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1. AbstractMulti-step ahead forecasting is of practical interest for the operation ofhydropower reservoirs. We conduct several large scale computationalexperiments using both streamflow data and simulated time series to providegeneralized results concerning the variation over time of the error values inmulti-step ahead forecasting. In more detail, we apply several popularforecasting methods to each time series as explained subsequently. Each timeseries is split into a fitting and a testing set. We fit the models to the former setand we test their forecasting performance in the latter set. Lastly, we computethe error and the absolute error at each time step of the forecast horizon foreach test and carry out a statistical analysis on the formed data sets.Furthermore, we perform a sensitivity analysis on the length of the fitting set toexamine how it affects the results.



2. Introduction
� The available methodologies for time series forecasting regarding the forecastinghorizon can be classified as one- and multi-step ahead forecasting. There are fivestrategies for multi-step ahead forecasting, namely the recursive, direct, DirRec,MIMO and DIRMO (Taieb et al. 2012, Bontempi et al. 2013).
� Multi-step ahead forecasting is far more challenging than one-step aheadforecasting.
� Multi-step ahead forecasting is a common practice in hydrology (e.g. Cheng et al.2008, Valipour et al. 2013, Papacharalampous 2016, Papacharalampous et al.2017b) and beyond, while it is of particular importance for the operation ofhydropower reservoirs (e.g. Coulibaly et al. 2000, Ballini et al. 2001) and, byextension, for the energy industry, especially if we consider that hydropower is aform of energy both reliable and sustainable.
� Herein, we conduct:
� several large scale computational experiments based on simulations to providegeneralized results on the error evolution in multi-step ahead forecasting
� a multiple-case study using monthly time series of streamflow to highlightimportant facts, which exhibit greater interest when presented using real-world data



3. Methodology outline
� We conduct 6 large-scale simulation experiments (SE_1a, SE_1b, SE_2a, SE_2b, SE_3a, SE_3b).
� Within each of the latter we simulate an adequate number of time series according to linearmodels of stationary stochastic processes, which are widely used for the modelling ofhydrological processes. The simulated time series are of 150 or 350 values.
� We additionally conduct a multiple-case study, which is composed by 92 single-case studiesusing monthly streamflow data.
� Some basic information about the time series used in the present study are provided in 4.
� We apply several popular forecasting methods (see 5) on the time series.
� Regarding the application of the forecasting methods, we split each time series into a fittingand a testing set. The latter is the last 50 values for the simulation experiments and the last 12values for the multiple-case study.
� We fit the models to the fitting set and make predictions corresponding to the testing set usingthe recursive multi-step ahead forecasting method. Next, we calculate the errors and theabsolute errors at each time step of the forecast horizon.
� Within the simulation experiments we carry out a statistical analysis on the formed data setsand we present the results accordingly.
� As regards the real-world time series, the fitting set is used after deseasonalization, which isperformed using a multiplicative model of time series decomposition, while the seasonality issubsequently added to the predicted time series. This specific practice is suggested for theimprovement of the forecast quality (Taieb et al. 2012).
� We present the results of the multiple-case study in a qualitative form to facilitate the detectionof systematic patterns.



a) Simulated time series
� We simulate time series according to the ARFIMA(p,d,q) model. Although this specific modelling is accompanied bycertain problems (Koutsoyiannis 2016), it is considered rather satisfying for the present study and has been widelyapplied in the literature (e.g. Montanari et al. 1997).
� We use the fracdiff.sim algorithm of the fracdiff R package (Fraley et al. 2012) to simulate 2 000 time series withineach simulation experiment according to the following table:b) Real-world time series
� We use 92 monthly time series of streamflow, which originate from catchments in Australia (Peel et al. 2000). Weuse the deseasonalized time series for the application of the forecasting methods.
� To describe the long-term persistence of the deseasonalized time series we estimate their Hurst parameter H usingthe mleHK algorithm of the HKprocess R package (Tyralis 2016), which implements the maximum likelihood method(Tyralis and Koutsoyiannis 2011).
� The parameter H ranges in the interval (0,1). The larger it is the larger the long-range dependence of the Hurst -Kolmogorov stochastic process, which is widely used for the modelling of geophysical processes instead of theARFIMA(0,d,0) model.
� The estimated values range between 0.56 and 0.99 with a mean value of 0.78.Simulation experiment Simulated process Time series length6 x 2 000 simulated time series SE_1a ARFIMA(0,0.30,0) 150SE_1b 350SE_2a ARFIMA(1,0.30,0) 150SE_2b 350SE_3a ARFIMA(0,0.30,1) 150SE_3b 3504. Time series



5. Forecasting methods
� We use the following forecasting methods originating from the implementation of several popularforecasting algorithms:
� We apply the simple, auto_ARFIMA, state space, exponential smoothing and NN_3 methods usingthe R package forecast (Hyndman and Khandakar 2008, Hyndman et al. 2017) and the remainingforecasting methods using the R package rminer (Cortez 2010, 2016), as also several built in Ralgorithms (R Core Team 2017).
� The R package rminer uses the nnet algorithm of the nnet R package (Venables and Ripley 2002),the randomForest algorithm of the randomForest R package (Liaw and Wiener 2002) and theksvm algorithm of the kernlab R package (Karatzoglou et al. 2004) for the application of theneural networks, random forests and support vector machines respectively.
� The source code for the implementation of the forecasting methods, as well as generalizedinformation about their performance when applied to linear stochastic processes, can be found inPapacharalampous et al. (2017a).Naivesimple RWsimple auto_ARFIMAARFIMA BATSstate spaceETS_sstate space SESexponential smoothing Thetaexponential smoothing NN_1neural networksNN_2neural networks NN_3neural networks RF_1random forests RF_2random forestsRF_3random forests SVM_1support vector machines SVM_2support vector machines SVM_3support vector machines



6. Simulation experiment SE_1a: errorsNaiveETS_s NN_3
� The error evolution can differ to a great extent from the one forecasting method to the other. However, all the error distributions (see above figures)tend to be approximately symmetric around zero.
� At the first few time steps ahead we observe an apparent increase of the median and iqr values. This increase is followed by a stabilization of theerror distributions for most of the forecasting methods (e.g. Naive and NN_3). On the contrary, when using the RW and ETS_s forecasting methodsthe errors seem to keep increasing until the last time step of the forecast horizon.
� The outliers are more frequent and lay farther from the median values when using specific forecasting methods (e.g. NN_3).
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Naive7. Simulation experiment SE_1a: absolute errors BATS Thetaauto_ARFIMA
� The auto_ARFIMA and Theta forecasting methods are proven more accurate than the Naive benchmark.
� The same applies to BATS, which however produces far outliers. The latter tend to be farther from the median values, as the time step increases.
� Particularly noteworthy is the fact that forecasting methods sharing a quite similar performance within the experiments of Papacharalampous et al.(2017a) are somehow differentiated through the experiments of the present study, e.g. auto_ARFIMA and BATS, Naive and RW (see 6).1
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8. Simulation experiments: median absolute errorsSE_2aSE_1bSE_1a SE_3aSE_2b SE_3bMedian absolute errorMedian absolute error
� The results vary from the one simulation experiment to the other to an extent depending on the forecasting method.1
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9. Single-case studies using monthly streamflow dataForecastingmethod Forecasting methodTime step ahead Time step ahead Time step ahead Time step aheadTime step ahead Time step ahead Time step ahead Forecasting methodThe darker the colour the better the forecasts.



The darker the colour the better the forecasts.10. Cross-case synthesis
� The relative magnitude of the errors seems to strongly depend on the individual case examined.
� The effect of the forecasting method used or the time step of the forecasting horizon on the error evolution cannot beextracted from the figures presented in 9 and 10, neither from any other single- or multiple-case study. Single-case studySingle-case studyNaive auto_ARFIMA BATS ETS_sTheta NN_3 RF_1 SVM_2Time step ahead Time step ahead Time step ahead Time step ahead



11. Contribution of the present study
� We deliver generalized results on the error evolution in multi-step ahead forecastingusing the recursive technique by comparing the performance of 16 forecastingmethods under this specific light.
� The present study is an expansion of Papacharalampous et al. (2017a), as it providescomplementary information about the forecasting methods also implemented in thelatter.
� Our findings indicate that the error evolution can differ to a great extent from theone forecasting method to the other. This specific information can be used to decideon a forecasting method, since some forecasting methods have been proven moreuseful than others.
� However, due to the stochastic nature of forecasting, the errors computed at eachtime step of a forecast horizon within a specific case study strongly depend on thecase examined and can be either small or large, regardless the forecasting methodused and the time step of our interest.
� In fact, the limitations accompanying time series forecasting emphasized byKoutsoyiannis et al. (2008), as also by Papacharalampous et al. (2017a) andPapacharalampous et al. (2017b), are highly perceivable here as well.
� These limitations might impose the implementation of probabilistic forecastingmethodologies (e.g. using Bayesian statistics, as in Tyralis and Koutsoyiannis 2014)instead of point forecasting.
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