FE, which is a user-specified termination criterion .  

A typical iteration cycle of SEEAS, an outline of which is illustrated in Fig. 2, comprises the 

following steps (generation index t is omitted for simplicity) : 

Step 1: The interpolation surface s(x) is updated using the current information stored in the 

external archive A (i.e., all points evaluated so far through the original objective function). 

Step 2: The weighting coefficient of the AF is updated using the empirical formula: 

w = max[0.75, min(PI, 0.95)]     (5) 

The above formula ensures that at the early stages of optimization, more weight is given to 

exploration (up to 0.25), but gradually its contribution diminishes thus not exceeding 0.05. 

Step 3: A new point xp is generated by minimizing AF, using the original version of EAS for internal 

optimization . The new point is evaluated through f(x) and replaces the worst point of the current 

population, if the latter is worse (higher) than f(xp). 

Step 4: A set of n + 1 points is randomly selected from the current population, in order to formulate 

the vertices of a simplex in the n-dimensional search space, symbolized S = [x1, x2ȟ ȣȟ xn + 1]. The 

elements of S are sorted such as f(x1) corresponds to the best (lowest) and f(xn + 1) to the worst 

value of the objective function. 

Step 5: From the subset [x2ȟ ȣȟ xn + 1] we select a candidate point xw to be replaced in the population, 

based on the modified, quasi-stochastic objective function: 



 

g(x) = f(x) + u T    (6) 

where u is a uniform random number in the interval [0, 1]. By adding the stochastic component u T 

to the objective function f(x), the algorithm behaves as in between random and downhill search. At 

the early stages of optimization, when temperature is still high, any point except for the best one 

can be replaced. On the other hand, in the limiting case T ᴼ π, the actually worst point , i.e., xn + 1, is 

replaced, as considered in the original downhill simplex method.  

Step 6: A set of Nr trial  points ●  are generated by reflecting the simplex according the formula:  

●  = g + (0.5 + ɿk) (g ɀ xw)   (7) 

where g is the centroid of the subset [x2ȟ ȣȟ xn + 1] and ɿk is a scale coefficient equally spread in the 

interval [0, 1], thus ɿk = (k ɀ 1)/( Nr ɀ 1), for k Ѐ ρȟ ȣȟ Nr. Among all candidates, we select the one that 

minimizes AF, which we will next call the reflection point, xr. The reflection point is evaluated on 

the basis of the objective function and enters the external archive. 

Step 7: If f(xr) < f(xw), we replace xw by xr in the population and move to steps 8a or 8b, according to 

the outcome of its comparison with the current best vertex, i.e., f(xr) < f(x1). Otherwise, we move to 

step 9, to decide whether xr should be accepted or withdrawn, thus seeking another candidate. 

Step 8a: If f(xr) < f(x1), the vector xr ɀ x1 defines a direction of minimization . We remark that the 

detection of downhill slopes in high-dimensional spaces of complex geometry is not an often case. 

This makes essential to take advantage in order to accelerate the search procedure, by employing a 

sequence of Ne trial expansion steps through the recursive formula: 

●  = g + ɿk (xr ɀ g)    (8) 

where ɿk is a scale coefficient given by ɿk = ɿk ɀ 1 + (k ɀ 1)/( Ne ɀ 1), for k Ѐ ρȟ ȣȟ Ne. The expansion 

continues as long as the AF value is improved (or until reaching the bounds of the feasible space). 

The optimal (in terms of AF) trial point, xe, is kept in the external archive and replaces xr in the 

current population, provided that f(xe) < f(xr). In that case, the algorithm moves to step 12 to 

finalize the cycle. 



 

Step 8b: If f(xr) > f(x1), we attempt detecting a promising solution in the neighborhood of x1, by 

employing Nc trial contractions of the simplex in the interval between the centroid and the 

reflection point, according to the formula: 

     ●  = g + (0.25 + 0.5ɿk) (xr ɀ g)    (9) 

where ɿk = (k ɀ 1)/( Nc ɀ 1), for k Ѐ ρȟ ȣȟ Nc. The optimal (in terms of AF) trial point, xc, is kept in the 

external archive and replaces xr in the current population, provided that f(xc) < f(xr). In that case, 

the algorithm moves to step 12 to finalize the generation cycle. 

Step 9: If f(xr) > f(xw), we use the modified objective function (7) to decide whether employing 

inside contraction of the simplex, thus seeking for a potential local optimum, or expanding towards 

a non-optimal (i.e., uphill) direction, in an attempt to escape from the current area of attraction. In 

this respect, if g(xr) > g(xw) we move to step 10a, otherwise we move to step 10b. 

Step 10a: We reject xr and implement Nc trial inside contractions of the simplex in the interval 

between the centroid and the worst point, according to the formula: 

●  = g ɀ (0.25 + 0.5ɿk) (g ɀ xr)    (10) 

where ɿk = (k ɀ 1)/( Nc ɀ 1), for k Ѐ ρȟ ȣȟ Nc. The optimal (in terms of AF) trial point, xc, is kept in the 

external archive and replaces xw in the current population, provided that f(xc) < f(xw). Otherwise, 

the simplex shrinks towards the best vertex x1, such as: 

xs,i = 0.5(x1 + xi) for i Ѐ ςȟ ȣȟ n + 1    (11) 

We remark that the above transformation is the sole evolving mechanism of the algorithm 

allowing the simultaneous generation of multiple points; particularly, n new points are generated 

that replace all previous vertices in the current population. This can be considered as milestone of 

the search procedure, in the sense that a local minimum, lying in the neighborhood of x1, has been 

surrounded. This is the time to reduce the temperature of the optimization system by a reduction 

factor ʕ. In contrast to EAS, where ʕ is a constant parameter of the annealing cooling schedule, 



 

usually taking values into the interval 0.90ɀ0.99, in its surrogate-enhanced version ʕ is 

automatically adjusted to also account for the progress index PI, using the following expression: 

ʕ = max (1 ɀ PI, 0.50)    (12) 

The threshold of 0.50 prohibits  a fast reduction of temperature and therefore maintains 

enough randomness within decisions, which in turn prohibits early convergence to local optima. 

After reducing T, the iteration  cycle is finalized (step 12). 

Step 10b: The reflection point xr is accepted although being worse than xw. Next, Nu uphill (i.e., 

maximization) movements are performed using the same formula with multiple expansion (eq. 9), 

in an attempt to pass the hill and discover adjacent regions of attraction. This geometrical 

transformation was introduced by Pan and Wu (1998), to facilitate the simplex escaping from local 

minima. Similarly to previous steps, we use the AF to determine the optimum uphill point, xu. If 

f(xu) < f(xr), this point is kept in the external archive and replaces xr in the current population, while 

the algorithm moves to step 12 to finalize the generation cycle. Otherwise, none of the simplex 

transformations results to a better solution than the worst vertex xw, thus the last option is to 

attempt a pure stochastic generator, referred to as mutation (step 11). 

Step 11: We seek a random point out of the typical range of the current population, defined on the 

basis of the mean, ʈP, and standard deviation, ʎP, of all members of P. In this respect, we generate a 

normally-distributed point  xm out of the interval [ʈP ɀ ʎP, ʈP + ʎP], which is accepted if f(xm) < f(xr). 

Otherwise, we account for a user-specified mutation probability pm in order to accept or not the 

randomly generated point, xm, and replacing xr in the current population. Anyway, since xm is 

evaluated through the objective function, it enters the external archive. 

Step 12: Considering the new member (or members, in the particular case of simplex shrinkage) of 

the population, we re-evaluate the current minimum, xmin, and maximum, xmax, and their  function 

values, fmin and fmax. We also re-evaluate the current number of function evaluations, FE, and check 

×ÈÅÔÈÅÒ ÔÈÉÓ ÈÁÓÎȭt exceeded the termination criterion, MFE. Finally, we re-evaluate the 



 

temperature so that T Ѕ ʊ(fmax ɀ fmin), where ʊ І 1 is a user-specified parameter of the annealing 

schedule, usually set between 2 to 5. This restriction prevents T taking extremely high values, 

which would deteriorate the efficiency of SEEAS, as far as search would become too random. 

 To run the algorithm, it is essential providing values for all input arguments, which are the 

number of desirables steps within different simplex transitions (Nr, Ne, Nc, Nu), the mutation 

probability pm, and the adjusting factor ʊ of the annealing cooling schedule. Recommended values, 

also used in all next benchmarking tests, are Nr = Ne = Nc = Nu = 20, pm = 0.10 and ʊ = 2. These values 

were determined on the basis of extended investigations within the development of SEEAS, and 

they have been also validated through the sensitivity analysis of section 4.4. 

3 Benchmarking methodology  

3.1 Benchmarking protocol  

To assess the performance of SEEAS we compared it with the original version of EAS as well as 

three state-of-the-art optimization algorithms, which are synoptically presented in section 3.3. Two 

of the benchmark algorithms, i.e., DYCORS and MLMSRBF, are surrogate-assisted, while EAS and 

DDS do not employ surrogate models through search. 

A variety of test problems were examined, theoretical as well as real-world . Briefly, the 

hereafter called benchmarking ȰÓÕÉÔÅȱ ÉÎÃÌÕÄÅÓ ÓÉØ mathematical test functions, formulated with 15 

and 30 control variables, a hydrological calibration problem with real and synthetic data, and a 

time-expensive multi -reservoir management problem (6ϼ2 + 1ϼ2 + 1 = 15 problems, in total).  

To ensure fair comparison and safely infer about the performance of the algorithms we 

attempted to ensure as much as similar configurations, as summarized in Table 1. In all problems 

we employed multiple independent runs, using the same population size and the same random 

generation technique, i.e., LHS. The population size was set equal to m = 2(n + 1), as recommended 

by Regis and Shoemaker (2007a) and Regis and Shoemaker (2013), where n is the problem 



 

dimension (i.e., the number of control variables). We remark that other researchers relate the initial 

population size (also referred to as design of experiment, DoE) to the available computational 

budget, quantified in terms of MFE, in order to design a more detailed metamodel; for instance, 

Razavi et al. (2012b) suggest that m = max[2(n + 1), 0.1 MFE]. However, in our tests we avoided 

associating m with MFE, in order to investigate the impacts of the problem dimension to the 

performance of the examined algorithms. Furthermore, we preferred saving resources for the 

evolutionary procedure, instead of spending a non-negligible part of our budget to the initial DoE. 

Each problem but the last was solved considering two alternative computational budgets, MFE 

(500 and 1000). We run all tests with two different budgets (instead of the maximum of them) since 

all examined algorithms (except EAS) involve parameters depending on MFE (in particular, SEEAS 

uses the progress index PI, defined in eq. (4), within the annealing cooling schedule). Finally, for the 

three surrogate-based methods (SEEAS, DYCORS, MLMSRBF) we employed the same metamodel 

(RBF with cubic basis functions and linear polynomial tail), thus ensuring similar computational 

effort  for building, updating and exploiting the RBF (Razavi et al., 2012a). We remark that in real-

world problems the effort of the optimization routines (including metamodel fitting) is much less 

than the effort of simulation, and therefore the runtime of the overall search procedure is 

practically relative to MFE.  

All computations were implemented in MATLAB mathematical environment using a 3.0 GHz 

Intel Core i5 processor with 4 GB of RAM, running on Windows 8 OS. For the SEEAS method we 

employed the typical input arguments given in section 2.2.4, while for the other algorithms, i.e., 

EAS, DDS, MLMSRBF and DYCORS, we used the default values suggested in the associated articles 

(Efstratiadis and Koutsoyiannis, 2002; Regis and Shoemaker, 2007b; Tolson and Shoemaker, 2007; 

Regis and Shoemaker, 2013). 



 

Table 1: Configuration of benchmarking suite . 

Problem  Algorithms  
Number  

of control 
variables, n 

Max. function  
evaluations 

(MFE) 

Independent  
Runs with random 
initial populations  

Population 
size 

Surrogate  
model  

(metamodel)  
Test functions All 15 500, 1000 30 32 

RBF with cubic 
basis functions 

and linear 
polynomial 

tail 

Test functions All 30 500, 1000 30 62 
Model calibration 
with real data 

All 11 500, 1000 30 24 

Toy calibration with 
synthetic data 

All 11 500, 1000 30 24 

Multireservoir 
management problem 

SEEAS, DYCORS, 
MLMSRBF 

20 500 10 42 

 

3.2 Performance  evaluation approach  

Following the ideas of Razavi et al. (2012a) and Matott et al. (2012), after implementing all 

runs for each specific optimization problem solved with a specific algorithm, we plotted the 

cumulative distribution function (CDF) of the optimal values of f(x) obtained within the specific 

budget. In order to quantify the probability of attaining an equal or better solution, we used the 

concept of stochastic dominance (SD), introduced by Levy (1992), to compare the CDFs of the 

algorithms. Let ɮɚ and ɮɛ be the CDFs of algorithms A and B, respectively. Assuming the 

minimization of a random quantity q, we assume that A dominates B if ɮɚ(q)> ɮB(q) for all q, and 

vice versa. On the contrary, if the two CDFs are intersected at some point qu, then SD is not 

applicable. In this case, we evaluated the median point, i.e., the one with 50% probability of 

exceedance, and considered as better the algorithm with the best performance at this point. In fact, 

to ensure that the difference of the two algorithms at the point of interest is statistically significant, 

we employed the non-parametric MannɀWhitney U-test (MWU; Mann and Whitney, 1947). The null 

hypothesis of the MWU test is that data in ɮɚ and ɮɛ are samples from continuous distributions 

with equal medians. The confidence level of the MWU test was set to 95%. 



 

3.3 Brief description of benchmark optimization algorithms  

3.3.1 Dynamic ally  Dimensioned Search (DDS) 

Dynamically Dimension Search2 (DDS), is a stochastic, single-solution based algorithm, 

developed by Tolson and Shoemaker (2007) to locate near-optimal solutions with few function 

evaluations. DSS is designed to search globally at the early stages and more locally when 

approaching a user-specified number of maximum function evaluations (MFE). It  evolves by 

perturbing the current best solution in randomly selected dimensions, using an evolutionary 

operator based on the normal distribution. The probability of selecting a dimension to perturb is 

proportional to the current number of function evaluations and MFE. The transition from global to 

local search is employed by dynamically reducing the number of perturbed dimensions. In the 

literature are reported several successful applications of DDS (e.g., Tolson et al., 2009; Razavi et al., 

2010; Matott et al., 2012; Razavi et al., 2012a; Regis and Shoemaker, 2013). 

3.3.2 Multistart Local Metric Stochastic R BF algorithm  (MLMSRBF) 

Regis and Shoemaker (2007b) developed the Multistart Local Metric Stochastic RBF3 

(MLMSRBF), which is surrogate-assisted optimization algorithm that can be considered as 

extension of DDS. The first step is the implementation of the initial DoE to fit the surrogate model 

(particularly, RBF), which evolves by perturbing the current best point (similar to DDS), using 

normal distribution with zero mean and a specified covariance matrix. Additionally, in order to 

locate promising candidates, the algorithm uses a metric that balances the RBF prediction and the 

minimum distance from previously evaluated points (this is similar to the acquisition function 

introduced in 2.2.3, but with constant weights). The global character of the algorithm is further 

enhanced by implementing multiple DoEs. This multistart strategy is enabled only if the algorithm 

appears to have been trapped to a local minimum. Regis and Shoemaker (2007b) demonstrated the 

                                                             
2 https://github.com/akamel001/Dynamic -Dimension-Search  
3 https://courses.cit.cornell.edu/jmueller/  or http://people.sju.edu/~rregis/pages/software.html   

https://github.com/akamel001/Dynamic-Dimension-Search
https://courses.cit.cornell.edu/jmueller/
http://people.sju.edu/~rregis/pages/software.html


 

efficiency of MLMSRBF in several benchmark problems, including 17 multimodal test functions and 

a 12-dimensional groundwater bioremediation problem. In the literature are also reported other 

successful applications of the method (e.g., Mugunthan et al., 2005; Mugunthan and Shoemaker, 

2006; Regis and Shoemaker, 2013). 

3.3.3 DYnamic COordinate Search-Multistart Local Metric Stochastic RBF  (DYCORS-

LMSRBF) 

The DYCORS framework was recently proposed by Regis and Shoemaker (2013) for 

surrogate-based optimization of high-dimensional expensive functions. The authors presented two 

versions, DYCORS-LMSRBF and DYCORS-DDSRBF4. The former is extension of LMSRBF and the 

latter is a surrogate-assisted DDS (here we use DYCORS-LMSRBF that performed slightly better 

than DYCORS-DDSRBF). DYCORS employs a strategy similar to DDS by dynamically and 

probabilistically reducing the number of perturbed dimensions until reaching the MFE. In order to 

generate trial candidate points (on the selected/perturbed dimensions) the algorithm uses a 

normal distribution with zero mean and standard deviation ʎn, but this does not remain constant, 

since ʎn is dynamically adjusted to control the range of perturbation . Moreover, DYCORS-LMSRBF is 

cycling through a set of weights in order to balance exploration and exploitation of the surrogate 

model. The authors assessed the performance of the two algorithms against several optimization 

schemes in a variety of test problems, among which a 14-D hydrological calibration problem. 

4 Test functions  

4.1 Setup  of optimization problems  

The first suite of benchmark problems involves the optimization of six well-known 

mathematical problems (test functions), combining two alternative formulations in terms of 

number of variables (n = 15 and 30), and two algorithmic configurations in terms of MFE (500 and 

                                                             
4 https://c ourses.cit.cornell.edu/jmueller/   

https://courses.cit.cornell.edu/jmueller/


 

1000). This setting allowed for assessing the performance of the algorithms against increasing 

levels of dimensionality and increasing computational budget. Considering two alternative 

dimensions and two computational budgets, we configured four different problems for each test 

function, i.e., 24 optimization problems in total. According to the benchmarking protocol explained 

in section 3.1, for all problems, we employed 30 independent runs, thus randomly changing the 

initial population of each search experiment. The population size of all algorithms we set equal to 

32 and 62, for the 15-D and 30-D formulations, respectively. 

Table 2 summarizes the main characteristics of the examined test functions, which represent 

search spaces of different complexity. Two of them (Sphere and Zakharov) are unimodal, while the 

rest are multimodal (Ackley, Griewank, Rastrigin, Levy). In all cases the global minimum is known 

and equal to zero. The analytical expression of the test functions and the bounds of their variables 

are given in the Appendix.  

Table 2: Summary characteristics of test fun ctions  (their references are given in Appendix ). 

 

 

 

 

4.2 Statistical evaluation of optimal solutions  

An initial  assessment of the performance of the five examined algorithms was made on the 

grounds of mean and standard deviation of the best function values obtained from each 

optimization set (i.e., 30 independent runs of the algorithm). The closest to zero is the mean and the 

lowest the standard deviation indicates that the algorithm reaches the theoretical optimum with 

high accuracy and reliability.  

The statistical superiority of SEEAS is exhibited in all problem configurations, as shown in 

Table 3 and Table 4, for problem dimensions n = 15 and 30, respectively. Specifically, for the 15-D 

formulation ( Table 3), SEEAS achieves the best performance (i.e., the lowest mean) in three out of 

Problem Test function Response surface properties 
OF1 Sphere Unimodal and convex 
OF2 Ackley Multimodal with many local minima 
OF3 Griewank Multimodal with many regularly distributed local minima 
OF4 Zakharov Unimodal with a plate-shaped valley 
OF5 Rastrigin Multimodal with many local minima 
OF6 Levy Multimodal with many local minima and parabolic valleys 



 

six (OF1, OF3, OF6) and four out of six problems (OF1, OF2, OF3, OF6), for MFE = 500 and 1000, 

respectively. By doubling the dimensionality of the test functions to n = 30, thus significantly 

increasing the complexity of the associated optimization problems, SEEAS outperforms the other 

algorithms in four out of six (OF1, OF2, OF3, OF6) and three out of six problems (OF1, OF3, OF6), for 

MFE = 500 and 1000, respectively (Table 4). Considering all alternative configurations, SEEAS is 

optimal for 14 out of 24 problems, DYCORS and EAS are optimal for 4 out of 24, and DDS is optimal 

for 3 out of 24. MLMSRBF does not outperform in none of the 24 test problems.  

As expected, the increase of computational budget from 500 to 1000 improves the 

performance of all algorithms. In general, the most significant improvement is achieved by EAS and 

DDS, which is reasonable since these algorithms are not surrogate-assisted, thus they are by 

definition designed to proceed slower than the other schemes. The convergence behavior of the 

algorithms is further investigated in next section.  

It is also worth  mentioning that all algorithms exhibit poor performance against functions 

OF4 (Zakharov) and OF5 (Rastrigin), since they fail locating satisfactory solutions for the given 

budgets. In particular, the plate-shaped valley of Zakharov function makes extremely difficult  fitting 

metamodels, which degenerates to hyperplane with practically zero slopes. It is not surprising that 

EAS ensures the best solutions, although these are still far from the theoretical optimum. EAS has 

been designed to also handle flat response surfaces, which are often met in water management 

optimization problems, as further explained in section 6.3. On the other hand, DDS is the algorithm 

that generally ensures the best solution of the Rastrigin problem. Again, this is not surprising, since 

the search space of this function is extremely rough, with multiple local minima , thus the most 

stochastic of all schemes is expected to be the most efficient. 



 

Table 3: Mean and standard deviation of best solutions in 15-D test problems  (optimal results are highlighted) . 

MFE Test function 
EAS DDS SEEAS  DYCORS MLMSRBF 

Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 

500 
 

OF1 1.938 0.978 0.852 0.479 0.002 0.001 0.002 0.001 0.019 0.014 
OF2 7.159 1.723 6.025 1.314 0.812 0.233 0.809 0.372 2.231 0.658 
OF3 7.682 2.997 2.626 1.269 0.538 0.118 0.885 0.084 1.085 0.052 
OF4 39.434  14.894 137.447 52.366 59.144 28.023 158.669 47.788 150.411 49.875 
OF5 86.245 14.148 24.887  7.081 46.268 15.359 38.958 12.340 45.920 18.803 
OF6 1.905 0.877 0.681 0.314 0.203 0.105 1.208 1.406 1.344 2.129 

1000 

OF1 0.378 0.177 0.150 0.079 0.001 0.001 0.001 0.000 0.011 0.007 
OF2 3.523 0.936 3.847 0.528 0.437 0.208 0.607 0.092 1.862 0.556 
OF3 2.444 1.061 1.505 0.299 0.368 0.140 0.809 0.082 1.040 0.037 
OF4 26.828  17.895 97.541 38.226 41.290 26.639 121.266 36.925 121.359 37.730 
OF5 59.735 17.012 11.233  3.136 29.733 12.838 33.585 13.490 35.784 11.031 
OF6 0.767 0.292 0.234 0.104 0.124 0.060 0.536 0.860 0.524 0.863 

 

Table 4: Mean and standard deviation of best solutions in 30 -D test problems  (optimal results are highlighted) . 

MFE 
Test function EAS DDS SEEAS  DYCORS MLMSRBF 
 Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 

500 
 

OF1 4.305 1.163 9.516 2.737 0.019 0.006 0.083 0.034 0.739 0.708 
OF2 9.923 1.160 12.872 1.329 1.878 0.301 4.297 3.721 6.193 4.362 
OF3 17.866 3.455 38.398 12.050 0.782 0.118 1.265 0.079 3.459 1.927 
OF4 117.821  28.757 562.145 113.230 173.240 44.185 472.815 90.897 575.424 174.073 
OF5 228.693 18.442 132.149 24.567 122.658 19.427 112.046  23.076 165.437 46.846 
OF6 6.338 2.652 15.823 5.481 0.659 0.184 3.407 2.540 7.326 10.944 

1000 

OF1 2.529 0.933 2.112 0.791 0.006 0.004 0.011 0.004 0.358 0.177 
OF2 6.516 0.845 7.670 0.924 1.206 0.297 1.085 0.168 3.643 1.103 
OF3 8.836 2.617 8.273 2.679 0.549 0.093 1.020 0.026 2.420 0.713 
OF4 94.598  20.317 412.238 118.573 151.472 54.097 403.812 93.081 491.425 146.097 
OF5 198.335 16.587 71.598  15.028 98.371 19.505 85.267 22.956 134.864 39.193 
OF6 2.683 0.736 3.921 2.215 0.443 0.126 4.213 5.440 2.865 4.583 

 

4.3 Evaluation of convergence behavior  

In order to further investigate the convergence behavior of the algorithms, we plotted the 

average (out of 30 trials) value of the best point found so far against the number of function 

evaluations (Figures 2-7). Each figure refers to a specific test function and comprises four charts, 

for the alternative configurÁÔÉÏÎÓ ɉÔ×Ï ÄÉÍÅÎÓÉÏÎÓ ϼ Ô×Ï -&%ɊȢ  

In most cases, SEEAS exhibits the faster convergence, evidently because the expansion 

mechanisms supported by the metamodel (which provides enhanced overview of the surface 

geometry), allow implementing steep downhill transitions . In general, the great advantage of the 

simplex-based transitions is the indirect use of the concept of gradient, which favors quick location 

of regions of attraction of local optima. This is of particular  importance in computational expensive 

problems, where the algorithm should quickly detect promising descent directions. In fact, SEEAS is 

clearly superior to the other two surrogate-assisted algorithms (DYCORS and MLMSRBF) in all 



 

problems, except for Rastrigin. The most impressive case is the Levy problem, where SEEAS locates 

a very good solution after the first one hundred of function evaluations (Figure 9a), while the mean 

best value found by other algorithms so far is even two orders of magnitude higher. Similar are the 

results for the Griewank function (Figure 9b), which could be interpreted as a rough, multimodal 

version of sphere. A plausible explanation for this is the combined effect of the knowledge gained 

by the metamodel, which easily recognizes the spherical structure of Griewank, and the simplex-

based operators, using approximations of the gradient of the function. 

An interesting conclusion is that, regarding SEEAS, the increase of the computation budget 

has mild effects in the improvement of the mean best solution. This is another evidence of the 

suitability of SEEAS for extremely time-demanding optimization problems, in which the desirable 

number of function evaluations should be minimal.  

 

 

Figure 3: Convergence curves for test function OF1 (Sphere) with 15 ( a, b) and 30 variables ( c, d), with MFE=500 
(a, c) and MFE=1000 (b, d). 



 

 

 

Figure 4: Convergence curves for test function OF2 (Ackley ) with 15 (a, b) and 30 variables (c, d), with MFE=500 
(a, c) and MFE=1000 (b, d) . 

 

 

Figure 5: Convergence curves for test function OF3 (Griewank ) with 15 (a, b) and 30 variables (c, d), with MFE=500 
(a, c) and MFE=1000 (b, d) . 



 

 

 

Figure 6: Convergence curves for test function OF4 (Zakharov ) with 15 (a, b) and 30 variables (c, d), with 
MFE=500 (a, c) and MFE=1000 (b, d) . 

 

 

Figure 7: Convergence curves for test function OF5 (Rastrigin ) with 15 (a, b) and 30 variables (c, d), with 
MFE=500 (a, c) and MFE=1000 (b, d) . 














































