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The novel SurrogateEnhanced Evolutionary Annealing Simplex algoritin (SEEAS) is proposed.
Surrogate model is usedas global search subroutine and also for identifying promising
transitions within simplex-basedoperators.

SEEAS outperforms alternative algorithms in six test functions, fat5D and 30D formulations
and for two budgets(500 and 1000 function evaluations)

SEEASffectively handles the peculiarities of two typical water resources optimization

problems, i.e., hydrologicakalibration and multi-reservoir management.
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Abstract

In water resources optimization problems, tle objective function usually presumes to first run a
simulation model and then evaluate its outputs.However, long simulation times may pose
significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the user
has to substantially restrict the allowable number of function evaluations, thus terminating the
search much earlier than required A promising strategy to address these shortcomings is the use of
surrogate modelling techniques Here we introduce the SurrogateEnhanced Evolutionary
Annealing-Simplex (SEEAS)algorithm that couples the strengths of surrogate modelling with the
effectiveness and efficiency of the evolutionary annealingimplex method. SEEASombines three
different optimization approaches (evolutionary seach, simulated annealingdownhill simplex). Its
performance is benchmarked against other surrogat@ssisted algorithms in several test functions
and two water resources applications(model calibration, reservoir management) Results reveal

the significant potential of using SEEAS in challenging optimization problems on a budget.
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1 Introduction

Coupling of simulation and optimizationis a powerful technique that has gained significant
attention in water resources science and technology since it ensuresgreat advantages overthe
traditional individual implementation of the two approaches(e.g., Koutsoyiannis and Economou,
2003). In this context, a simulation model is used to faithfully represent the dynamicsof the system
under study in subsequent time stepsand next to evaluateits overall performance againstone or
more user-specified criteria. Provided that these criteria areexpressed in terms ofobjective
function, dmulation can bedriven by an optimization model, which employs systematic search
through the parameter (or decision) spaceto maximize the system performanceat each trial new
values areassignedto the control variables of the simulation model, which runs automatically to
update thevalue of the objective function

Combined simulation-optimization schemes for water resource systemscan be generally
classified into two categories: (a)decision-making problems, in which the system properties and
associated processes arknown a priori, but either someof its design quantities orits management
policy are unknown; and (b) calibration problems, in whichsomeinternal properties of the system
either physical or conceptual are unknown and have to be inverted by minimizing the departures
of the simulated responses againghe observed ones. Despite thir different rationale, both types
of problems suffer from significant uncertainties and complexitiesand they aresubject to multiple
(and oftenconflicting) criteria as well asnumerous constraints.

For convenience, we consider that all criteria are aggregated in a single objective function
representing a global performance measure of the system (an alternative approach wdulequire
the formulation of a multiobjective function and the identification of acceptable tradeoffs among

conflicting criteria, which is not the case here)We also assume thaAl 1  OET OAOT Al 6
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constraints associated with the system dynaics) are handled through the simulation model
(Koutsoyiannis and Economou, 20087 xEET A AT U AAAEOEI 1, Ahich A 3OA OT A
usually associated with decisioamaking problems, are embedded in the objective function
typically as penalty terms. Under this premisethe combined simulatiorroptimization problem is
formalized asthe determination of the globaloptimum (for convenience, minimum)of a nonlinear
objective function f(x), where f(Q) represents the simulation model andx is the vector of control
variables. The search space is a hypervolume, since the unique constraints of the problem are the
lower and upper bounds of parametersAsf(x) is a blackbox function, its analytical expressionas
well as its derivatives are not available which prohibits the use of gradientbased optimization.
Given also that due to uncertainties and complexities of the systeni(x) is non-convex, and thus
multimodal (i.e., it contains multiple local optima), derivative-free methods combined with
stochasticsearchapproaches are essential to solvthis so-called global optimization problem.

The need foradvanced global optimizationtools (e.g., evolutionary algorithms)has been
early recognized by the hydrological communy, which has significant experience in thig use and
also remarkable contribution in their development.In the literature are found numerous reviews of
optimization approaches insuchproblems. For instance, in the context of wateresources planning
and management,we distinguish the works by Labadie (2004), Fowler et al. (2008), Nicklow et al.
(2010), Reed et al(2013) (emphasis to multiobjective applications)and Ahmad et al. (2014) The
literature for hydrological calibration is even more extendedFor convenience, we highlight the
recent works by Duan (2013) and Efstratiadis and Koutsoyiannis (2010) who provide a
comprehensivereview of global and multiobjective calibration approaches respectively. It is also
worth mentioning the article by Maier et al. (2014) who summarize the current status of
evolutionary algorithms and other metaheuristics and highlight new directions for future research

acrosswater resourcesapplications.



Apparently, in the whole computational procedue, simulation is by far the most time-
consuming component As models become more complexand datademanding, their requirements
in computational time and/or CPU increase substantially(e.g., Tolson and Shoemaker, 2007
Keating et al., 201Q0Razavi et al., 2010Tsoukalas and Makropoulos, 2015a Typical example is the
case of physicallybased hydrological models of fine spatial and temporal resolution, in contrast to
lumped conceptual rainfallrunoff models.In other applications, referred to as stochastic simulation
problems, the computational effort increasestwo or three orders of magnitudedue to the use of
synthetic (instead of historical) time series ofvery large length(e.g., thousands of years)n order to
provide estimations for probabilistic quantities (e.g.reliability, risk) with satisfactory accuracy On
the other hand, depending on the number of parameters and the irregularity of the response
surface, the optimization algorithm may need to call the simulation modéiundreds or thousands
of times, in order to converge to a good solution. Therefore, the time effort of simulatiomposes a
practical barrier to optimization, which isnecessaryto run with significantly restricted OA O A,@A 0 6
means of maximum allowable mmber of function evaluations Consider a simulation modelthat
requires approximately 1.5 minutes for a single simulation run anén optimization algorithm that
requires 10,000 function evaluations (terations) to approximate the global minimum.
Consequerly, the procedure would last more than tendays, which makes itpractically infeasible.

According to Razavi et al. (2010) the approachesto alleviate the computational burden
imposed bytime-consuming simulation modelsare classified into four main categories(1) parallel
computing (e.g.,Schutte et al., 2004Cheng et al., 2005Vrugt et al., 2006 Feyen et al., 2007He et
al., 2007 Regis and Shoemaker, 20Q®Dias et al., 2013; (2) computationally efficient optimization
algorithms (e.g.,Tolson and Shoemaker, 2007Kuzmin et al., 2008 Tan et al., 2008 Tolson et al.,
2009); (3) strategies to avoid opportunistically (expensive) model evaluationge.g.,Ostfeld and
Salomons, 200%Razavi et al., 2010Matott et al., 2012; and (4) surrogate modelling techniques

alsoreferred to asmeta-modelling, function approximation, response surfacanodelling and model



emulation (Razavi et al., 20125 where surrogate approaches are used to approximate the
responses of the original simulation model. Parallel computing, allowing the execution of
independent simulations by multiple processors requires significant investments in hardware
infrastructure, which makes it impractical for common useWe remark that in order to reduce the
entire time of computations three orders of magnitudez a reasonable requirement when dealing
with complex simulation models z 1000 parallel processors should be used, which is far from
realistic. The other two options, i.e, the improvement of efficiencyof existing algorithms, as well as
the interruption of the function evaluation procedure, when the model performance seems to be
very poor from early steps of simulation, may saveometime but not as mwh as required On the
other hand, airrogate models do not have any specific requirements in computer resources and
also ensure veryfast computations, since they replace, to some contexi the (expensive) simulation
model. Thear key objective is to generate models that are accurate in a certain regiaf the search
space(i.e., around a potential optimum) and thus intelligently guide the optimization (Couckuyt et
al., 2013.

'l OET OCE OAODBI 1T OA OOO0AAA ABlaAning @979, Akrdgate-bgsed AAAE
optimization methods have been popularizedincethe pioneering work by Jones et al. (1998)who
developed the Efficient Global Optimization (EGO) algorithm. EGO uses Kriging as surrogate model
and an acquisition function (hamed Expected Improvement), in order to locate potential good
samplesthat should beevaluated through expensive simulationfunctions (Sacks et al., 1989Jones
et al., 1999. Later, Sasena et al. (2002)mplemented andinvestigated various acquisition functions
for EGO Literature alsoreports multi-objective versions of EGQe.g.,Knowles, 2005 Ponweiser et
al., 2008 Couckuyt et al., 2013.

Other commonly used surrogate models are Radial Basis FunctioffRBFs- Powell, 1992
Buhmann, 2003, polynomials (Myers and Montgomery, 199%, artificial neural networks, and

support vector machines(Cortes and Vapnik, 1995Dibike et al., 200). The use RBFs within the



context of evolutionary algorithms was popularized after the publicationRegis and Shoemaker
(2004). Other typical examplesof RBFsare the Multistart Local Metric Stochastic RBEMLMSRBF)
and the ConstrLMSRBFwhich handles inequality constraints(Regis and Shoemaker, 2007tRegis,
2011). Additionally, Regis (2014)and Tang et al. (2012)proposed hybridization s of the particle
swarm optimization algorithm (Kennedy and Eberhart, 199% that use RBFs to assist the search
Shoemaker et al. (2007developed an evolutionary algorithm that usesan RBF approximation and
benchmarked its performanceagainst severaltest problems, with dimensions ranging from 8-D to
14-D. Finally, Regis and Shoemaker (2013¥leveloped the DYnamic COordinatSearch(DYCORS)
that usesResponse Surface model® handle high-dimensional expensive optimization problems.
DYCORSwas benchmarked against other RB#ased algorithms ina variety of test problems
ranging from 14-D to 200-D.

Comprehensive reviews of surrogatébased optimization methods can be found in he
broader optimization literature (e.g.,Jin, 2005 Forrester and Keane, 2009Jin, 201]. There are
alsoreported several successful applications in tim&lemanding hydrological problems (e.g.,Broad
et al., 2005 Mugunthan et al., 2005 Mugunthan and Shoemaker, 2006Regis and Shoemaker,
2007a; Zou et al., 2007 Kourakos and Mantoglou, 2009 Tsoukalas and Makropoulos, 2015a
Razavi et al. (2012b)summarize the use ofsurrogate modeling techniquesin water resource
systems also classifying the existing metanodeling frameworks.

It is important to remark that in the context of combined simulatioroptimization schemes,
surrogate models play the role of black-box approaches that aim establishing aata-driven
relationship betweenthe control variables of the simulation model (i.e.explanatory variableg and
the objective function of the optimization model (i.e.responsevariable). Therefore, they clearly do
not intend to reproduce the dynamic behavior of the original simulation modelRazavi et al.,
2012b). In fact, the task of reproducing the dynamic behavior of the simulation model is penfmed

by a quite different surrogate modelling approach, generally referred to as model reddion or



reduced-order modelling. Thisyields a low-order, dynamicO A N & E CoAtheAim@adion model by
preserving, to some extent,the state-space representaton of the original model and allowing a
physical interpretation of its structure (Castelletti et al., 2012aCastelletti et al., 20128.

This paper introduces the SurrogateEnhanced Evolutionary SimplexAnnealing approach
(SEEA% which is a novelglobal optimization algorithm, focusedon time-expensive functions Our
motivation arises from challenging simulatioroptimization problems that are commonly found in
water resources, andthey impose, in the everyday practiceyery limited computational budgets,
e.g, of few hundred function evaluations SEEASas been designedor both types of such problems,
i.e, decisionrmaking and calibration, suffeing from different peculiarities and complexities, which
are in turn reflected in thedifferent geometry of the associatedesponse surfaces

SEEASis built upon the Evolutionary Annealing-Simplex (EAS) method (Efstratiadis and
Koutsoyiannis, 2002, which is a hybrid €heme combiningglobal and local searctstrategies and
assisted by aRBF surrogate modelSEEASuses an external archive to maintain all visitedgolutions
in order to formulate, update and exploit the surrogate model duringearch There arealso some
improvements in the key core of EASyegarding the simplex transitions and the mutation operator.
SEEASs compared and benchmarked againghe original version of EAS and threstate-of-the-art
optimization algorithms that are mentioned before i.e, DDS (Tolson and Shoemaker, 200
MLMSRBF (Regis and Shoemaker, 20073band DYCOREMSRBF(Regis and Shoemaker, 2033
Evaluations are madeon the basis of 12 mathematical problems (i.e, six test functions for two
alternative dimensions, 15-D and 30-D), a hydrological calibration problem with 11 parameters,
configured with both real and synthetic data,and a multi -reservoir management problemwith 20
decision variables, using synthetic inflows of 500 yeardength. The use of synthetic data is one of
the novelties of our testing framework. Moreover, most of the known surrogate-based schemes
have been only evaluated in calibration problem&nd not in time-demanding water management

applications, with few exceptions(e.g.,Razavi et al., 2012pTsoukalas and Makropoulos, 2015a



The results of this extended analysis are very encouraging, since the proposed methisdeffective
and efficient, in terms of locating a satisfactory solution as close as possible to thglobal optimum,
within reasonable computational time, and clearly outperforms the other examined approachesin

almost all tests.

2 Optimization m ethodology

2.1 Evolutionary Annealing -Simplex

EAS is a heuristic, population-based global optimization technique, originally developed by
Efstratiadis and Koutsoyiannis (2002) that couples the strength of simulated annealing in rough
search spaces along with the efficiency of the downhill simplex methddNelder and Mead, 1965in
smoother spaceslts key ideais the introduction of an external variableT, which plays a role similar
to temperature in a realworld annealing process, and determines the degree of randomness of the
search procedureThis is expressedthrough a stochastic term that is relative to temperature and is
added to the initial objective functionf(x), thus gettinga modified functiong(x) =f(x) MuT (where u
is a vector of uniformly distributed random numbers). Search is based on an evolving population of
feasible points,where critical decisions are driven by the modified function. The genetic operators
are either quasistochastic geometric transformationsinspired by the downhill simplex method, or
fully -probabilistic transitions (mutations). As search proceeds, the system temperature reduces
according to an adaptive annealing cooling schedyland all transitions become more deterministic

EAS has beersuccessfully employed in several hydrological applications (e.g., Rozos et al.,
2004; Nalbantis et al., 2011 Kossieris et al., 2013 Efstratiadis et al., 2014b. It has beenalso
incorporated within advanced modelling tools i.e., Hydronomeas(Efstratiadis et al., 2003,
Hydrogeios (Efstratiadis et al., 200§ and HyetosR(Kossieris et al., 2012 to solve challenging

simulation-optimization problems. The original algorithm has been also adapted to handle

1 EASand SEEA%re available online at:http://www.itia.ntua.gr/en/softinfo/29/
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multiobjective problems (Efstratiadis and Koutsoyiannis, 2008 and stochastic(i.e., noisy)objective
functions (Kossieris et al., 2013. Here we introduce an improved verison of EAS, calle8urrogate-

EnhancedEvolutionary Annealing-Simplex (SEEAS) algorithmwhich is presentedin detail herein.

2.2 Surrogate -Enhanced Evolutionary Annealing -Simplex

2.2.1 Overview of SEEAS algorithm

The algorithm is a surrogateenhancedextension of EASIn a way that builds, maintains and
exploits surrogate modelling (SM) techniquesthat generateapproximated responsesurfaces, which
allow effectively guiding search towardspromising areas of the real response surfacdhe model
used is the RBF, which is well-known interpolation technique (Figure 1, left). During the iterative
procedure, the algorithm maintains an external archive of allvisited points, already evaluated
through the (expensive objective function. This archive is used to update the SM, in an attemigt
progressively provide more accurate approximations of thecurrent region of interest (i.e. the area
around the current best point). In SEEAS, the surrogate model has a double role. The first is
providing new points that are added to the current population, and the second is assistinghe
genetic operatorsof the downhill simplex schemeto identify suitable directions across the search
space (e.gfavorable slopesand new areas of attraction.

In order to balanceexploration (i.e., cetailed sampling) and exploitation (i.e., blind use d&M),
SEEAS uses a weighted metric, termed acquisition function (A®hich accountsfor the predictions
provided by the SMas well as thespread ofall previously evaluated points(by means of a distane
guantity) . In opposite to common practices that use atandard expression of the ARvith constant
weights, in our approach the weights areynamically adjusted thus improving the efficiency of the
algorithm. Details about theacquisition function (AF) are given in Sectior2.2.3

SEEAS follows an iterative search procedure. fte end ofeachiteration cycle (or generation,
according to the terminology of evolutionary theory) we obtain at least one new point that enters

the population and replaces one of its existing member# typical iteration cycle of SEEAStarts by



fitting the surrogate model to the current population (initially, this population is randomly
generated through Latin Hypercube Sampling LHS).Next, we runan internal global optimization
algorithm (particularly, the original version of EAS across the surrogate response surfaceising as
objective the acquisition function (AF), in order to locate a candidate solutionto enter the
population (provided that this solution outperforms the current worst point). Thereafter, we follow
a search procedurethat is mostly based onthe genetic operators ofEAS,enhancedby surrogate-
assisted stepsgn simplex-basedtransformations.

The general idea is toutilize the information gained by the SM,in order to enhance the
current knowledge in the selection of simplex transitions. A chaweristic example involving the
reflection stepis illustrated in Figure 1, right (for simplicity, we demonstrate the predictions of the
surrogate modeland not the AF) In the original version of EAS, after specifying the direction of
reflection (defined by the difference between the worst vertex of the simplex and the centroid of all
rest vertices), the algorithmemploys a blind trial-and-error procedure, i.e, it generatessubsequent
random points along this direction and evolves according taheir values. In this scheme, the
original objective function is called whenever a new trial point is generatedSincethe expansion
continues as long as the function value improveshis procedure may bequite expensive in terms
of function evaluations In opposite, in SEEAS we empl@candidate screening proceduraising the
SM which allows making multiple trials with negligible computational costand guiding search
using all prior information. Smilar screening is employed within all simplex transformations

(except shrinkagg, thus providing significant aid to the associated decisions
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Figure 1: Approximated surface (RBF) in a 2 -D example (Ackley function) using all available sample points (left
panel). The right panel demonstrates a randomly selected simplex and the modified surrogate -enhanced
reflection movement using candidate points on the lin e formed from the simplex centroid and the maximum
reflection point. The simplex is reflected at the candidate point with the minimum function value.

2.2.2 Surrogate model (RBF)

SEEASmplements the Radial Basis Function (RBF) interpolation method Powell, 1992
Buhmann, 2003, and nore specifically the RBFwith cubic basis functions and linear polynomial
tail. Thisis acommonly usedsurrogate model of proven effectiveness as reported in numerous
studies (e.g.,Mugunthan et al., 2005Regis and Shoemaker, 2007&; Shoemaker etal., 2007 Regis
and Shoemaker,2013- i 1 1 AO AT A 381 Al AEAOh c¢mnpr

The computational procedure of RBF ithe following. GivenNs samplesx ¢ R with response
y, we get the pairs(x;, yi). The predictions(x) of RBF model at sampl@oint x is given by

ie B _e¢  esS ne (1)
where 1;¢ R, 3 is a basis function of the formz(r) =r3, ||.|| is the Euclidean distance (norm) and
p(x) is a polynomial tail of the form p(x) =btx +a, where b=(b:h  IB)A and a¢ R The model

parameters}, b, anda are determined by solving the linear system:

P @

where 5 is anNsp Ns matrix with elements3;=3 (|| x Z xil|), P is aNsp (n+ 1) matrix, theith row of
whichis (1, xi7),1 = (1h 18/, c=(b:h BB, &7, andy = (yih  y&)A. We mentionthat the matrix of

Eq. (2)is invertible if and only if RankP) =n + 1 (Powell, 1992).



2.2.3 Acquisition function

Acquisition functions (AF) are wellestablished techniques, aiming tdbalance exploration-
exploitation in surrogate-based optimization algorithms (e.g.,Sasena et al., 20Q2Forrester and
Keane, 2009. SEEASmplements a novel scheme, in whichhe weights are automatically adjusted
during the iterative process according tothe current number of function evaluations and the

maximum allowed numberof evaluations

Consider aset of Ns points, e , with known response valugf(e ), and another set ofN; points
e , with approximated response values(e ). The latter are conventionally called candidate points,
in the sense that theyare used within infilling or internal search procedures, e.g, selection of the
most appropriate reflection point in the graphical example ofigure 1. The aquisition function is
estimated as follows:
Step A:Sandardize the approximated responsevaluesof all candidate solutionsby settings(e ) =
[S(e ) z snin]/[ gmaxz gnin], where smin and smaxare the corresponding minimum and maximum values.
Step B: Calculate the minimumEuclideandistance ofeach candidate point e from all previously
evaluated points e , i.e,di=d(e ) =min, jsng|® Z e ||, and $andardize them by settingdi* = (di 7
dmin)/( dmaxz dmin), where dmin and dmaxare the corresponding minimum and maximum distances
Step C Calculate the weighted value of AF for every candidate point using tfemula:

AR =ws(e ) +(1zw)d(e) (3)
where w is a dimensionless weighting coefficient, ensuring balance betweerexploitation and
exploration. To finalize the infilling routine, the candidate with the minimum AF valuewill be
selected andassessedhrough the objective function.As mentioned before, the minimization of the

AF across the surrogate search space is carried out through the original EAS algorithm.

2.2.4 Detailed d escription of SEEAS
Let f(X) be a nonlinear objective function in the feasible spacex. S x S xuy, where x is ann-

dimensional vector of continuous control variables (in practice, f(x) represents the performance



measure of a simulation model) For convenience, we search for the global minimum dix),
allowing a budget of MFE function evaluationsThe algorithm uses two archives. The first is the
population Pitl, which is evolvedduring the search procedurgwhere t denotes the iteration cycle o
generation), and the second is the sealled external archiveAltl, which contains all visited points
from the beginning of the optimization (t = 0), including the members of the current population.
Whenever a newpoint x is evaluatedthrough the objective function f(x), it enters the archive Altl
(the archive may be updated several times within a generation). At the beginning of each new
generation t, the surrogate modelis re-evaluated by considering the current elements of Altl. The
size of the population ism| n+1 (i.e., the minimum number of points required to fit a RBRvith
linear polynomial as well as toformulate a simplex in the n-dimensional space) and remains
constant, while the size of the external archiveprogressively increases thus ensuring more
accurateapproximations of the response surfacand, consequently, more reliable predictionsThe
initial population PO is generated via the Latin Hypercube Sampling (LHS)echnique, which
ensures satisfactoryspread acrossthe feasible spacgGiunta et al., 2003. Apparently, the initial

archive A9 is identical to P!,

Generation of m random - .
points through LHS 4: Random selection of n+1 Surrogate-assisted
points from population P genetic operators
of EAS
1: Fitting of surrogate v
e 5: Selection of candidate
1 point to be replaced in P
2: Update of progress -
index PI and acquisition
SO > 8a: Downhill expansion® |
¥ 7: Decision for
3: Minimization of AF accepting reflection
using EAS prng 8b: Outside contraction* |
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archive A, containing - —
all points evaluated 11: Mutati 10b: Uphill expansion |
so far through f(x) - utation
E

v

I 12: Update of population P and temperature T]

Figure 2: Outline of SEEAS algorithm following the steps explained in section 2.2.4 (* denotes the use of the
surrogate model within the associated simplex transformations).



Similarly to EAS, the surrogateenhanced algorithm alsouses an auxiliary parameter, Titl,
called temperature. The concept originates fromsimulated annealing where the key role of

temperature is ensuringbalancebetween randomness and determinismin SEEAS, temperature is
dynamically adjusted(i.e., reduced)using empirical rules, considering theextreme values,Q and

"Q , of the current population Pitl, and a dimensionlessprogress index, defined as
Pl=log(FE)/log(MFE) (4

where FE is the current number of function evaluations and MFE is the maximum allowable
number of FE which is a userspecified termination criterion.

A typical iteration cycle of SEEASan outline of which is illustrated in Fig. 2comprisesthe
following steps (generation indext is omitted for simplicity) :
Step 1: The interpolation surface §(x) is updated using the current information stored in the
external archiveA (i.e.,all points evaluated so far through theoriginal objective function).
Step2: The weighting coefficientof the AFis updated usingthe empirical formula:

w = max[0.75, min(PI, 0.95)] (5)

The aboveformula ensures thatat the early stages of optimization, more weight is given to
exploration (up to 0.25), but gradually its cantribution diminishes thus not exceeding 0.05.
Step 3: A new point X, is generatedby minimizing AF,using the original version of EASfor internal
optimization. Thenew point is evaluatedthrough f(x) and replaces the worst point of the current
population, if the latter is worse (igher) than f(xp).
Step4: A set d n+ 1 points is randomly selected from thecurrent population, in order to formulate
the vertices of a simplex in then-dimensional searchspace, symbolied S= [xi, x2h  ¥3:h). The
elements of S are sorted such asf(x:) corresponds to the best (lowest) andf(x,+1) to the worst
value of the objective function
Step5: From the subset[x.h  x8.k] we select a candidatgooint x, to be replacedin the population,

based on themodified, quasistochastic objective function



o) =f() +u T (©)
where uis a uniform random number in the interval [0, 1].By addingthe stochasticcomponentu T
to the objective functionf(x), the algorithm behaves as in between random and downhill searclAt
the early stages of optimization, when temperature is still highany point except for the best one
canbe replaced On the other hand, m the limiting caseT © , the actually worst point, i.e, X, +1, IS
replaced, as considered in the original downhill simplex method
Step6: Asetof N, trial pointse are generated by reflecting the simplex according the formula:

o =g+ (0.5+) (97 xw) (7
where g is the centroid of the subset[x:h x3.h] and 1« is a scale coefficientequally spread in the
interval [0, 1],thus 1« = (kz 1)/( Nr 7 1), forkE  p N.. ABdng allcandidates, we select the on¢hat
minimizes AF, which we will next call the reflection point, x;. The reflection point is evaluated on
the basis of the objective function and enters the external archive.

Step 7:1f f(x;) <f(xw), we replacex, by x: in the population and move to steg 8a or 8b, according to
the outcome of its comparison with the current best vertex, i.ef(x;) <f(x1). Gherwise, we move to
step 9, to decide whetherx; should be accepted or withdrawn, thuseeking another candidate.
Step 8a: If f(x/) <f(x1), the vector x, zZ x; defines a direction of minimization. We remark that the
detection of downhill slopes in high-dimensional spacesof complex geometry is not an often case
This makesessential to take advantagén order to accelerate the search procedureby employinga
sequence olNc trial expansion stepghrough the recursive formula:

* =g+1k(xZ29) (8)
where |« is a scale coefficiengiven by 1k =1kz1+ (kZ 1)/(Nez 1), fork E  p Ne. Thehexpansion
continues as long as the AF value is improved (or until reaching the bounds of the feasible space).
The optimal (in terms of AF) trial point, xe, is keptin the external archiveand replacesx; in the
current population, provided that f(xe) < f(x/). In that case, the algorithm moves to step 2L to

finalize the cycle.



Step 8b: If f(x/) >f(x1), we attempt detecting a promising solution in the neighborhood of x1, by
employing Nc trial contractions of the simplex in the interval between the centroid and the
reflection point, according to the formula:

e =g+ (0.25+0.54) (xz9) 9)
where k= (kz 1)/(Ncz 1), fork E  p N.. T8ehoptimal (in terms of AF) trial point,x., is kept in the
external archive and replacesx: in the current population, provided that f(xc) < f(x/). In that case,
the algorithm moves to step 2 to finalize the generation cycle.

Step 9: If f(x;) >f(xw), we use the modified objective function (7) to decide whether employing

inside contraction of the simplex, thus seeking for a potential local optimumgr expanding towards

a nonoptimal (i.e., uphill) direction, in an attempt to escape from the current area of attraction. In
this respect, ifg(x:) > g(xw) we move to step 10a, otherwise we moe to step 10b.

Step 10a: We reject x; and implement N trial inside contractions of the simplex in the interval
between the centroid and the worst point, according to the formula:

e =g7(0.25+0.54) (g7 %) (10)
where k= (kz 1)/(Ncz 1), fork E  p N.. T8ehoptimal (in terms of AF) trial point,x., is kept in the
external archive and replaces« in the current population, provided that f(xc) < f(xw). Otherwise,
the simplex shrinks towards the best vertexx;, such as:

Xsi= 05K +x)foriE ¢ h+18 h (112)

We remark that the above transformation is the soleevolving mechanism of the algorithm
allowing the simultaneous generation of multiple points particularly, n new points are generated
that replace all previous vertices in the current populationThis can be considered as milestte of
the search procedurejn the sense thata local minimum, lying in the neighborhood ofx;, has been
surrounded. This is the time to reduce the temperature of the optimization system by a reduction

factor G . In contrast to EASwhere € is a constant paameter of the annealing cooling schedule,



usually taking values into the interval 0.90z0.99, in its surrogateenhanced version ¢ is
automatically adjustedto alsoaccount for the progress indexPl, using the following expression:
¢ = max(1 z PI, 0.50) (12)

The threshold of 0.50 prohibits a fast reduction of temperature and therefore maintains
enough randomness within decisions, which in tun prohibits early convergence to local ptima.
After reducing T, theiteration cycle is finalized (step 2).
Step 10b: The reflection point x; is acceptedalthough being worse thanx,. Next,N, uphill (i.e.,
maximization) movements are performed using the same formula with multiple expansion (eq. 9),
in an attempt to pass the hill anddiscover adjacent regions of attraction. This geometrical
transformation was introduced by Pan and Wu (1998)to facilitate the simplex escapingrom local
minima. Similarly to previous steps, we use the AF to determine the optimum uphill pointy,. If
f(xu) <f(x:), this point is kept in the external archive and replaces; in the current population, while
the algorithm moves to step 2 to finalize the generation cycle.Otherwise, none of the simplex
transformations results to a better solution than the worst vertexxw, thus the last option is to
attempt a pure stochastic generatorreferred to as mutation (step 11)
Step 11: We seeka random point out of the typical range ofthe current population, defined on the
basis ofthe mean,t », and standard deviation/p, of all members ofP. In this respect, we generate a
normally-distributed point xm out of the interval [t ez Ar, { p+ A#], Which is acceptedf f(xm) < f(x).
Otherwise, we account for a user-specified mutation probability pm in order to accept or not the
randomly generated point, xm, and replacing x; in the current population. Anyway, since Xm is
evaluated through the objective function, it enters the external archive.
Step 12: Considering the new member (or membersin the particular case of simplex shrinkagé of
the population, we reevaluate the current minimum, Xmin, and maximum Xmax, and ther function
values,fmin and fmax. We also reevaluate the current number of function evaluations, FE, and check

xEAOEAO @ EkéededtiheOtbrination criterion, MFE. Finally, we re-evaluate the



temperature so that T Su(fmaxz fmin), Where sl 1 is a user-specified parameter of the annealing
schedule usually set between 2to 5. This restriction prevents T taking extremely high values,
which would deteriorate the efficiency of SEEASas far asearch would becomeoo random.

To run the algorithm, it is essential providing values forll input arguments, which are the
number of desirables steps within diffeent simplex transitions (N:, Ne, Ne, Nu), the mutation
probability pm, andthe adjusting factor v of the annealing cooling scheduleRecommendedvalues,
also used inall next benchmarking tests areNr =Ne = N: =N, = 20,pn= 0.10 andus= 2. Thesevalues
were determined on the basis ofextended investigations within the development of SEEASand

they have been also validated througkhe sensitivity analysis of sectior4.4.

3 Benchmarking methodology

3.1 Benchmarking protocol

To assess the performance of SEEAS we compared it with the original versioreéiSas well as
three state-of-the-art optimization algorithms, which are synoptically presentedn section 3.3. Two
of the benchmark algorithms, i.e.DYCORS and MLMSRB#&e surrogate-assisted while EAS and
DDS do noemploy surrogate modelsthrough search

A variety of test problems were examined, theoretical as well as realvorld. Briefly, the
hereafter calledbenchmarking@® OE OA 6 E indiher@aficAl @st fOrEdNns, formulated with 15
and 30 control variables, a hydrological calibration problem with real and synthetic data,and a
time-expensivemulti -reservoir management problem(6p2 + 1p2 + 1 =15 problems, in total).

To ensure fair comparison and safely infer about the performance of the algorithmge
attempted to ensure as much as similaconfigurations, assummarized in Table 1.In all problems
we employed multiple independent runs, using the same population sizand the samerandom
generation technique,i.e, LHS The population sizewas setequal tom=2(n+ 1), asrecommended

by Regis and Shoemaker (2007apnd Regis and Shoemaker (2013)where n is the problem



dimension (i.e., the number of control variables)We remark thatother researchersrelate the initial
population size (also referred to as design of experiment, DoHp the available computational
budget, quantified in terms of MFE in order to design a more detailed metamodelfor instance,
Razavi et al. (2012b)suggest thatm = max[2(n + 1), 0.1MFE]. However, in our tests we avoided
associating m with MFE, in order to investigate the impacts of the problem dimenehn to the
performance of the examined algorithms.Furthermore, we preferred saving resources for the
evolutionary procedure, instead of spending nortnegligible part of our budget to the initial DoE.

Each problem but the last was solved considering two t&rnative computational budget, MFE
(500 and 1000). We run all testswith two different budgets (instead of the maximumof them) since
all examinedalgorithms (except EAS) involveparameters depending onMFE (in particular, SEEAS
uses the progress index PI, defined in eq. (4), within trennealing cooling schedulg Finally, for the
three surrogate-based methods (SEEAS, DYCORMLMSRBF)we employedthe same metamodel
(RBF with cubic basis functions and lineapolynomial tail), thus ensuring similar computational
effort for building, updating and exploiting the RBF(Razavi et al., 2012p We remark thatin real-
world problems the effort of the optimization routines (including metamaodel fitting) is much less
than the effort of simulation, and therefore the runtime of the overall search procedure is
practically relative to MFE.

All computations were implemented in MATLAB mathematical environment using a 3.0 GHz
Intel Core i5 processor with 4 GB of RAM, running on Windows @S For the SEEAS method we
employed the typial input arguments given in section2.2.4, while for the other algorithms, i.e,
EAS, DDS, MLMSRBF and DYCQORSused the default values suggesteih the associatedarticles
(Efstratiadis and Koutsoyiannis, 2002Regis and Shoemaker, 2007 olson and Shoemaker, 2007

Regis and Shoemaker, 2093



Table 1: Configuration of benchmarking suite .

Number Max. function Independent Population Surrogate
Problem Algorithms of control evaluations Runs with random psize model
variables, n (MFE) initial populations (m etamodel)
Testfunctions All 15 500, 1000 30 32
'I’\;leoséélljr(g:ltiltc))rr;?ion All 30 500, 1000 30 62 RBE with cubic
] All 11 500, 1000 30 24 basis functions
with real data .
Toy alibration with and linear
y al All 11 500, 1000 30 24 polynomial
synthetic data tail
Multireservoir SEEAS, DYCOR! 20 500 10 42

management problem MLMSRBF

3.2 Performance evaluation approach

Following the ideas ofRazavi et al. (2012a)and Matott et al. (2012), after implementing all
runs for each specificoptimization problem solved with a specific algorithm we plotted the
cumulative distribution function (CDF) of the optimal valuesof f(x) obtained within the specific
budget. In order to quantify the probability of attaining an equal or better solution we usedthe
concept of stochastic dominancgSD), introduced byLevy (1992), to compare the CDFf the
algorithms. Let 3. and B be the CDFsof algorithms A and B, respectively. Assuming the
minimization of a random quantity g, we assume thatA dominates B if 5.(q)>B&(q) for all g, and
vice versa.On the contrary, if the two CDFs are intersectedt some point qu, then SD is not
applicable. In this case,we evaluated the median point, i.e.the one with 50% probability of
exceedance, and considered as better the algorithm with the best performance at this point. In fact,
to ensure that the differenceof the two algorithms at the point of interest is statistically significant,
we employedthe non-parametric ManmgWhitney U-test (MWU; Mann and Whitney, 194Y. The null
hypothesis of the MWU test is that data if§. and 3. are samples from continuous distributions

with equal medians. The confidence level of the MWU test was set to 95%



3.3 Brief description of benchmark optimization algorithms

3.3.1 Dynamically Dimensioned Search (DDS)

Dynamically Dimension Search (DDS) is a stochasti¢ single-solution based algorithm,
developed by Tolson and Shoemaker (2007)}o locate nearoptimal solutions with few function
evaluations. DSSis designed to search globallyat the early stagesand more locally when
approaching a user-specified number of maximum function evaluations (MFE) It evolves by
perturbing the current best solution in randomly selected dimensionsusing an evolutionary
operator based onthe normal distribution. The probability of selecting a dimension to perturb is
proportional to the current number of function evaluations and MFE The transition from global to
local search is employed by dynamically reducing the number of perturbed dimensions. In the
literature are reported several successfubpplications of DDS(e.g.,Tolson et al., 2009Razavi et al.,

2010; Matott et al., 2012 Razavi et al., 2012aRegis and Shoemaker, 2033

3.3.2 Multistart Local Metric Stochastic R BF algorithm (MLMSRBF)

Regis and Shoemaker (2007b)developed the Multistart Local Metric Stochastt RBPR
(MLMSRBF) which is surrogate-assisted optimization algorithm that can be considered as
extension of DDSThe first step isthe implementation of the initial DoEto fit the surrogate model
(particularly, RBF), which evolves byperturbing the current best point (similar to DDS) using
normal distribution with zero mean and aspecified covariance matrix. Additionally, in order to
locate promising candidates the algorithm uses a metric thatbalancesthe RBF prediction and the
minimum distance from previously evaluated points (this is similar to the acquisition function
introduced in 2.2.3, but with constant weights) The global character of the algorithm is further
enhanced byimplementing multiple DoEs. Thismultistart strategy is enabled only if the égorithm

appears to have been trapped to a local minimuniRegis and Shoemaker (2007bjemonstrated the

2 https://github.com/akamel001/Dynamic -Dimension-Search
3 https://courses.cit.cornell.edu/jmueller/ _or http://people.sju.edu/~rregis/pages/software.html
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efficiency of MLMSRBFHn severalbenchmark problems, including 17 multimodal testfunctions and
a 12-dimensional groundwater bioremediation problem. In the literature are also reported other
successful applications of the methode.g.,Mugunthan et al., 2005 Mugunthan and Shoemaker,

2006; Regis and Shoemaker, 2033

3.3.3 DYnamic COordinate Search-Multistart Local Metric Stochastic RBF (DYCORS
LMSRBF)

The DYCORSframework was recently proposed by Regis and Shoemaker (2013)for
surrogate-basedoptimization of high-dimensional expensive functions. The authors presented two
versions, DYCOR&MSRBF and DYCOHHEDSRBF. The fomer is extension of LMSRBF and the
latter is a surrogateassisted DDShere we use DYCOR&MSRBFthat performed slightly better
than DYCOR®DSRBF. DYCORSemploys a strategy similar to DDSby dynamically and
probabilistically reducing the number of perturbed dimensionsuntil reaching the MFE In order to
generate trial candidate points (on the selected/perturbed dimensions) the algorithm uss a
normal distribution with zero mean and standard deviationA,, but this does not remain constant,
since A, is dynamically adjusted to control the rangeof perturbation . Moreover, DYCOREMSRBF is
cycling through a set of weights in order to balance exploration and exploitation of the surrogate
model. The authors assessed the performance dfie two algorithms agairst several optimization

schemesin a variety of test problems, amongwhich a 14-D hydrological calibration problem.

4  Test functions

4.1 Setup of optimization problems
The first suite of benchmark problems involves the optimization of sixwell-known
mathematical problems (test functions), combining two alternative formulations in terms of

number of variables(n = 15 and 30), and twoalgorithmic configurations in terms of MFE(500 and

4 https://c ourses.cit.cornell.edu/jmueller/
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1000). This setting allowed for assessingthe performance of the algorithms againstincreasing
levels of dimensionality and increasing computational budget. Considering two alternative
dimensions and two computational budgets, weconfigured four different problems for each test
function, i.e, 24 optimization problems in total. According to the benchmarking protocol explained
in section 3.1, for all problems, we employed 30 independent runs, thus randomlyhanging the
initial population of each searchexperiment. The population size of all algorithms we set equal to
32 and 62, for thel5-D and 30-D formulations, respectively.

Table 2 summarizes the main characteristics of the examined test functions, which represent
search space®f different complexity. Two of them (Sphere and Zakharoyare unimodal, while the
rest are multimodal (Ackley, Griewank,Rastrigin, Levy). In all cases the global minimum is known
and equal to zero. The analytical expression of the test functions and the boundsttwdir variables

are given in the Appendix.

Table 2: Summary characteristics of test fun ctions (their references are given in Appendix).

Problem | Test function Response surface properties

OF1 Sphere Unimodal and convex

OF2 Ackley Multimodal with many local minima

OF3 Griewank Multimodal with many regularly distributed local minima
OF4 Zakharov Unimodal with a plate-shaped valley

OF5 Rastrigin Multimodal with many local minima

OF6 Levy Multimodal with many local minima and parabolic valleys

4.2 Statistical evaluation of optimal solutions

An initial assessment othe performance of the five examinedalgorithms was made on the
grounds of mean and standard deviation of the best function values obtained from each
optimization set (i.e.,30 independentruns of the algorithm). The closest to zero is the mean and the
lowest the standard deviation indicates that the algorithm reaches the theoretical optimum with
high accuracy and reliability.

The statistical superiority of SEEASs exhibited in all problem configurations, as show in
Table 3 and Table 4, for problem dimendons n = 15 and 30, respectivelySpecifically, for the 15D

formulation (Table 3), SEEAS achieves the best performangee., the lowest mean)in three out of



six (OF1, OB, OF6) and four out of six problems (OF1,0F2,0F3, OB), for MFE =500 and 1000,
respectively. By doubling the dimensionality of the test functions to n =30, thus significantly
increasing the complexityof the associated optimiation problems, SEEASutperforms the other
algorithms in four out of six (OF1,0F2,0R3, OF6) andthree out of six problems (OF1, OF3, (g}, for
MFE =500 and 1000, respectively Table 4). Considering all alternative configurations, SEEAS is
optimal for 14 out of 24 problems,DYCOR&nNd EAS are optimal for 4 out of 24, and DDS is optimal
for 3 out of 24.MLMSRBFdoes not outpgerform in none of the 24 test problems.

As expected,the increase of computational budget from 500 to 1000 improves the
performance of all algorithms In general, tie most significantimprovement is achievedby EAS and
DDS, which is reasonable since thesalgorithms are not surrogateassisted, thus theyare by
definition designed to proceed slower than the other schemes.The convergence behavior of the
algorithms is further investigatedin next section.

It is alsoworth mentioning that all algorithms exhibit poor performance against functions
OF4 (&kharov) and OF5 Rastrigin), since they fail locating satisfactory solutions for the given
budgets. In particular, the plate-shaped valley of Zakharov functioomakesextremely difficult fitting
metamodels, which degenerates to hyperplane with practically zero slogelt is not surprising that
EAS ensures the best solutions, although these are still far from the theoretical optimum. EAS has
been designed toalso handle flat response surfaes, which are often met in water management
optimization problems, as further explained in section 6.30n the other hand, DDS is the algorithm
that generally ensures the best solution of th&®astrigin problem. Again, this is not surprising, since
the seach space ofthis function is extremely rough, with multiple local minima, thus the most

stochastic of all schemes is expected to be the most efficient



Table 3: Mean and standard deviation of best solutions in

15-D test problems (optimal results are highlighted)

MEE | Test functi EAS DDS SEEAS DYCORS MLMSRBF
estiunction Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
OF1 1938 0.978 0.852 0.479 0.002 0.001 0.002 0.001 0.019 0.014
OR2 7.159 1.723 6.025 1.314 0.812 0.233 0.809 0.372 2.231 0.658
500 OR3 7.682 2.997 2.626 1.269 0.538 0.118 0.885 0.084 1.085 0.052
OH 39.434 14.894 | 137.447 52.366 | 59.144 28.023 | 158.669 47.788 | 150.411 49.875
(0]33} 86.245 14.148 | 24.887 7.081 | 46.268 15.359 | 38.958 12.340 | 45.920 18.803
ORs 1.905 0.877 0.681 0.314 | 0.203 0.105 1.208 1.406 1.344 2.129
OF1 0.378 0.177 0.150 0.079 0.001 0.001 0.001 0.000 0.011 0.007
OR2 3.523 0.936 3.847 0.528 0.437 0.208 0.607 0.092 1.862 0.556
1000 OR3 2.444 1.061 1.505 0.299 0.368 0.140 0.809 0.082 1.040 0.037
OH 26.828 17.895 | 97.541 38.226 | 41.290 26.639 | 121.266 36.925 | 121.359 37.730
(0]33} 59.735 17.012 | 11.233 3.136 | 29.733 12.838 | 33.585 13.490 | 35.784 11.031
O 0.767 0.292 0.234 0.104 | 0.124 0.060 0.536 0.860 0.524 0.863

Table 4: Mean and standard deviation of best solutions in 30 -D test problems (optimal results are highlighted)

MEE Test function EAS DDS SEEAS DYCORS MLMSRBF
Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
OF1 4.305 1.163 9.516 2.737 0.019 0.006 0.083 0.034 0.739 0.708
OR2 9.923 1.160 12.872 1.329 1.878 0.301 4.297 3.721 6.193 4.362
500 OR 17.866 3.455 38.398 12.050 0.782 0.118 1.265 0.079 3.459 1.927
OH 117.821 28.757 | 562.145 113.230 | 173.240 44.185 | 472.815 90.897 | 575.424 174.073
(0]33) 228.693 18.442 | 132.149 24.567 | 122.658 19.427 | 112.046 23.076 | 165.437 46.846
(]33] 6.338 2.652 15.823 5.481 0.659 0.184 3.407 2.540 7.326 10.944
OF1 2.529 0.933 2.112 0.791 0.006 0.004 0.011 0.004 0.358 0.177
OR2 6.516 0.845 7.670 0.924 1.206 0.297 1.085 0.168 3.643 1.103
1000 OR 8.836 2.617 8.273 2.679 0.549 0.093 1.020 0.026 2.420 0.713
OH 94.598 20.317 | 412.238 118.573 | 151.472 54.097 | 403.812 93.081 | 491.425 146.097
(0]33) 198.335 16.587 | 71.598 15.028 98.371 19.505 | 85.267 22.956 | 134.864 39.193
[0]33] 2.683 0.736 3.921 2.215 0.443 0.126 4213 5.440 2.865 4,583

4.3 Evaluation of convergence behavior

In order to further investigate the convergencebehavior of the algorithms, we ploted the
average (out of 30 trials) value of the best point found so far against the number of function
evaluations (Figures 2-7). Each figure refers to a specific test function and comprises four charts,

for the alternative configurA OET T O | Ox1T AEI AT OETT O p Ox1 - &%Qs8
In most cases SEEASexhibits the faster convergence, evidently because thexpansion

mechanisms supported by the metamodel (which provides enhanced overview of the surface

geometry), allow implementing steep downhill transitions . In general, the great advantage of the

simplex-based transitions is the indirect use of the concept of gradienthich favors quick location

of regions of attraction of local optimaThis is of particular importancein computational expensive

problems, where the algorithm shouldquickly detect promising descent directiors. In fact, SEEAS

clearly superior to the other two surrogate-assisted algorithms (DYCORS and MLMSRBR)all



problems, except forRastrigin. The most impressive cae is the Levy problem, wheresSEEASocates

a very good solution afterthe first one hundred of function evaluations (Figure 9a), while the mean
bestvalue found by other algorithms so far iseventwo orders of magnitude higher. Smilar are the
results for the Griewank function (Figure 9b), which could be interpreted asa rough, multimodal
version of sphere. Aplausible explanation for this is the combined effect of the knowledge gained
by the metamode| which easily recognizes the sphericastructure of Griewank, and the simplex
basedoperators, using approximations of he gradient of the function.

An interesting conclusion is that, regarding SEEAS, the increase of the computation budget

has mild effects inthe improvement of the meanbest solution. This is another evidence of the
suitability of SEEAS forextremely time-demanding optimization problems,in which the desirable

number of function evaluations should be minimal.
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Figure 3: Convergence curves for test function OF1 (Sphere) with 15 ( a, b) and 30 variables ( c, d), with MFE=500
(a, 9 and MFE=1000 (b, d).
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Figure 4: Convergence curves for test function OF2 (Ackley) with 15 (a, b) and 30 variables (c, d), with  MFE=500
(a, ¢) and MFE=1000 (b, d).
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Figure 5: Convergence curves for test function OF3 (Griewank ) with 15 (a, b) and 30 variables (c, d), with  MFE=500
(a, c) and MFE=1000 (b, d).
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Figure 6: Convergence curves for test function OF4 (Zakharov ) with 15 (a, b) and 30 variables (c, d), with
MFE=500 (a, c) and MFE=1000 (b, d).

Figure 7: Convergence curves for test function OF5 (Rastrigin ) with 15 (a, b) and 30 variables (c, d), with
MFE=500 (a, ¢) and MFE=1000 (b, d).





































































